

BUSAN, KOREA | SEP. 28TH - OCT. 1ST 2025

FlyMeThrough

Human-Al Collaborative 3D Indoor Mapping with Commodity Drones

Xia Su*, Ruiqi Chen*, Jingwei Ma, Chu Li, Jon E. Froehlich

However, collection is expensive and slow

Related Works

Malhotra, A., & Söderström, U. (2022, December). Fixed camera drone based photogrammetry for indoor mapping. In 2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON) (pp. 1-5). IEEE. Safa, Ali & Verbelen, Tim & Catal, Ozan & Maele, Toon & Hartmann, Matthias & Dhoedt, Bart & Bourdoux, Andre. (2023). FMCW Radar Sensing for Indoor Drones Using Learned Representations. 10.48550/arXiv.2301.02451.

Research Goal: Lower the Bar

- 1. Explore a hardware-agnostic solution
- 2. Enable non-professionals to incorporate situated knowledge
- 3. Understand opportunities, application scenarios, risk, challenges.

Human-Al Collaborative 3D Indoor Mapping with Commodity Drones

Human-Al Collaborative 3D Indoor Mapping with Commodity Drones

Structure from Motion With Commodity Drone

Annotation
On Video Frames

Structure from Motion With Commodity Drone

Annotation On Video Frames

Structure from Motion
With Commodity Drone

Annotation
On Video Frames

Structure from Motion With Commodity Drone

Annotation On Video Frames

POI-infused 3D Indoor Map

Commodity RGB Drone

Video

Frames

Camera Extrinsics

3D Reconstruction

Structure from Motion
With Commodity Drone

Annotation
On Video Frames

POI-infused
3D Indoor Map

Open Vocabulary

Contextual Knowledge

Visually Ambiguous

Annotation Results Entrance_2 View Frame: 4 4 boxes Door_1 Frame: 4 View 1 boxes Stairs_1 View Frame: 4 8 boxes Front Desk_1 View Frame: 15 4 boxes Door_2 View Frame: 15 6 boxes Elevator_1 View Frame: 19 4 boxes Door_3 Frame: 49 View 2 boxes O Stairs_2 View Frame: 139 4 boxes Stairs_3 Frame: 150 View 10 boxes Elevator_2 Frame: 175 View Processing... Elevator_3 View Frame: 175 1 boxes Door_4 Frame: 175 View

Door_2

Annotation Results

Entrance

Add

Elevator

Add

Stairs

Add

Restroom

Add

Door

Add Add

Ramp

Add

New type name

Front Desk

Add

Stairs_1 description of this object

Clear Points Remove Annotation

Confirm Annotation

Final Actions

Review Video

Finish Annotation

Structure from Motion
With Commodity Drone

Annotation
On Video Frames

POI-infused 3D Indoor Map

Depth-guided Ray-casting

Structure from Motion With Commodity Drone

Annotation On Video Frames

Structure from Motion
With Commodity Drone

Annotation
On Video Frames

POI-infused
3D Indoor Map

Spaces

OceanSciencesBui

IdingShop

OceanResearchBui 👵

MedTeachBuilding 4

MarineSciencesBu pildingShop

Detected Facilities Stairs View No description available View **Stairs** No description available Stairs View No description available View Stairs No description available Stairs View No description available Stairs View No description available Return to Bird's Eye View

55

Common spaces would be [appropriate to scan]. Like we could do the hallways and large atria.

maybe it's best to blur people's faces before annotation

"

Performance
Across Spaces

Interface Usability

Opportunities & Challenges

Performance
Across Spaces

Interface Usability

Opportunities & Challenges

Performance **Across Spaces**

Interface **Usability**

Opportunities & Challenges

Education 100 (sqm) x 1 (floors) 2min08s

Exhibition 3000 (sqm) x 2 (floors) 6min07s

Engineering 260 (sqm) x 3 (floors) 5min03s

Office 1100 (sqm) x 4 (floors) 5min33s

Education 800 (sqm) x 1 (floors) 4min02s

Performance
Across Spaces

Opportunities & Challenges

Performance
Across Spaces

Interface Usability

Opportunities & Challenges

Performance
Across Spaces

Interface
Usability

Opportunities & Challenges

5 building managers

5 building users

Performance
Across Spaces

Interface Usability

Opportunities & Challenges

• Interfaces are easy to use.

Pretty easy to use
- M2 & O5

55

Not complicated at all

- M5

Easy to use: 6/7

Model quality: 5/7

91.7% annotation Success

71.5% POI High quality

Performance
Across Spaces

Interface Usability

Opportunities & Challenges

- Participants are relatively relaxed about the indoor drone fly.
- Privacy emerged as a key concern but can be mitigated by:

Spatial Exclusion

Temporal Minimization

Data Management

Performance **Across Spaces**

Interface Usability

Opportunities & Challenges

Space Planning

Remote Inspect

Utilization Analysis Assets Management

Navigation

Ally Eval

Safety & Util

Low-cost

Open vocabulary

Community Driven

Make indoor maps a **common resource**, not the privilege of a few.

BUSAN, KOREA | SEP. 28TH - OCT. 1ST 2025

FlyMeThrough Human-Al Collaborative 3D Indoor

Human-Al Collaborative 3D Indoor

Mapping with Commodity Drones

Xia Su*, Ruiqi Chen*, Jingwei Ma, Chu Li, Jon E. Froehlich

Xia Su, 5th year PhD student, UW CSE

On job market for industry research positions

HAI, CST, Multi-modality, Spatial Intelligence

xiasu@cs.washington.edu

Ruiqi Chen, master student, UW HCDE
Looking for PhD programs relevant to
Human-Al systems and Al-assisted tools
ruiqich@uw.edu

Project Page & Code