NightLight: Passively Mapping Nighttime Sidewalk Light Data for Improved Pedestrian Routing Joseph Breda*, Daniel Campos Zamora* Shwetak Patel, Jon Froehlich

PAUL G. ALLEN SCHOOL **OF COMPUTER SCIENCE & ENGINEERING**

Let's try a quick exercise

Where would you rather walk?

How about between these two?

Now just using a map

Now just using a map

- Chances are this is a harder question.
- Information is missing from this map that could inform your route planning.
- One of these signals that's missing is lighting conditions.

Walking at Nighttime

- But walking at night brings different consideration for different populations (i.e., women consider light and safety more).
- Without prior knowledge, route planning becomes a challenge.
- Walking is good for physical and mental health and sustainability.

How is light measured?

Measuring Light Level Lighting conditions vary across the city

Satellite Imagery

Municipal Databases

Measuring Light Level Lighting conditions vary across the city

Captures real conditions but is too coarse

Only maps streetlight locations

Measuring Light Level Lighting conditions vary across the city

These do not capture lighting conditions as experienced by pedestrians

Captures real conditions but is too coarse and hard to update 11

Only maps streetlight locations

Measuring Light Level

- Manual Audits
- Handheld light meters to measure light conditions standing on the sidewalk.
- This is expensive and timeconsuming which makes it hard to scale and keep up to date.

Measuring Light Level Hardware

Nightlight Passively Crowdsourcing Light Level Data

Many devices already out there oriented in an ideal way to capture lighting

NightLight Validation Feasibility:

How does the ambient light sensor (ALS) in smartphones compare to commercial light meters in a lab environment?

Does this hold with real-world lighting conditions on streets?

Utility

- Can we use NightLight to map lighting conditions across neighborhoods?
- How do people use NightLight data to plan their nightime walking routes?

Feasibility

In-lab Validation

- 4 Phones
- Controlled sweep using gimbal

Feasibility In-Lab Validation

Readings Across Light Intensities

 On aggregate phones perform comparably to commercial light meter

Heatmap of Lux Readings

Google Pixel 6A

Orientation impacts light readings

45

Feasibility:

On-Street Validation

Sample Street

Direction of Travel

Utility: Neighborhood Data Collection

Waterfront

Low Light

Gridded

Residential

High Light

User Study

Gauging effects of light data on route planning

1. Semi-structured interview, followed by;

2. Think-aloud route planning task first without light data and then repeated with access to light data

User Study Light is already a concern

"If I had to walk at night, my primary concern is whether there is enough <u>light</u>"

Residential Neighborhood

Residential Neighborhood

Residential Neighborhood

Gridded Neighborhood All routes equidistant

Gridded Neighborhood

Gridded Neighborhood

Impact of light maps on route choice

No Light Data

With Light Data

Waterfront Neighborhood

50/72 (70%) Routes Changed

Residential Neighborhooc

No Light Data

O/D Pair 2

With Light Data

Impact of light maps on route choice

Waterfront Neighborhood

Gridded Neighborhooc

Residential Neighborhood No Light Data

O/D Pair 1

With Light Data

All women changed at least one of their routes to a more well-lit route

O/D Pair 2

With Light Data

Limitations

- Limited test pool (geographic and users)
- Actual routes may differ than planned routes
- Phone operating system only allows us to get lux value

Future Work

- Large scale deployment study over time
- Build routing app that integrates light level for suggestions
- Integrate more sensor data (i.e., cameras, rear-facing ALS, etc) to improve data quality

Nghight Conclusion

- We can leverage smartphones to passively aggregate and analyze lighting conditions
- This might have differential benefits for various populations (tourists, women, vulnerable populations)
- We can and should provide this data to help inform pedestrians on possible route choices

Thank you!

Paper

Joseph Breda* joebreda.github.io On the job market soon!

Shwetak Patel

Daniel Campos Zamora* danielcz.xyz

Jon Froelich

