Just-in-time Al Interventions LabelAld for Improving Human Labeling Quality and Domain Knowledge

Chu Li*, Zhihan Zhang*, Michael Saugstad, Esteban Safranchik, Minchu Kulkarni, Xiaoyu Huang, Shwetak Patel, Vikram Iyer, Tim Althoff, Jon E. Froehlich

PAUL G. ALLEN SCHOOL **OF COMPUTER SCIENCE & ENGINEERING**

Alpaca

- Are you sure this is a llama?

System feedback can influence labeling confidence, quality & knowledge

Alpaca

System feedback can influence labeling confidence, quality & knowledge

-Are you sure this is an alpaca?

How can we leverage system feedback?

Galaxy Zoo

Open Street Map

FoldIt

Galaxy Zoo

Quality control remains a major challenge in crowdsourcing

Open Street Map

FoldIt

Prior Work

Quality Control + Learning Experience

Example Projects

- Shepherd Dow et al., 2012
- Review vs. Doing Zhu et al., 2014
- Learning from the Crowd Mamykina et al., 2016

Learning Facilitation Methods

- Peer review
- Expert feedback
- Self-assessment

back ment

Limitation

- Requires additional review commitments
- Impacts scalability

LabelAld

Machine Learning Framework

Technical Evaluation

User Interface Design & Implementation

User Study

Machine Learning Framework

Technical Evaluation

User Interface Design & Implementation

User Study

LabelAld Pipeline

PROJECT SIDEWALK projectsidewalk.org

Project Sidewalk

5 Major Label Types

Missing Curb Ramps

Obstacles

Surface Problems

Missing Sidewalk

Project Sidewalk

Find, label, and assess sidewalks

1

Q Q Is this a **Surface Problem**? ø ··· 1924 labels Ende Label Zoom In urrent Mission /alidate 10 labels Correct Examples Incorrect Examples Google Nov 2020 © 2022 Google Terms of Use Report a proble X Disagree ? Not sure Agree Add comment here...

Find, label, and assess sidewalks

p error

Add comment here

 $\mathbf{\nabla}$

Start Exploring

City

Seattle, WA

Show

Curb Ramp

Filter By

Severity

Tags

points into traffic (narrow)

(steep)

(not enough landing space)

(not level with street)

(surface problem)

(missing tactile warning)

pooled water

Validations

Validated correct

Validated incorrect

(Unvalidated)

Curb Ramp Severity

OOOO

Curb Ramp Severity $\bullet \circ \circ \circ \circ$

Curb Ramp Severity

OOO

Curb Ramp Severity

Severity 0000 Tags (missing tactile warning

Severity

Start Exploring

Tags (missing tactile warning

Severity

 $\mathbf{\nabla}$

Start Exploring

City

Seattle, WA

Show

Curb Ramp

Filter By

Severity $(1 - 1)^{-1} (1 - 1)$

Tags

(narrow) (points into traffic)

(steep)

(not enough landing space)

(not level with street)

(surface problem)

(missing tactile warning)

(pooled water)

Validations

Validated correct

Validated incorrect

(Unvalidated)

Curb Ramp Severity

Curb Ramp Severity

Curb Ramp Severity

np 0000

Curb Ramp Severity

Tags (missing tactile warning

Curb Ramp

Start Exploring

City Seattle, WA \sim Show Curb Ramp \sim **Filter By** Severity Curb Ramp Tags Severity [narrow] points into traffic (steep) (not enough landing space) not level with street (surface problem) (missing tactile warning) pooled water Validations Validated incorrect (Unvalidated)

Curb Ramp Severity

Curb Ramp Severity

Curb Ramp

 Curb Ramp

 Severity 0000
 Tags (missing tactile warning)

Severity

© Google

Data noise at neighborhood scale

Adapting LabelAld to Project Sidewalk

Programmatic Weak Supervision

Domain Knowledge + Heuristics

Unannotated Data

Labeling Functions Label Model

Automatically Imperfectly Annotated Data

Labeling Function Example

Domain Knowledge

Set Of Labeling Functions

Planning Guidelines

Distance to urban infrastructure

Crowdsource Nature

In proximity with other user's labels

User Behaviors

Optional inputs & labeling zoom level

Label Characteristics

Severity rating

LabelAld Pipeline

Programmatic Weak Supervision

Pre-Training & Fine-Tuning

Automatically Imperfectly Annotated Data

Pre-trained Model

Expert-Validated Data

Fine-tuned Model + Downstream Tasks

FT-Transformer-Based Model Architecture

Machine Learning Framework

Technical Evaluation

User Interface Design & Implementation

User Study

Technical Evaluation

- 🕂 LabelAld
- → XGBoost
- → Random Forest
- + MLP
- Logistic Regression

Technical Evaluation

LabelAld improves accuracy by up to **37%** with just **50** downstream samples

Machine Learning Framework

Technical Evaluation

User Interface Design & Implementation

User Study

User Flow

Original Project Sidewalk

Project Sidewalk with LabelAld

Your Curb Ramp Label

Not on pedestrian route. Curb ramps are not needed at paths not intended for pedestrians.

Back to Labeling

Overall Stats -9 - ---

🛞 Common Mistakes

Driveways. Driveways are not curb ramps. They are designed for vehicles and not pedestrians.

Curb Missing. When a curb ramp is missing, use the Missing Curb Ramp label instead.

See common mistakes < 1/2 > See correct examples

Your Curb Ramp Label

This is a good curb ramp. it's wide, has a yellow tactile warning, and is not too steep.

Label flat curb ramps with tactile warning strips.

Back to Labeling

Overall Stats -9 - ---

O Correct Examples

This is an OK **curb ramp**. It's missing a tactile warning strip and is angled into the street.

Some corners have very wide **curb ramps** to support travel in both directions.

See common mistakes < 2/2 > See correct examples

Machine Learning Framework

Technical Evaluation

User Interface Design & Implementation

User Study

Between-Subjects User Study

Participants & Task

- 34 participants
- Randomly assigned to 2 conditions
- 8 labeling routes

- Task performance •
- Labeling confidence •
- Knowledge gain
- User preference

Measures

Approach

- Data logging •
- Quiz •
- Questionnaire •
- Interview •

Can LabelAld improve labeling performance?

Findings - Task Performance

Label Type	Control	Intervention	U	p-value
Overall	0.699 (±0.199)	0.891(±0.053)	50.0	0.001 **
Curb Ramp	0.686 (±0.346)	0.956 (±0.067)	70.0	0.038 *
No Curb Ramp	0.802 (±0.164)	0.918 (±0.091)	80.5	0.025 *
Obstacle	0.7610 (±0.126)	0.812 (±0.111)	85.5	0.183
Surface Problem	0.812 (±0.230)	0.894 (±0.116)	100.0	0.423
No Sidewalk	0.842 (±0.267)	0.867 (±0.208)	66.5	0.480
precision low	precision high			

- LabelAld improves precision by up to 19% without compromising labeling time

How did the **perception of labeling ability** and **knowledge gained** differ between the two groups?

Findings - Self Efficacy & Learning Gains

- Higher self-efficacy in intervention group
- Similar objective learning gains
- Higher subjective learning gains in intervention group

How did participants perceive LabelAld?

Findings - Perceived Usefulness

- LabelAld was helpful (82.35%) & likable (64.7%)

- There were times when **I was not sure** if I should label it, and the system popped-up for me and said
- 'Are you sure about this?' I found that really helpful.

- Intervention Group Participant

Discussion

- Can Al-assistance replicate human feedback?
- How to design interactions with imperfect ML models?
- Cognitive forcing function reduces over-reliance on Al

Growing concern about Al-based assistance: over-reliance on Al, reduced human cognitive engagement

Discussion

Obstacles high false positive rate 36.2%

Users rejected 83 % incorrect suggestions

Cognitive forcing functions

- elicit analytical thinking at decision making time
 - effectively reduces reliance on Al

LabelAld Just-in-time Al Interventions

Medical Image Labeling

Agriculture Recognition

Wildlife Classification

Just-in-time Al Interventions LabelAld

inference models for detecting labeling mistakes

teachable moments in crowdsourcing workflows

Chu Li

Xiaoyu Huang

Zhihan Zhang

Shwetak Patel

Michael Saugstad

Vikram lyer

Esteban Safranchik

Tim Althoff

for Improving Human Labeling Quality and Domain Knowledge

- A novel pipeline that facilitates the training of Al-based
- A human-Al collaborative system designed to create

Contacts chuchuli@cs.uw.edu zzhihan@cs.uw.edu

Minchu Kulkarni

Jon E. Froehlich

PAULG ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING

