

MobiPrint

A Mobile 3D Printer for Environment-Scale Design and Fabrication

Daniel Campos Zamora University of Washington

Liang He Purdue University

Jon Froehlich University of Washington

Conventional Digital Fabrication

Conventional Digital Fabrication

Our Vision – Real-World Context for Fabrication

Our Vision – Converting space into printable canvas

Our Vision – Converting space into printable canvas

Roumen et. al (2017)

 \Diamond

0

 ∇

Per

Masive Fabrication

SOD

- Mobile Fabrication - Robotics

Environment-Scale Fabrication: Replicating Outdoor Climbing Experiences

 Emily Whiting¹
 Nada Ouf²
 Liane Makatura¹
 Christos Mousas¹

 Zhenyu Shu³
 Ladislav Kavan⁴
 Dartmouth College¹
 University of Pennsylvania²

 Ningbo Institute of Technology, Zhejiang University³
 University of Utah⁴

ABSTRACT

Despite rapid advances in 3D printing, fabricating large, durable and robust artifacts is impractical with current technology. We focus on a particularly challenging environmentscale artifact: rock climbing routes. We propose a prototype fabrication method to replicate part of an outdoor climbing route and enable the same sensorimotor experience in an indoor gym. We start with 3D reconstruction of the rock wall using multi-view stereo and use reference videos of a climber in action to identify localized rock features that are necessary for ascent. We create 3D models akin to traditional indoor climbing holds, fabricated using rapid prototyping, molding and casting techniques. This results in robust holds accurately replicating the features and configuration of the original rock route. Validation was performed on two rock climbing sites in New Hampshire and Utah. We verified our results by comparing climbers moves on the indoor replicas and original outdoor routes.

Figure 1. We capture the crux of an outdoor rock climbing route (left), fabricate the key holds and mount them in an indoor climbing wall (right). Our replica mimics the climbing experience of the original outdoor route.

- Navigate, map, and print in ad-hoc environments
- Convert a floorplan into a 3D printable canvas
- Enable large working area

Workflow

Мар

Robot completes initial scan and generates map Select

Select from model library or upload a new design

Plan + Edit

Arrange and edit objects in the environment

Robot navigates to target location and prints objects

Workflow

Robot completes initial scan and generates map Select from model library or upload a new design Plan + Edit

Arrange and edit objects in the environment

Robot navigates to target location and prints objects

Rooted Firmware

*Printer removed to show LiDAR

17

H

Workflow

Robot completes initial scan and generates map

Select from model library or upload a new design

Plan + Edit

Arrange and edit objects in the environment

Robot navigates to target location and prints objects

3D Files Library

Select the Models you woud like to print

Cane-Holder.gcode

Target.gcode Rai

Raised-Bowl.gcode

• Slice & Upload New Objects

Workflow

Robot completes initial scan and generates map elect from model library or upload a new desian Plan + Edit

Arrange and edit objects in the environment

Print

Robot navigates to target location and prints objects

Planning and Editing

Users can treat the map as a canvas to place and edit objects

Workflow

Robot completes initial scan and generates map Select

elect from model library or upload a new design Plan + Edi

Arrange and edit objects in the environment

Robot navigates to target location and prints objects

Assembled Views

– Printing

Prints directly on the ground surface

Evaluation – Mapping Speed

	1 Bedroom Apartment	Makerspace	Computer Lab and Hallway
Area	120 m ²	80 m²	174 m²
Mapping Time	12 min	15 min	43 min

10N

Evaluation – Adhesion Strength

Evaluation – Adhesion Strength

Carpet	Hardwood	Vinyl	Tile
>50N	8.7N	37N	N/A

Adhering too strongly to carpet

Average Error was 5.1cm

Accessibility

Signage and Wayfinding

Home Furnishing

Tactile Surface Indicators

Cane Holder

Signage and Wayfinding

Conference Signage

Floor mural

Ergonomic footrest

Raised pet bowl

Discussion

Limitations

Can't print on-the-move

- Limited Design Operations
- Can only store one environment at a time and can't share the map with other machines

Future Work

- Improve hardware precision and slicing algorithms
- More expressive design tool (patterning, annotations)
- Support for multiple maps and robots

Design Considerations for Mobile and Environmental-Scale Fabrication

- Integrate Environment and Context Information into Design Process
- Support a Spectrum of Automation
- Work Directly In/On the Environment
- Consider Permanence, Removal, and Lifecycle

MobiPrint

A Mobile 3D Printer for Environment–Scale Design and Fabrication

Danielcz.xyz
danielcz@cs.uw.edu
@Daniel_C_Z

