

Room Accessibility and Safety Scan in Augmented Reality

RASSAR

Xia Su, PhD Student, UW CSE Han Zhang, Kaiming Cheng, Jaewook Lee, Qiaochu Liu, Wyatt Olson, Jon Forehlich

PAUL G. ALLEN SCHOOL of computer science & engineering

Unreachable Space

Inaccessible Knob

Safe and accessible home space is a **fundamental human right**

Most living spaces requires careful auditing and renovations to improve safety and accessibility.

Housing Units in US

10%

90%

Accessible

Inaccessible

Stanley K. Smith, Stefan Rayer, and Eleanor A. Smith. 2008. Aging and Disability: Implications for the Housing Industry and Housing Policy in the United States. Journal of the American Planning Association 74, 3 (July 2008), 289–306.

Steinfeld, E., Levine, D. R., & Shea, S. M. (1998). Home modifications and the fair housing law. Technology and Disability, 8(1-2), 15-35.

Newly Built Private Homes in UK

2%

98%

Rob Imrie. 2003. Housing quality and the provision of accessible homes. Housing Studies 18, 3 (2003), 387–408.

•

Elapsed 0.01283 seconds - 15.39 FPS

Sofa 1.8m*0.8m*0.6m (X,Y,Z)

Table 1.1m*0.4m*0.6m (X,Y,Z)

Rug

(X,Y,Z)

Storage 1.7m*0.5m*0.3m (X,Y,Z)

Detect

Summary

Prototype

ARKit

RoomPlan

YOLO

Accessibility Literature

Prototype

Poorly Lit 48% Accuracy

Ideal 90% Accuracy

- Well-lit Tidy
- Scan with medium speed (1min/room)

Technical Feasibility Accessibility Literature **Controlled Technical Evaluation** Formative Ideation -----> Prototype -User Study

Understand Needs Design Feedback

Formative Study

Total N=18

Wheelchair Users

BLV People

N=8

N=4

Older Adults

N=6

Families with Young Children

N=3

Occupational Therapists

N=3

Formative Study

"I think it could really help people have more confidence when they go to a new space"

-Participant No.18, Blind

Formative Study

Design Probe

How should RASSAR support scans?

How Should RASSAR Summarize Scan Results?

How Should RASSAR Show the Detected Issues?

Technical Feasibility Accessibility Literature **Controlled Technical Evaluation** Formative Ideation -----> Prototype -Study **Understand Needs** Design Feedback

RASSAR

9:28

Identify Localize Suggest

Pipeline

RoomPlan YoloV5

Pipeline

LiDAR & RGB Camera

RoomPlan YoloV5

Pipeline

Ohiect Dimension

Ο

В

Τť

С

D

Ο

Ohiect Position

High or Lov

eig nt

ht lle Heig

ght

Grab Bar Height

Grab Bar Height

LiDAR & **RGB** Camera

ADA.gov

Civil Rights Division

U.S. Department of Justice

RoomPlan YoloV5

10:39 🕇

10:39

7 Apartments

Manual Inspection Scan 3 times Compare Results

Accuracy Consistency Time 5

Technical performance evaluation

*Videos from the technical performance evaluation. Scenes blurred for privacy.

High agreement over repeated scans

-0.1**0**.10 0.30 0.50 0.70 0.90 **Krippendorff's alpha**

RASSAR Avg

U

Manual Avg

0

2.5

Scan Time (min)

Manual Inspection Independent scan Calculate accuracy

Precision: 0.79 Recall: 0.73

Recall: **0.83**

Usability Usefulness

Performance Willingness of Detection to use

Discussion

Application Scenario

Detection Performance

Beyond ADA

Prior-visit Auditing

Accomodate Life Change

Complement OT Visit

Discussion

Application Scenario

Detection Performance

Beyond ADA

Object Dimension

Object Too Tall or Short

Bed Height Table Height Counter Height Door Width Opening Width

```
"Counter":{
    "Dim_Height":{
        "Community":["Wheelchair"],
        "Dependency":null,
        "Dimension":{
            "Comparison": "Between",
            "Value":[28,34]
       },
        "RelativePosition":{
                                                      on
            "Comparison": null,
            "Value":null
                                                       Low
       },
    "Existence":null,
                                                         "Knives": {
    "Note": "replace PLACEHOLDER to either 'short' or
                                                         "ExistenceOrNot": {
\rightarrow 'tall' depends on the actual height of the
\leftrightarrow counter."
                                                           "Dimension": {
    "Message": "Warning: Counter is too PLACEHOLDER.",
   "Description": "According to ADA compliance,
\rightarrow counters must be at the proper height (this often
\rightarrow is 28-34 inches from the floor).",
                                                           },
    "Suggestions":["Replace to an adjustable height
\leftrightarrow counter"],
    "Sources":[
    {"name":"2010 ADA Standards for Accessible
→ Design", "url":"https://www.ada.gov/regs2010/201
                                                           "Note": null,
↔ ØADAStandards/2010ADAstandards.htm"},
    {"name": "Aging in place: Designing, adapting, and
← enhancing the home environment","url":"https://s
→ Aging+in+Place+Designing%2C+Adapting%2C+and+Enha
→ ncing+the+Home+Environment&btnG="}]
                                                           "Sources": []
},
```

}.

RASSAR

Room Accessibility & Safety Scan in Augmented Reality

Xia Su, PhD Student, UW CSE Han Zhang, Kaiming Cheng, Jaewook Lee, Qiaochu Liu, Wyatt Olson, Jon Forehlich

PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING

Thank you! Questions?

Our Source Code

