
Seeking the Source 
Software Source Code as a Social and Technical Artifact

Cleidson de Souza, Jon Froehlich, and Paul Dourish



2

Overview

• Uncover structures of software projects

– Uniform treatment of artifacts and activities

– Use code analysis and development metadata 

to derive views of social structure

• Qualitative study of open source software



3

Background

• Software architecture defines a relationship 

between components

– Functional/technical influences

– Social and organizational influences also at play

• Conway [1968]

– “The structure of a system mirrors the structure 

of the organization that designed it”

• Also, Parnas’ [1972]

– Principle of information hiding



4

Background Continued

• What happens when there is no “formal” 

organization

– OSS might be an example…

• We created a tool to investigate:

– how the relationships between software 

modules expose one view of the underlying 

social structure



5

Outline

• Augur, A Tool

• Visualizing Software Development

• Evolutionary Patterns

• Conclusion & Future Work



Augur, A Tool



7

Augur

• Visualization system for CM repositories of 

source code

– Attempts to unify views of “activities” and 

“artifacts”

– Contains multiple, dynamic views of data



8

Augur’s Data Source

• Configuration Management (CM) Systems

– Repository for both source code and meta-data 

about development

• Author information

• Checkin information

• Use this as a basis for analysis

– Augur connects to existing CVS servers with no 

additional overhead



9



10

Simple Analysis

• Analyze which developers in the system 

work on which files or lines

– Broad temporal patterns

• e.g. clear distinctions between workday and 

weekend, individual contribution patterns, etc.

– Broad collaborative patterns 

• e.g. certain authors only work alone, certain files 

contain many authors



11

Static Analysis

• Static analysis enables us to explore richer, 

more meaningful relationships

– Line types

– Containment structures

• Dependency relationships begin to emerge

– Object extension

– Interface implementation and extension



12

Dependency Analysis

• Augur extended to conduct Call Graph 

Analysis

– A window into the dynamic structures of the 

code

• As Parnas and Conway suggest, this structure 

influences the coordination of the work



int main(){

int temp = GetTemp();

double fahr = ConvertTemp(temp);

print(“Temperature: ” + fahr);

}

GetTemp()

main() ConvertTemp(x)

print(str)

An Example



int main(){

int temp = GetTemp();

double fahr = ConvertTemp(temp);

print(“Temperature: ” + fahr);

}

GetTemp()

main() ConvertTemp(x)

print(str)

Scott

Kate

print(str)

Jon

We ignore library 

functions (no meta 

data available)



Visualizing Software 
Development



16

Types of Projects

• Network relationships between developers

– As derived from code dependencies

• Many different types, we’ll focus on three 

emergent patterns

– Centralized

– Densely Networked

– Core and Periphery



17

Centralized

Directionality is important

Project: iReport2
Host: Sourceforge



18

Centralized

Project: iReport2
Host: Sourceforge

Project: jBoss
Host: Sourceforge

Project: Jakarta-Lucene
Host: Apache

Project: FreeNet
Host: SourceForge



19

Centralized

Project: Jakarta-Tomcat
Host: Apache



20

Densely Networked

Project: Azureus
Host: Sourceforge



21

Densely Networked

Project: Azureus
Host: Sourceforge

Project: Megamek
Host: Sourceforge

Project: Apache-Log4j
Host: Apache

Project: Apache WS-AXIS
Host: Apache



22

Core & Periphery

Project: jBOSS
Host: Sourceforge



23

Core & Periphery

Project: WS-Axis
Host: Apache



Evolutionary Patterns



25

Bipartite Graphs

• Quick digression…

• Useful to see both artifact and author in the 

same frame

– The connection between the two becomes 

explicit – Bipartite Graphs

• Example:

Jon

Scott

Ned

Erin

Kate

Module2Module1 Module2



04-23-2000 

One Day Old



07-23-2000

Three Months Old



10-23-2000

Six Months Old



04-23-2001

One Year Old



10-23-2002

2.5 Years Old



10-23-2003

3.5 Years Old



09-24-2004

~4.5 Years Old



Conclusion & Future Work



34

Conclusion

• We explored emergent social and technical 

structures through artifacts

• Our preliminary empirical examinations have 

shown that:

– Social patterns can be revealed through CM 

analysis combined with artifact analysis

• E.g. Certain modules and certain “authors” become 

obligatory passage points in the system

– Suggest that tools can be built to support both 

technical and social structures in the system



35

Future Work

• Deeper investigations…
– Interviews with project developers (compare/contrast)

• Automatic recognition…
– Similar to Soylent e-mail system [Fisher 2004]

• Is Augur a useful tool to OSS research?
– Is there value to the community?

• Investigate different communities
– Commercial systems

– Co-located development teams

• Integrate other sources of information
– E.g. mine bug-tracking systems [Crowston 2004]



36

Acknowledgements

• My two co-authors: 

– Cleidson de Souza 
• Departmento de Informatica

Universidad Federal do Para

– Paul Dourish
• Donald Bren School of Information and Computer 

Sciences
University of California, Irvine

• Jeffrey Heer for Prefuse

• Danyel Fisher for JUNG



Questions?
Jon Froehlich

jonfroehlich@gmail.com


