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Figure 1: MoiréWidgets ofer high-precision event detection on passive physical controls by using the Moiré efect to detect subtle input 
movements. Our image processing pipeline (A) extracts the Moiré pattern from the widget and calculates the displacement from the phase 
shift of the fringes as the user moves a slider. We use this approach to develop a set of controls (B) buttons, sliders, dials, and switches made 
using a two-step fabrication approach with 3D printed mechanical structures and paper printed fringes. We demonstrate how multiple widgets 
can be combined to create (C) a physical audio console. 

ABSTRACT 
We introduce MoiréWidgets, a novel approach for tangible in-
teraction that harnesses the Moiré efect—a prevalent optical 
phenomenon—to enable high-precision event detection on physical 
widgets. Unlike other electronics-free tangible user interfaces which 
require close coupling with external hardware, MoiréWidgets can 
be used at greater distances while maintaining high-resolution sens-
ing of interactions. We defne a set of interaction primitives, e.g., 
buttons, sliders, and dials, which can be used as standalone objects 
or combined to build complex physical controls. These consist of 3D 
printed structural mechanisms with patterns printed on two layers— 
one on paper and the other on a plastic transparency sheet—which 
create a visual signal that amplifes subtle movements, enabling 
the detection of user inputs. Our technical evaluation shows that 
our method outperforms standard fducial markers and maintains 
sub-millimeter accuracy at 100 cm distance and wide viewing an-
gles. We demonstrate our approach by creating an audio console 
and indicate how our approach could extend to other domains. 
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1 INTRODUCTION 
Tangible user interfaces (TUIs) provide tactile and proprioceptive 
feedback which improves task comprehension, speed, and precision, 
making them well-suited for a wide breadth of applications includ-
ing education, gaming, and data visualization [23, 28]. Typically, 
they rely on embedded circuits that need power to function and 
software/hardware expertise to create. This makes them difcult to 
maintain and complex to produce [20]. 

Consequently, there has been signifcant interest in electronics-
free approaches to sense interactions. For example, researchers have 
built passive systems to detect changes in the magnetic feld [25, 26], 
air pressure [21], IMU signals [56], touch [7], and sound [30] to 
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register inputs. Among these passive channels, vision-based sensing 
ofers an untethered, uniform mechanism that is compatible with a 
wide variety of devices equipped with cameras. Typically, vision-
based methods incorporate fducial markers to observe marker 
displacement and harness image data as an input signal. Such meth-
ods often face challenges in detection accuracy, as marker detection 
can be infuenced by various factors, including camera distance 
and viewing angle. To enhance this approach and develop a more 
robust and sensitive vision-based sensing mechanism, we leverage 
the Moiré efect—a visual phenomenon that amplifes movement 
when two periodic patterns are superimposed. We use this ability 
to detect subtle motions to create passive TUIs ideal for precision 
controls for AR/VR, robotics, and data visualization. 

In this paper, we introduce MoiréWidgets, a novel vision-based 
TUI that integrates visual features into 3D printed widgets for high-
precision sensing of interactions via the Moiré efect1. Through a 
combination of 3D printed mechanisms that convert user inputs 
into basic movements—1D translation, 2D translation, and rotation— 
and patterns printed on paper, we form Moiré patterns responsive 
to subtle user movements. Our evaluation shows sub-millimeter 
accuracy at a meter-long distance and better performance than 
the commonly used ArUco markers [13, 40]. We recreate popular 
physical controllers like an audio console to demonstrate our vision-
based approach to TUIs. 

In summary, this work contributes a vision-based TUI that en-
ables high-precision tracking of passive widgets sensitive to subtle 
movements during user interactions via the Moiré efect with 
improved accuracy at various distances and viewing angles 
over standard fducial markers. 

2 RELATED WORK 
We build on prior research on passive TUIs, vision-based tangible 
interaction, and applications of the Moiré efect. 

2.1 Passive Tangible User Interfaces 
Interest in electronics-free TUIs has grown because they are sim-
pler to produce, easier to maintain, and less harmful to the en-
vironment [20, 22]. Researchers have explored diverse mecha-
nisms to generate, modulate, and communicate signals from a user 
to the system [5]. One common approach is to use conductive 
materials to make objects that sense touch, stretch, and move-
ment [1, 7, 8, 16, 32, 47]. However, these systems depend on wired 
connections to specialized hardware like micro-controllers with 
analog-to-digital converters to interpret inputs. 

To avoid this dependence on specialized hardware, researchers 
have used acoustic sensing and microphones to design interactive 
objects. These objects produce distinct acoustic signals in response 
to internal resonance [43], mechanical vibrations [42], or pressure 
changes [21, 30]. These approaches though, are signifcantly limited 
in the number of simultaneous interactions they can support due 
to noise that drowns out user inputs. 

Another option is to exploit smartphone sensors like magne-
tometers [25, 39], IMUs [56], and touchscreens [18, 19, 48] to detect 

1Due to image resizing and compression, the Moiré patterns displayed in the paper’s 
fgures may not represent their actual appearance in reality. We recommend that 
readers zoom in when inspecting a Moiré pattern for a better viewing experience. 

interactions on external widgets. Although more fexible than hard-
wired systems, this approach still has a limited working range since 
it requires a phone to be embedded within [31], in direct contact 
with [48], or in close proximity to the widgets [25]. In contrast, Iyer 
et al. [26] achieve room-scale sensing of 3D printed objects using 
RF backscatter communication to detect interaction events on the 
widgets. While these RFID techniques show promise, the resolution 
is low, sensing is not continuous, and the systems require complex 
transmitter/receiver setups [33]. 

2.2 Vision-Based Tracking for Interaction 
Researchers in tangible interfaces has long recognized the potential 
for Computer Vision (CV) to support electronics-free tangible inter-
actions. Early work [29] combined CV with RFID tags to prototype 
interactions with various physical objects. SlapWidgets [54] and 
reacTIVision [27] use a camera and projector setup to track tangi-
bles on interactive surfaces. These systems could only track objects 
on dedicated work surfaces and had to employ additional mech-
anisms to register interactions. More closely related to our work 
is Sauron [41], which enables single-camera sensing on physical 
interfaces by embedding the camera inside the objects. Similarly, 
ClipWidgets [53] is a modular TUI that clips onto a smartphone 
and uses the back-facing camera to track 3D printed markers. Yet, 
embedding the cameras within the device limits the working range 
and requires complex mirror assemblies to track the inputs. 

A key strength of vision-based interaction is the ability to track 
untethered, freely movable objects. Fiducial markers, such as QR 
codes, ArUco markers [40], and AprilTag [35], can be afxed to 
3D printed objects [50, 51] or other physical objects [17, 46, 59] to 
track interactions. However, these rely on predefned dictionaries of 
tags which are hard to customize and adapt to complex 3D objects. 
Some researchers have focused on embedding less obtrusive mark-
ers during fabrication to enable object tracking without impacting 
aesthetics [10, 11, 14, 37]. However, this often requires special light-
ing conditions or image sensors (i.e., near-infrared cameras) to 
track the tags. Moreover, occlusion remains a crucial limitation for 
vison-based systems since they fail when the markers are covered. 
Researchers have circumvented this issue by using mirrors to see 
around occluding objects [41] and using additional sensors [52]. 
Despite these trade-ofs, our vision-based method could be a useful 
addition to passive, battery-free techniques for tangible interaction. 

2.3 Applications of Moiré Pattern Interference 
The Moiré efect describes the light-dark-light pattern that emerges 
when two, dense, repetitive patterns are overlaid on one another. 
This phenomenon can be observed, for instance, when two fne-
mesh fabrics slide past each other. Prior work has demonstrated 
that it is highly sensitive to positional changes [12, 55] making 
it an excellent candidate for use in high-precision domains like 
micro-robotics and optics [3]. 

Lately, there has been a surge in applications utilizing the Moiré 
efect for camera pose estimation [38, 57]. This is typically done 
by having two static Moiré patterns with a gap between them, 
this distance between the layers generates a Moiré efect when 
viewed from diferent angles. Harnessing the Moiré efect for pas-
sive tangible interaction however, remains a largely unexplored area. 
In a recent demonstration, Zhang et al. [58] developed a silicone 
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Figure 2: Our MoiréWidgets is composed of 3D printed mechanical structures and paper printed fringes to generate the Moiré efect. We use the 
printed paper to add color markers to aid our image processing pipeline. This fgure shows breakdown of the 3D printed mechanical structures 
to convert user inputs into the 3 primitive movement types and how the widgets look once they have been assembled. 

fnger-worn device with fringes to calculate force in touch interac-
tions using the Moiré efect. We aim to leverage the Moiré efect 
in new ways for multiple inputs on standalone widgets where the 
Moiré fringes move past each other, thereby enhancing the capabil-
ities for tangible interaction. 

3 MOIRÉWIDGETS 
MoiréWidgets are set of tangible widgets that generate an amplifed 
visual signal in response to user interaction using Moiré patterns. 
This section outlines the technical framework of MoiréWidgets 
by introducing the core operating principle of our approach, the 
primitive movements that we track, and the mechanisms we use to 
translate user inputs into respective movement types. 

3.1 Background of Moiré Efect 
When two square waves of marginally varied frequencies overlap 
multiplicatively, the outcome is a combined wave of diverse fre-
quencies called a Moiré pattern. This includes a low base frequency 
that amplifes and captures the diferential positioning of the two 

signals. The computational theory of the Moiré Efect has been 
well studied in earlier research [36, 38, 57, 58]. When two periodic 
stripe patterns are superimposed without any intervening space, 
the period of the Moiré fringes, �� , is solely infuenced by the peri-
ods of the individual patterns �� and �� . It is given by the relation 

���� �� = . Consequently, a subtle displacement, Δ� , in the upper 
�� −��

layer (assuming the bottom layer is fxed) leads to a displacement in 
�� Δ� the Moiré fringes, represented as Δ� = . This phenomenon 
�� −�� 

is illustrated in Figure 3. 
As demonstrated in the formula, the Moiré efect amplifes the 

displacement occurring on the top layer. This amplifed signal can 
be harnessed to detect subtle input events from users. In the next 
section, we identify three basic movements types that use the Moiré 
efect and illustrate how to implement them on tangible interfaces. 

3.2 Primitive Movement Types 
We leverage the Moiré efect to amplify three primitive movements— 
1D translation, 2D translation, and rotation—illustrated in Figure 3 
which serve as the foundation for our widgets. 
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Figure 3: Illustration of three foundational movement types—1D 
translation, 2D translation, and rotation—produced when two Moiré 
patterns are superimposed. MoiréWidgets convert user input into 
one of these three movements to track interactions. 

1D Translation. The simplest movement consists of two layers of 
thin parallel lines with diferent spacing, or periods, that move along 
a single axis. Movements orthogonal to the parallel lines generate 
a visual signal of lower frequency but with higher sensitivity to the 
displacement. Sliders, buttons, and switches can be decomposed to 
a 1D movement since they require motion along a single axis. 

2D Translation. We can extend the previous movement to two di-
mensions by creating two grids of perpendicular lines with varying 
periods. Translation movements along the XY plane will generate 
a signal that appears like a larger grid. This design can be used for 
creating thumb-slide joysticks that glide across a plane. 

Rotation. Rotational movement requires two concentric patterns 
of lines with diferent angular ofsets. A shift in the relation between 
one Moiré pattern to the other yields an altered radial pattern that 
corresponds to the degree of rotational displacement. This type of 
design is naturally well-suited for creating dials. 

3.3 Widgets Fabrication and Assembly 
MoiréWidgets require narrow line features to generate a robust 
visual signal that can be detected reliably by the camera. According 
to the theory of Moiré efect [45], the smaller the diference between 
the two periods of fringe layers, the stronger the signal of the Moiré 
pattern will be. Our empirical tests have shown that that a diference 
of 0.05 mm generated a salient visual signal for line widths ranging 
from 0.25 to 0.4 mm. 

Consumer-grade 3D printers lack the precision and consistency 
to generate reliable Moiré patterns since these fringes are prone to 
distortion due to issues like under/over extrusion, misalignment, 
and poor bed adhesion. To address this, we adopted a two-set fabri-
cation approach where we utilize 3D printing for the mechanical 
assemblies and use a laser paper printer to print the Moiré fringes. 
Notably, most consumer-grade paper printer can achieve fne de-
tails up to a level of 0.02 mm, which meets the requirements for our 
purpose. In the subsequent paragraph, we outlined the steps of our 
approach, including 1) 3D printing of the structural components, 
and 2) the printing and installation of the paper Moiré fringes. 

#1: 3D Printing: We use fused deposition modeling (FDM) 3D print-
ing for creating the mechanical structures of our widgets to perform 
the primitive movements outlined previously. We use standard 3D 
printing PLA material since it can be printed at lower tempera-
tures to reduce the possibility of warping. Figure 2 illustrates the 

3D printed mechanical structures to convert user inputs to planar 
movements that can be easily detected. Some widgets incorporate 
springs to help reset the position of a button or switch. 

#2: Integration of Moiré pattern and assembly: The Moiré patterns 
themselves are not 3D printed but are instead printed using a laser 
printer. The paper with Moiré patterns is then integrated into the 
3D printed structures, which ensures that the Moiré patterns re-
main stable during user interactions. The top transparent layers are 
printed on transparent sheets and placed into “window” features 
in the 3D structures. The bottom opaque layer is printed on sticker 
paper with an adhesive backing and attached directly onto the 3D 
printed components. We also use the laser printer to print color 
markers at the corners of the Moiré fringes which is used for our 
image processing pipeline described in the next section. Figure 2 
shows all the assembled widgets and how they may be used. 

Figure 4: Our two design tools aid in the creation of 3D mechanical 
structures and paper-printed Moiré fringes for the widgets. (A) Our 
OnShape feature embeds the widgets’ mechanical components into 
3D models. (B) Our GUI allows users to size, preview, and export 
linear and radial Moiré patterns which can be printed on paper and 
inserted into the 3D printed widgets. 

3.4 Software Support Tools and Design 
Guidelines 

To facilitate the design process, we developed a set of software tools 
to assist with the two key aspects of our implementation outlined 
in Section 3.32. Specifcally, we developed a plug-in (Figure 4A) for 
OnShape3 to embed and edit the mechanical components of the wid-
gets on 3D models. Users can import solid models (i.e., STEP, DWG 
fles) or design their own, and specify the widget type, location, and 
relevant dimensions on the model to 3D print. Additionally, we built 
a Processing4 tool (Figure 4B) to design radial and linear patterns, 
preview the generated Moiré efect, and export the transparent and 
opaque layers at actual-size. Users may adjust the dimensions and 
line spacing distance for each layer and see an animation of the 
superimposed patterns. Finally, users can generate PDF or DXF fles 
to print on paper to verify the desired dimensions and appearance. 

Below, we identify critical design factors and summarize the key 
lessons learned during development which can guide users as they 
experiment with the design tools to create MoiréWidgets. These 
2The source code for both tools can be found at https://github.com/dcz-xyz/ 
MoireWidgets
3https://www.onshape.com/en/ 
4https://processing.org/ 

https://github.com/dcz-xyz/MoireWidgets
https://github.com/dcz-xyz/MoireWidgets
https://4https://processing.org
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Figure 5: Our image processing pipeline takes captured video frames and extract the Moiré feature with the color markers at the corners. It 
crops out the rest of the image and applies a perspective transform. We then blur the Moiré fringes, detect the peaks in the visual signal, and 
calculate the displacement. 

combined tools and insights ofer a holistic approach to the design, 
implementation, and fabrication of Moiré-based widgets: 

• Signal Strength: It is crucial to optimize the contrast between 
peaks in the Moiré feature (signal strength) by selecting an 
appropriate line thickness. Lines that are too thin (less than 
0.2 mm) produce a weaker Moiré signal, while excessively thick 
lines result in overly dark patterns. We discovered that a line 
thickness ranging from 0.25 to 0.4 mm to be efective. 

• Aliasing: The quality of the printer and its settings signifcantly 
afect the appearance of the Moiré pattern due to aliasing. This ef-
fect is particularly pronounced when printing radial lines spaced 
less than 3° apart. 

• Moiré Period: Efective tracking can be achieved by a balance 
between the window size and the line spacing of each layer. 
For reliable tracking, we recommend that the tracking window 
contain at least three Moiré peaks. 

3.5 Image Signal Processing 
We utilize a similar image processing pipeline to those used in 
previous studies [38, 57] to convert visible alteration in the Moiré 
pattern into a displacement signal. According to the formulation 
in Section 3.1, the Moiré fringes can be represented as a sinusoidal 
function as ����(�� + �) + �. In previous studies that utilize the 
Moiré pattern for camera pose estimation, the pattern changes based 
on the camera angle and distance. However, given that our system 
minimizes the gap between the two stacked layers to generate the 
Moiré efect, we posit that the camera’s position does not infuence 
the pattern’s appearance. This allows for the implementation of a 
simplifed version of workfow to extract the Moiré signal. 

We use OpenCV [6] for our image processing pipeline. An 
overview of the computation fow is presented in Figure 5. The 
frst step in this process is to identify the area where the Moiré 
pattern is present. To achieve this, we place four colored square 
markers at the corners of the display window where the Moiré 

pattern is present. Next, we apply a color threshold to separate the 
markers’ masks, and locate their four inner corners. Since most 
of our prototypes are 3D printed with white material, we can iso-
late the Moiré pattern region without using complex detection 
mechanisms. Previous methods [57] have advocated for the use 
of fducial markers to locate the Moiré pattern, a technique that 
remains applicable to our setup, especially if more complex textures 
are introduced to the widgets and the available space permits such 
installation. 

Once the corners of the Moiré pattern region have been identi-
fed, we apply the cv::warpPerspective function to transform the 
identifed region into a rectifed view. This rectifed view allows us 
to detect Moiré pattern changes in a standardized form regardless 
of the camera position. Given that the raw Moiré pattern exhibits 
numerous high-frequency components—a characteristic attributed 
to the impulse function-like nature of the stacked layer—we ap-
ply a Gaussian Blur flter following the conversion of the Moiré 
image to grayscale. The kernel size selected for the Gaussian Blur 
is equivalent to 10% of the rectifed view’s length. Subsequently, 
we calculate the average intensity along the y-axis of the blurred 
image, thereby generating a 1D intensity signal that can be utilized 
to estimate the Moiré displacement efectively. 

Estimate Moiré Displacement. The estimation of Moiré displace-
ment can be performed directly by ftting the previously derived 
1D intensity signal with a sinusoidal function. First, we normalize 
the intensity signal to confne it within a range of −1 to 1. Then, 
we employ it to ft a sinusoidal function given by � (� ; �, �, �) = 
����(�� + �) + �. Here � is a constant and is determined by 
� = 2� (�� − �� )/(���� ), considering �� and �� are known val-
ues from the production time. Once the ftting is complete, the 
parameter � , which is acquired during the ftting, can be leveraged 
to estimate the Moiré displacement. During the ftting process, we 
restrict A to be a positive value and � in the range between 0 to 2� . 
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Let us assume that �� represents the estimated phase from the 
�-th frame. The displacement Δ�� between frame � and frame � − 1 
can be calculated using the equation 

Δ��� 
Δ�� = , (1)

2� 

where Δ� equals �� − �� −1, if �� ≥ �� −1, or �� + 2� − �� −1 if 
�� < �� −1. We are assuming here that frames � and frame � − 1 are 
sufciently close to each other, preventing the Moiré pattern from 
shifting by more than one period between the two frames. 

This computational approach enables us to transform Moiré 
images into displacement signals, making them adaptable for con-
trolling a wide array of applications. The precision of these displace-
ment calculations has been thoroughly validated, demonstrating a 
high degree of accuracy in the experiments detailed in Section 4. 

4 SYSTEM EVALUATION 
In this section, we describe our apparatus and procedure to charac-
terize MoiréWidgets’ accuracy at diferent distances and viewing 
angles, and discuss the results. 

4.1 Ground Truth and Baseline 
We use the Mitutoyo CD-6 ASX high-precision caliper as the ground 
truth measurement for its precision of 0.012 mm ± 0.02 mm5. This 
precision is an order of magnitude higher compared to other camera-
based tracking systems, such as the inside-out tracking system used 
in VR headsets (e.g., SteamVR Base Station6, 0.56 mm ± 0.21 mm [2]) 
or the popular OptiTrack7 (0.43 mm ± 0.17 mm [2]) motion capture 
system. Using a caliper makes our setup and data collection process 
easier because it gives direct number readings for each frame, which 
reliably measures the actual displacement and helps us accurately 
estimate the error in our system. 

We also compare our system with the ArUco markers [13], a 
standard fducial marker for location tracking. Originally designed 
for AR applications, ArUco markers have been widely used as 
ground truth or baseline in estimating object locations in the felds 
of robotics and computer vision [34, 49]. Additionally, both ArUco 
and our system serve as passive tags, have a similar physical size, 
and have the same hardware requirements that rely solely on an 
RGB camera for estimating displacement. Thus, comparing our 
system with ArUco can demonstrate our advantages as low-cost 
and passive visual tags for displacement measurement. 

4.2 Evaluation Setup 
We fabricated a fxture to secure one jaw of the high-precision 
digital caliper and allowed the other jaw to move along a linear 
path on laser-cut guide rails. A 3D printed carriage was interlocked 
with the moving jaw, and this carriage had ArUco markers and 
a Moiré window attached to it. The Moiré window slides over 
a bottom layer of a line pattern on the fxture, as illustrated in 
Figure 6A. The Moiré window and ArUco are roughly 3 by 3 cm. 
Such a confguration allows the Moiré window and ArUco markers 
to move in tandem with the moving jaw of the caliper, ensuring 

5https://totalcal.com/mitutoyo-cd-6asx-500-196-30-calibration-services/ 
6https://www.vive.com/us/accessory/base-station2/ 
7https://optitrack.com/cameras/ 

Figure 6: (A) The custom fxture that fastened the ArUco markers and 
Moiré fringes to digital calipers and slid along laser-cut guide rails. 
(B) Diagram showing the distances ranging from 20 cm to 220 cm 
and viewing angles ranging up to 60° in the X axis and 30° in the Z 
axis we used to characterize our performance. 

that the caliper readings accurately refect the precise displacement 
of our evaluation target. 

For each camera setting, we reset the caliper to its starting posi-
tion and manually moved the 3D printed carriage by up to 20 mm 
using the caliper’s thumbscrew. The camera was positioned at a spe-
cifc distance and angle, and we recorded a video of this movement. 
We extracted 25 evenly spaced frames to calculate displacement 
for each video. We varied the distance and angle of the camera, 
covering a range of 20 to 220 cm and capturing videos at up to 
30° and 60° angles along the � and � axes, respectively, to ensure a 
comprehensive evaluation. However, a combination of 30° / 60° in � 
/ � axes was excluded due to the extremity of the camera angle. All 
recordings were in 1080p and made using an iPhone 11 Pro mounted 
on a tripod. Figure 6B illustrates the range of distances and camera 
angles included in our evaluation. 

We utilized the ArUco module [13] from OpenCV [6] to deter-
mine the ArUco displacement. We extracted the positions of the 
ArUco markers. Then, we use OpenCV ’s camera calibration module 
to estimate the displacement. The Moiré pattern’s displacement 
was tracked using our method, as described in Section3.5. Both the 
ArUco and our method’s estimations were rescaled to match the 
physical unit in millimeters. 

4.3 Results 
We computed the displacement estimation from both the ArUco 
and Moiré patterns, and used the caliper readings as the ground 
truth for calculating the error in millimeters for each method. The 
results are displayed in Figure 7. Each plot shows the Root Mean 

https://totalcal.com/mitutoyo-cd-6asx-500-196-30-calibration-services/
https://7https://optitrack.com/cameras
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Figure 7: The results of our evaluation. Each plot represents the results at a specifc camera angle (X°/Z°) with respect to distance changes in ��. 
The line segments show the RMSE measurement in ��, and the bars indicate the standard deviation of the error. Both our method and ArUco 
were measured under the same conditions. The ArUco plot is slightly shifted to the left for a clearer comparative visualization. 

Square Errors (RMSE) at a fxed viewing angle and how they change√Í
with distance. The error is measured by ���� = (�� − �̂� )2/�, 
where �� is the estimated displacement from either our method or 
ArUco, and �̂� is the digital reading from the caliper. � is the total 
number frames used for evaluation in one video recording. The √Í
standard deviation is computed by (�� − �̂� − �)2/�, where � 
represents the mean error across a single video recording session. 

According to the results, both our method and ArUco demon-
strate good accuracy (i.e., at the sub-millimeter level) when the cam-
era is positioned at a close proximity of less than 60 cm to the target, 
with our method exhibiting slightly better accuracy. However, as 
the camera distance increases, ArUco shows larger errors compared 
to our method. Particularly at a distance of 140 cm and with a cam-
era angle of 30°, ArUco displays errors of 2 to 4 mm and higher 
standard deviations of 1.5 to 3 mm, compared to closer distances. 
Meanwhile, our method continues to maintain a sub-millimeter 
accuracy, with 0.39 to 0.83 mm standard deviation. When the cam-
era angle is increased to 60° and distance is larger than 140 cm, 
both our method and ArUco exhibit a high level of error (greater 
than 4.0 mm ± 3.5 mm), suggesting that a narrower camera angle 
is preferable in practical applications. 

We have also conducted a signifcance test using the paired �-test 
to examine all conditions in comparison between our method and 
ArUco. This analysis evaluated the RMSE and its standard deviation, 
operating under the null hypothesis that there is no signifcant 
diference in RMSE/standard deviation between our method and 
ArUco. The results, �RMSE = 6.13 × 10−6 and �std = 3.74 × 10−5, 
demonstrate that both the RMSE and its standard deviation are 
signifcantly smaller with our method compared to ArUco (� < 
0.001). It is also worth noting that in the context of marker tracking, 
the worst-case performance holds greater practical importance 
than average performance, particularly in scenarios characterized 
by large variances (as observed with ArUco in Figure 7). Our method 
outperforms ArUco in terms of average error and exhibits a much 
smaller standard deviation, which indicates better robustness. 

We observed that as the distance increases to 180 cm, our method 
begins to show decreased performance, evidenced by an increase 
in both the RMSE and the standard deviation, surpassing 3.2 mm 
± 2.2 mm. Also, the error increases as the camera angle becomes 
wider. Such increase in error metrics potentially leads to unreliable 
tracking performance. A high RMSE may cause incorrect cursor 
location estimation for widgets like sliders. Similarly, a high stan-
dard deviation can lead to fuctuations in tracking for widgets like 

push buttons. To illustrate, consider a 3 cm slider widget; a 3 mm 
error or standard deviation represents a substantial 10% error in 
location estimation or a 10% fuctuation in tracking. Consequently, 
we recommend maintaining the widgets within a 140 cm operating 
range and at an angle of less than 30° relative to the camera. This 
range is suitable for HMD-type applications, such as when a user 
wears AR glasses and uses MoiréWidgets to send control signals to 
the camera on the glasses (e.g., Figure 8). Since these widgets are 
operated by hand, the distance between the camera and the widgets 
will typically be within arm’s reach, usually less than 100 cm. 

5 DISCUSSION 
In this section, we delve into the broader implications of our work 
and discuss its applications and potential areas for further explo-
ration and improvement. 

5.1 Applications 
We demonstrate our approach MoiréWidgets by recreating a com-
mon example tangible interface and physical controller often used 
in TUI research. Specifcally, we combine the button, dial, and slider 
to make an audio console that controls can toggle a play button 
and change the playback speed and volume of a song. (Figure 8. 
Our image processing pipeline sends OSC messages to a Max/MSP8 

program that decomposes the message and routes displacement 
value to the corresponding music control. In the future, this can 
be extended to other domains that beneft from passive, precise 
tangible interfaces. For example, in AR/VR, MoiréWidgets could 
take advantage of the built-in cameras of the headsets to enhance 
interactions with tangible peripherals. In robotics, where precision 
is crucial, MoiréWidgets could be used in remote controls to ac-
curately move and position robots [24]. In digital art and design, 
they could empower designers to prototype and create interactive 
installations, opening avenues for engaging art experiences. Data 
visualizations also beneft from tangible user interfaces [4] and 
MoiréWidgets could ofer researchers and professionals to explore 
complex datasets and graphics. 

5.2 Limitations 
Occlusion is an important consideration for any vision-based ap-
proach, including ours. If the visual feature is partially or entirely 
blocked by another object or the user’s hand, detection accuracy 

8https://cycling74.com/products/max 

https://8https://cycling74.com/products/max
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Figure 8: We integrate multiple widgets to create an audio console 
that controls a music interface that can be used for AR. 

may be compromised or completely fail. This is a fundamental lim-
itation shared with other vision-based systems, such as ArUco and 
OptiTrack. Addressing occlusion is a complex task that warrants 
further investigation. One possible solution is to employ multiple 
cameras to capture a comprehensive view of a widget from difer-
ent angles, or to introduce redundancy by having multiple Moiré 
windows that follow the same movement but are situated at dif-
ferent locations, thus reducing the likelihood of obstruction In our 
current implementation, we follow the practice of not positioning 
the Moiré window between the interaction point and the camera, 
thereby avoiding critical occlusion issues in our prototypes. 

In our current implementation, we must assemble the FDM-
printed mechanisms and Moiré paper patterns, primarily due the 
higher printing resolution, e.g., a standard paper printer’s resolu-
tion of 300DPI is equivalent to 0.08 mm. In our early prototype, we 
attempted a fully 3D printed version that incorporated Moiré pat-
terns directly into the structure, but the result was unsatisfactory. 
The Moiré patterns are warped and irregular (Figure 9A) so the 
necessary attributes required for displacement estimation cannot 
be reliably extracted. Stereolithography (SLA) 3D printers have sup-
port structures that bond to and damage the fringes (Figure 9B) and 
UV-cured resin printing—including digital light projection—lacks 
the ability to do multi-color prints. More sophisticated 3D print-
ing methods like Polyjet and digital light synthesis (DLS) can also 
provide higher-resolution but their substantial cost but their sub-
stantial costs make them inaccessible to most users. In the future, 
advancements in 3D printing technologies could allow for a unifed 
fabrication process. As higher-resolution 3D printers become more 
accessible, it becomes more practical to fabricate the entire widget, 
including the Moiré patterns, as a single entity. 

Lastly, our method to extract and process the Moiré pattern can 
be improved by using more advanced computer vision algorithms. 
The four colored markers at the corners of the printed fringes used 
to extract and process the Moiré pattern can fail under irregular 
lighting conditions, like dark shadows and bright highlights, or 
when the printed widgets themselves exhibit a complex texture. 
We plan to explore improved detection and extraction algorithms 
that could, for example, leverage machine learning to recognize the 
Moiré features in various conditions. 

Figure 9: (A) The FDM sample shows and inconsistent fringe spacing 
and also warping. (B) The SLA object has support structures bonded 
to the Moiré fringes which are difcult to remove and cause signif-
cant warping and distortions. 

5.3 Design and Aesthetics 
While our focus has primarily been on the functional aspects neces-
sary for interaction, future iterations of MoiréWidget could explore 
the design of the patterns and overall aesthetics of the widgets. The 
Moiré efect has been studied with various geometries—dots [15] 
and hexagonal meshes [44]—and colors [9] that could expand the 
design possibilities for MoiréWidgets. This could impact users’ per-
ceptions of the widgets beyond just their functionality but also 
by their visual attractiveness and how well they blend into vari-
ous contexts. In addition, we plan on expand our design tools to 
lets users experiment with diferent Moiré pattern designs, color 
palettes, and materials to create widgets that are both functional 
and aesthetically pleasing. 

6 CONCLUSION 
In this paper, we have introduced MoiréWidgets, a novel approach 
to high-precision passive tangible interaction through the utiliza-
tion of the Moiré efect. By integrating Moiré patterns into 3D 
printed interactive mechanisms, we demonstrated a novel system 
for achieving fne-grained control for various interactions. Through 
a series of tests, we have shown that MoiréWidgets are more accu-
rate and robust than standard fducial markers. We demonstrate a 
sample application for audio mixing, and indicate how they could 
be extended to other applications like AR/VR, robotics, and data 
visualization. Future research could refne this technique by stream-
lining the fabrication process, improving the Moiré feature extrac-
tion, and exploring other aesthetic dimensions of the widgets. As 
HCI researchers continue to explore battery-free, passive devices, 
MoiréWidgets enables new possibilities for tangible interaction. 
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