Evaluating Angular Accuracy of Wrist-based Haptic Directional Guidance for Hand Movement

Jonggi Hong¹ Lee Stearns¹ Tony Cheng¹ Jon E. Froehlich¹ David Ross² Leah Findlater¹

¹ University of Maryland, College Park ² Atlanta VA R&D Center of Excellence in Vision and Neurocognitive Rehabilitation (CVNR)

Directional Guidance for Hand Movement

When is the hand guidance needed?

Virtual Reality

Guiding human operators towards a specific target

Assistive Technology

Tracing a line of printed text while listening to text-to-speech

Problem

Visual or audio information channels are **overloaded or inaccessible** due to environmental factors.

One Solution: Wrist-Based Haptic Feedback

One Solution: Wrist-Based Haptic Feedback

Phantom sensation

Existing studies: Wrist-based feedback

Grid layouts

Can be used for coarse-grained direction (e.g., cardinal directions)

Lee et al. (2015)

Grid layouts offer lower tactile perception compared to motors placed on a band

Matscheko et al. (2010)

Band layouts

Existing studies: Wrist-based feedback

Grid layouts

Can be used for coarse-grained direction (e.g., cardinal directions)

Lee et al. (2015)

Grid layouts offer lower tactile perception compared to motors placed on a band

Matscheko et al. (2010)

Band layouts

Have been used to guide translation and rotation of the arm using four or six motors

Six motors were more accurate than four motors and verbal guidance.

By Weber et al. (2011)

The study only included at most six angles of movement, not higher precision

Existing studies: Wrist-based feedback

Grid layouts

Fine-grained directional guidance has received less attention

Band layouts

Existing studies: Finger-based feedback

By Horvath et al.

By Stearns et al.

Motors on the finger have been explored to guide visually impaired users in tracing a line or reading text

Existing studies: Finger-based feedback

By Horvath et al.

By Stearns et al.

Motors on the finger have been explored to guide visually impaired users in tracing a line or reading text

In contrast, a wrist-based approach:

Can be incorporated into a smartwatch band

Balances proximity to the finger, sensitivity, surface area, and social acceptability

Research Questions

How accurately can people move their hand given fine-grained haptic guidance on a wristband?

How many motors are needed to achieve this level of accuracy?

Wristband Prototypes

Providing fine-grained directional guidance

Mapping the Vibration to a Direction

How to indicate angles of direction *between* motors?

Phantom Sensation

Two vibrotactile actuators placed closely together on the skin create the **illusion of a single vibration** between the two actuators.

The location of the phantom sensation is determined by the amplitude of the two vibrations.

[Alles, 1970]

Four-motor wristband

Phantom sensation

Four-motor wristband

Phantom sensation

Eight-motor wristband

Eight-motor wristband

Phantom sensation

User Study

Comparing haptic feedback with four or eight motors around the wrist

Method

Participants

20 participants (10 male, aged 19-58) They were blindfolded during the task All participants used their right hand

Two conditions

Four or eight motors Within-subjects design Fully counterbalanced

Apparatus

2/16

Motor number: A Vibration: SINGLE MOTOR 12016-03-17-17-40-3411test 4-1-10EMO

Arduino Mega + BLE Shield

Android tablet

Vibro-motor

Procedure

1. Background survey

Age, gender, experience in using a touchscreen device and haptic feedback.

2. Completing a task in two conditions Moving the hand in the direction of the vibration.

3. Questionnaire

Comparing ease of use, accuracy, and preference between the two conditions.

Each trial: move in one of 32 directions

(11.25° intervals)

Task

Each trial: move in one of 32 directions

(11.25° intervals)

Audio Feedback

Exact (11.25° interval) Chime + "Perfect!"

Approximate (45° interval) Chime

Incorrect (Error > 45°) Beep

Task

Practice (16 trials)

8 directions counterclockwise+ 8 random directions

Test (96 trials)

3 repetitions of 32 directions in randomized order

Hypotheses

The 8-motor condition will be more accurate than the 4motor condition.

Eight motors provide twice the fidelity of information.

The 8-motor and 4-motor conditions will impact trial completion time differently.

The 4-motor condition is simpler but the 8-motor condition may offer clearer intercardinal information.

Results

Accuracy, time, and subjective responses

Cardinal Directions Most Accurate

Cardinal Directions Most Accurate

8-motors More Accurate Than 4-motors

Average angular error across all directions

4-motor	8-motor
25.4°	23.2°

Statistically significant difference (p = .034, one-tailed t-test) *Hypothesis 1 is supported*

Angular Accuracy by Quadrant

Upper-left Quadrant was Least Accurate

Upper-left quadrant was significantly worse than the two downward quadrants (p < .05)

No Differences in Trial Completion Time

No significant difference found between conditions using a Wilcoxon signed ranks test (Z = -.89, p = .372)

Hypothesis 2 is not supported

Subjective Response

AnswerQuestion4-motor8-motor

Recap and Discussion

Doubling the number of haptic motors increased accuracy, but not speed.

Recap and Discussion

Doubling the number of haptic motors increased accuracy, but not speed.

Empirically identified a potential lower bound on angular error: about 23-25°.

Recap and Discussion

Doubling the number of haptic motors increased accuracy, but not speed.

Empirically identified a potential lower bound on angular error: about 23-25°.

Movements in the upper-left quadrant were less accurate than other quadrants, perhaps because all participants used their right hand.

Future Work

Further investigate identified angular error limit such as how it affects more realistic tasks with continuously updated directional guidance (e.g., tracing a path)

Extend these findings to users with visual impairments such as for finger-based reading of printed text or to gain spatial layout information of a printed page

Questions?

Jonggi Hong Lee Stearns Tony Cheng Jon E. Froehlich David Ross Leah Findlater jhong12@umd.edu Istearns@umd.edu tcheng1@terpmail.umd.edu jonf@umd.edu ross0128@bellsouth.net Ieahkf@umd.edu

This work was supported by the Office of the Assistant Secretary of Defense for Health Affairs under Award W81XWH-14-1-0617

