June 11th, 2007 MobiEval Workshop : System Evaluation for Mobile Platforms Metrics, Methods, Tools, and Platforms

myexperience

Jon Froehlich¹

Mike Chen², Sunny Consolvo², Beverly Harrison², and James Landay^{1,2}

design:

use: build:

university of washington¹

БΠ

Intel Research, Seattle²

introduction

- Context-aware mobile computing has long held promise...
 - But building and evaluating context-aware mobile applications is hard


Often encompasses a range of disciplines / skills

- Sensor building and/or integration
- User modeling
- Statistical inference / machine learning
- Designing / building application
- Ecologically valid evaluation

motivating questions

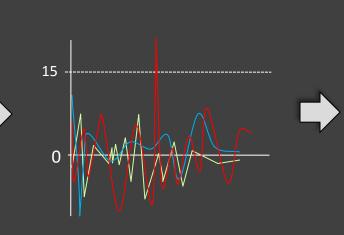
- How can we easily acquire labeled sensor datasets in the field to inform our user models and train our machine learning algorithms?
- How can we evaluate the applications that use these user models / algorithms in the field?
- How can we extend the evaluation period from days to weeks to months?

the myexperience tool



MyExperience combines automatic sensor data traces with contextualized self-report to assist in the *design* and *evaluation* of mobile technology

sensors, triggers, actions


Triggers

Sensors

Example Sensors:

DeviceIdleSensor SmsSensor PhoneCallSensor RawGpsSensor PlaceSensor

Example Triggers: DeviceIdle > 15 mins IncomingSms.From == "Mike"

PhoneCall.Outgoing == true Calendar.IsBusy == false Gps.Longitude == "N141.23"

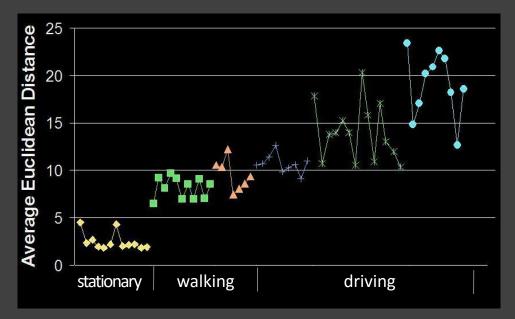
Actions

* cingular	2125
1. Please rate the voi phone call.	ce quality of that
1. OBad	0
2. OPoor	
3. OFair	
4. ○Good	
5. ○Excellent	

Example Actions:

SurveyAction ScreenshotAction SoundPlayerAction VibrationAction SmsSendAction

votewithyourfeet


Jon Froehlich², Mike Chen¹, Ian Smith¹, Fred Potter² Intel Research¹ and University of Washington²

project overview

- Formative study to determine relationship between movement and place preference
- Four week study
 - 16 participants
 - Up to 11 *in situ* self-report surveys per day
 - Carried Windows Mobile SMT5600 (provided) w/MyExperience in addition to their personal phone
 - Logged GSM sensor data @ 1Hz
- No external sensors required

two survey triggers

Mobility Sensor

- Similar to Sohn et. al UbiComp 2006
- GSM signal variation to detect movement
- No external sensors required
- Stationary for 10 minutes \rightarrow trigger survey

Pseudo-Random Time Trigger

- No movement detected for
 1 hr → trigger survey
 randomly within next hour
- Ensures consistent sampling

survey questions

lessons learned

- Near-real time access to study data is extremely beneficial
 - Web sync provides data redundancy
 - Allows early analysis of data
 - Can detect problems in the field as they occur
 - Data can be used as *cue points* during interview
- Additional mobile phone can be problematic
 - Forget device
 - Have to remember to charge
- Limit number of open-form self-report questions

lessons learned

- Need flexibility in configuring the sensors, triggers, and actions
 - Could already setup the user interface in XML
 - Expanded this to include sensors, triggers, and actions
- Current version uses XML + scripting combination to provide both declarative and procedural functionality

ubifit

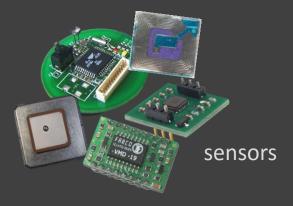
Using Technology to Encourage Physical Activity

Sunny Consolvo¹, Jon Froehlich², James Landay^{1,2}, Anthony LaMarca¹, Ryan Libby^{1,2}, Ian Smith¹, Tammy Toscos³

Intel Research¹, University of Washington², and Indiana University³

project overview

- Initial 3-week study planned followed by longitudinal 3-month study
 - Female participants from Seattle area
 - Participants use *lab-provided* WM5 devices with ubifit instead of their own personal phones
- UbiFit application
 - Built off of MyExperience
 - Collects both inferred activity and selfreport activity data
 - Data is sync'd with Intel Research's web server once/hr throughout the study


mobile sensing platform

MSP Features

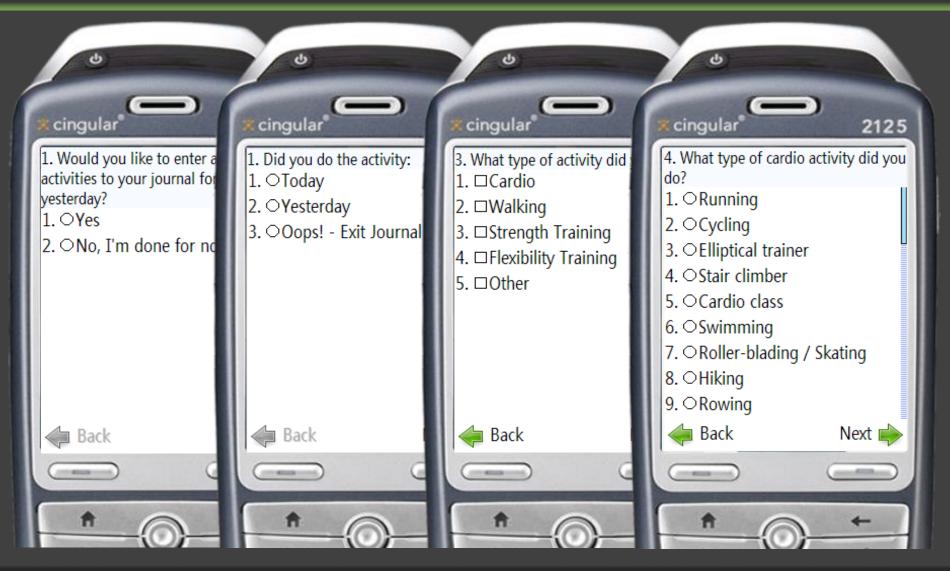
- Built on iMote2
- Linux OS
- 32MB RAM
- 2 GB Flash Storage
- Zigbee and Bluetooth
- 12-16 hours battery life


wearable msp

10 Built-in Sensors

- 3D Accelerometer
- 2D Compass
- Barometer
- Humidity
- Visible light
- Infrared light
- Temperature
- UART, GPIO breakouts for additional sensors

msp + myexperience



inferred ubifit activities

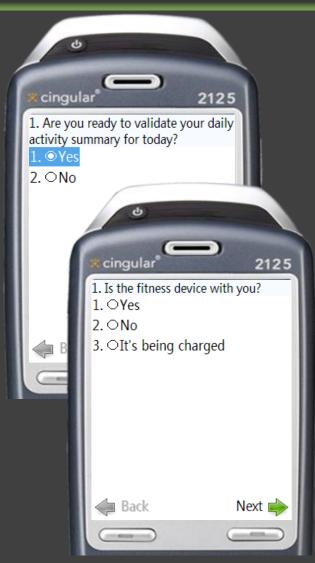
- Six activities are automatically detected
 - Bicycling
 - Elliptical trainer
 - Running
 - Sedentary
 - Stairmaster
 - Walking

* cingular 2125
UbiFit Daily View -><- 🔞 abc 🎢
● Sat, Jun 9 ●
Comment first day of break
 □ Cardio (30 min) Cycling, 30 min □ Walking (46 min) Strength (none)
Flexibility (none) Other (none)
Goals Menu

manual activity entry

subset of ubifit triggers

Journal reminder

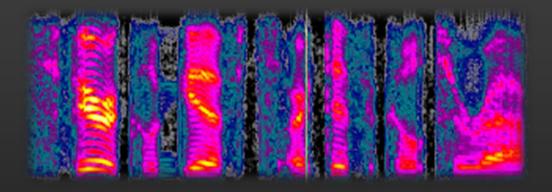

 If journal has not been used in ~2 days and it's past 8PM, launch journal reminder

Uncertain activity occurred

 If the system knows an activity occurred but couldn't determine the exact activity, a survey is launched

MSP troubleshooter

 If the MSP hasn't been seen in ~2 hrs and it's after 10AM, launch a troubleshooter

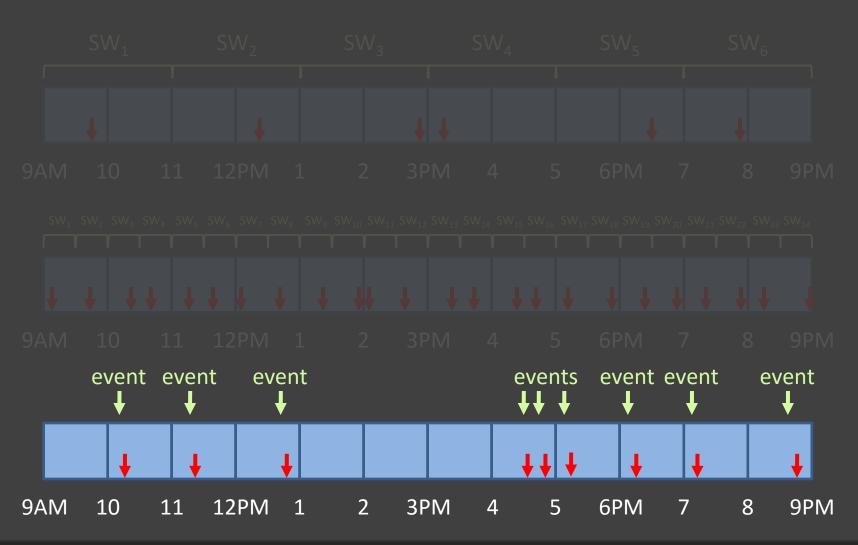

lessons learned

MyExperience must *not* impede normal phone operation

- Reduce interaction "lag"
- Avoid interrupting phone calls
- Follow phone profile (e.g., silent)
- Respect battery life
- Sensor, trigger, action architecture
 - Can be used to actively troubleshoot prototype technology in the field

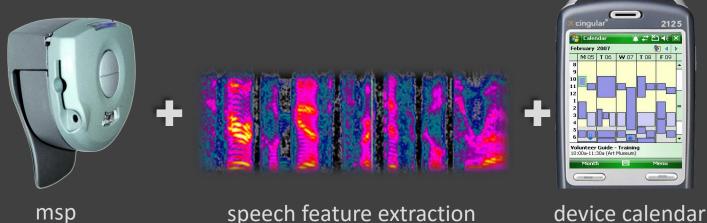
methodology n

Evaluating Context-Aware Experience Sampling Methodology


Beverly Harrison¹, Adrienne Andrew², and Scott Hudson³

Intel Research¹, University of Washington², and Carnegie Mellon University³

project overview


- Comparing traditional and context-aware experience sampling
 - Investigating the tradeoff between effort expounded and the data obtained
- Like UbiFit
 - Participants use their *own* phones with MyExperience
 - Relies on MSP for sensor data
- Unlike UbiFit
 - Uses MyExperience as a data collector

self-report sampling strategies

study: phase 1

- Pseudo-randomly sample participants throughout workday about self-reported interruptibility
 - Also, ask about effort and irritability
- Automatically capture sensor data
 - speech, calendar appointment information
- At the end of phase 1, look for correlations between sensor data and self-rated interruptibility
 - Also, analyzing response times

msp

study: phase 2

- Continue study with same participants but change sampling strategy
- Pseudo-random sampling but use sensors to try and avoid times of "high interruptibility"
- Continue asking questions about interruptibility, effort and irritation
 - Expect these self-reported values to decrease and response rate to increase

lessons learned

Windows Mobile SystemState API

- Not always implemented
 - (e.g., Outlook calendar appointments)
- Generalized conditional deferral mechanism
 - Previously:
 - Actions could queue when user on phone
 - Now:

Actions can be queue based on any sensor state

beyond technology studies

Mobile therapy

- Margie Morris, Bill Deleeuw, et al.
- Digital Health Group, Intel

Multiple sclerosis pain and fatigue study

- Dagmar Amtmann, Mark Harniss, Kurt Johnson, et al.
- Rehabilitative Medicine, University of Washington

Smartphones for efficient healthcare delivery

- Mahad Ibrahim, Ben Bellows, Melissa Ho, Sonesh Surana et al.
- Various departments, University of California, Berkeley

conclusion

- MyExperience enables a range of research involving sensors and mobile computing
 - Automatic logging of sensor streams
 - In Situ sensor-triggered self-report surveys
- MyExperience can be used to
 - Acquire labeled data sets for machine learning
 - Evaluate field deployments of prototype apps
 - Gather data on device usage
 - Human behavior, healthcare, dev world studies

thankyou

source code available

My Talk Tomorrow Tuesday, June 12th *Tools & Techniques (2nd talk)* "MyExperience: A System for In Situ Tracing and Capturing of User Feedback on Mobile Phones"

Acknowledgements Intel Research, Seattle

http://www.sourceforge.net/projects/myexperience

Backup Slides

xml / scripting interface

- XML : Declarative
 - Define sensors, triggers, actions, and user interface
 - Set properties
 - Hook up events
- Script : Procedural
 - Create fully dynamic
 behaviors between
 elements specified in XML
 - Interpreted in real time
 - New scripts can be loaded on the fly

<sensor name="Place" type="PlaceSensor">
 00:00:01
</sensor>

```
<trigger name="Silent" type="Trigger">
<script>
placeSensor = GetSensor("Place");
if(placeSensor.State = "Work"){
SetProfile("Silent");
}
</script>
</sensor>
```

xml / scripting interface

Two Primary Benefits

- Lowers the barrier of use
 - Allows researchers unfamiliar with mobile phone programming to use MyExperience
- Straightforward means to specify self-report UI
 - Simply edit the XML file to change the interaction
 - Control flow logic from one question to the next
 - Specify response widgets

<trigger name="ConnectivityTrigger" type="Trigger"> <script>

```
curDate = GetCurrentDate().Date;
curTimeOfDay = GetCurrentTime();
curDateTime = curDate + curTimeOfDay;
suppressUntil = GetProperty("suppressUntil");
```

connectivitySensor = GetSensorSnapshot("ConnectivitySensor");

```
if ( curTimeOfDay >= "10:00:00" and
    connectivitySensor.TimeSince("true") gt "02:00:00" and
    (suppressUntil = null or curDateTime gt suppressUntil)){
```

```
tomorrow = curDate.AddDay(1);
SetProperty("suppressUntil", tomorrow);
GetAction("FitnessDeviceQuery").Run();
```

</script> </trigger>

<trigger name="RandomWithDeferralTrigger" type="Trigger"> <script>

```
randSensor = GetSensorSnapshot("RandomSensor");
if( randSensor.State = true) {
```

```
timeOutInSeconds = 15 * 60;
WaitUntil("return GetSensorSnapshot(\"TalkSensor\").State
    and GetSensorSnapshot(\"CalendarSensor\").State",
    timeOutInSeconds);
```

GetAction("InterruptibleSurvey").Run();

```
</script>
</trigger>
```