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Figure 1: Automated pipeline that analyzes associations between GSV coverage and socioeconomic indicators.

Abstract

Street-level imagery is foundational to modern urban informat-
ics research; however, bias from systematic differences in where
and when images are captured can obscure important relationships
and impact study findings. We examine how Google Street View
(GSV) spatio-temporal capture patterns correlate with ACS socioe-
conomic indicators and also provide a reproducible, open-source
data analysis pipeline and dashboard. To demonstrate and evaluate
our approach, we study four US cities computing correlation coeffi-
cients between image staleness and social-demographic, mobility,
and housing-related variables. Our findings demonstrate systematic
spatial disparities in GSV coverage: neighborhoods characterized by
urban density and diverse demographics tend to have more current
imagery, whereas areas with suburban or higher-income profiles
frequently lag behind.
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1 Introduction

Street-level imagery from services like Meta Mapillary, Google Street
View (GSV), or Apple Lookaround have become foundational to
urban informatics, supporting diverse research in urban planning,
infrastructure monitoring, neighborhood audits, and real estate
analytics [6, 8, 12, 15, 21, 26]. With over 220 billion images across
100+ countries, GSV has become particularly influential due to
its geographic coverage [2, 14], accessibility, and high-resolution
panoramic images [3, 6, 14]. Researchers leverage GSV imagery
to investigate urban environments [17, 19], perform virtual audits
[4, 23, 24], and extract detailed environmental and infrastructural
features at scale [6, 20, 22]. Despite GSV’s widespread adoption
and practical utility, disparities in how frequently or recently these
images are updated across neighborhoods and cities remain largely
unexamined [1, 18]. Such disparities may reflect and exacerbate
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deeper inequalities in the digital representation of urban spaces,
potentially biasing downstream analyses and influencing policy
decisions.

In this paper, we investigate how the recency and frequency of
GSV image captures correlate with socioeconomic conditions at the
neighborhood level. We define image “stalenes” as the elapsed time
since the most recently available panoramic image was captured at
a given location. Using Atlanta, Chicago, Detroit, and Seattle as il-
lustrative case studies, we examine how GSV metadata corresponds
with comprehensive socioeconomic and demographic indicators
drawn from the U.S. Census American Community Survey (ACS)
5-year estimates [25].

We find image staleness is associated with several sociodemo-
graphic indicators including population density, median income,
and racial composition. To facilitate transparent and intuitive ex-
ploration of potential spatial disparities, we developed a modular,
reproducible, and open-source web-based interactive mapping plat-
form called GSVantage (Figure 1). This platform allows researchers,
policymakers, and public stakeholders to dynamically explore spa-
tial patterns in GSV image staleness, compare neighborhood condi-
tions, and identify systematic gaps in digital visibility. Users can
filter neighborhoods based on socioeconomic thresholds, visual-
ize relationships between staleness and demographic attributes
through linked scatter plots, and conduct comparative analyses
within and across different urban contexts.

Our contributions are threefold: we provide (1) empirical evi-
dence of spatial inequities in widely used street-level imagery, filling
a gap in urban informatics research; (2) an open-source, extensible
framework! for integrating imagery metadata with socioeconomic
data across diverse contexts; and (3) an interactive visualization tool
that promotes transparency and supports audits of digital equity,
thereby supporting informed urban policy and planning decisions.

2 Related Work

We situate our work in data biases in maps and techniques to
measure and study street view imagery (SVI) coverage.

Data Biases in Maps. Digital inequity in mapping and visualiza-
tion technologies is well documented, revealing that traditionally
under-served or low-income communities often suffer from both
spatial and temporal gaps in the availability and quality of street-
level data [11, 16]. These spatial disparities reflect broader patterns
of digital participation inequality, where volunteer contributors are
predominantly concentrated in affluent, technologically connected
communities.

SVI Image Coverage. Prior work in street-view imagery (SVI)
coverage examines both spatial completeness [5] and temporal
consistency [7], yet these studies remain constrained by limited
geographic reach and depth of analysis. Badland et al. [5] validate
virtual streetscape audits using observations conducted on site,
while Curtis et al. [7] analyze gaps in GSV coverage in space and
in time across five U.S. cities. They find lags that span several years
disproportionately affecting economically disadvantaged neighbor-
hoods. More recent studies have expanded geographic coverage
[11, 18] while others examine the spatial representation of specific
elements in street-level imagery [9].

!https://github.com/makeabilitylab/GSVantage

Wang et al.

Despite recent progress, several critical gaps remain. First, exist-
ing studies lack scalable and reproducible analytical frameworks ca-
pable of integrating standardized demographic data (e.g., ACS) with
SVI metadata across diverse urban contexts, resulting in analyses
that remain limited to specific cities or regions and lack methodolog-
ical consistency for broader application. Second, current research
has not prioritized the development of accessible, interactive tools
that enable transparent exploration of digital equity patterns for
researchers and practitioners. Our research fills these gaps by de-
veloping a scalable framework that integrates GSV metadata with
standardized ACS data at the census block group level, enabling
comparisons across diverse American urban contexts while provid-
ing an interactive web-based platform for transparent exploration
of spatial disparities.

3 Analysis Pipeline and Study Method

To examine how SVI staleness varies with neighborhood charac-
teristics, we designed and developed a custom, open-source three-
stage analysis pipeline that: (1) ingests and cleans GSV metadata;
(2) enriches each panorama with road-type and season attributes
and aggregates them to census units; (3) links 2023 ACS socioe-
conomic data via the Census API to perform correlation analysis
and generate spatial visualizations of imagery staleness and neigh-
borhood characteristics. The pipeline is implemented in Python
using GeoPandas, OSMnx, and Requests. Below, we describe our
method applied to four US cities: Atlanta (347 km?), Chicago (606
km?), Detroit (370 km?), and Seattle (217 km?).

Stage 1: Downloader. For downloading GSV metadata, we de-
veloped a novel tool [10] that retrieves GSV metadata using the
GSV Static API given a city name, a grid cell size, and an optional
bounding box grid size (if the latter is not supplied, we use Nomina-
tim to auto-generate the city’s bounding box from OSM data). The
tool discretizes a given city into a <lat, lng> grid and queries the
GSV Static API for the closest pano at each <lat, 1lng> grid point.
Due to API constraints, the tool downloads metadata only about
the most recent imagery available. Thus, we are unable to conduct
historical frequency analysis—i.e., how many images have been
captured at a selected point over time. Instead, we focus on “stale-
ness”, which we define as the elapsed time between the most recent
imagery capture date and the current date. The retrieved geospatial
coordinates and timestamps are stored in a GeoDataFrame.

Stage 2: Spatial Aggregation. Stage 2 contextualizes each SV
image with road-type information, derived from OSMnx, and season
attributes, inferred from the capture timestamp, and also performs
a spatial categorization. For the latter, we use the 2023 TIGER/Line
boundary shapefiles for U.S. Census block groups or tracts. Each
enriched point is assigned to its containing geographic unit and ag-
gregated at the chosen level to compute the mean imagery staleness,
the dominant capture season along with its relative frequency, and
the most common road type category with its prevalence. Subse-
quently, we retrieve 2023 data from the U.S. Census ACS 5 year API
on population, median household income, ratio of non white resi-
dents, commuting mode shares (walking, bicycling, public transit),
vehicle ownership and median home value. Our pipeline parses the
JSON into a DataFrame and calculates additional indicators such
as population density per square kilometer, single family housing
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share, and no vehicle household ratio. These ACS variables are then
merged via the GEOID identifier with the Stage 2 aggregates. Fi-
nally, the enriched GeoDataFrame is prepared for export to support
downstream analyses and power the backend of our dashboard
that assesses how imagery staleness, seasonality, and road-type
distribution vary with neighborhood socioeconomic characteristics.

Stage 3: Quantitative Analysis and Dashboard. To quantify
the relationship between neighborhood socioeconomic measures X
and Street View image staleness Y, we compute Pearson correlation
coefficients. We exclude any block groups with avg_staleness < 0
or invalid socioeconomic values (e.g., median income < 0, missing
data, or population density < 0). To capture the degree of similarity
in these correlation patterns across cities, we define a consistency
score for each variable v as:

1

Co =

1+ Sd(rv,Seattlea T'y,Detroit> T'v,Atlantas rv,Chicago) ’
where sd(-) denotes the sample standard deviation across the four
city-specific Pearson r values. A consistency scores of 1 indicates
that a variable’s correlation direction and magnitude are uniform
across all cities.

For intuitive exploration and transparent dissemination of these
analytical outcomes, we then developed an interactive web-based
dashboard using D3.js and the Observable framework. The platform
supports dynamic filtering by demographic thresholds, spatial map-
ping of staleness patterns, synchronized scatter-plot comparisons,
and on-the-fly visual analysis of the links between socioeconomic
conditions and imagery recency. Designed for modularity and re-
producibility, the framework can be easily extended to other cities
with minimal input-data adjustments.

In sum, a primary strength of our method lies in its modular
and generalizable design. By relying solely on standardized public
data sources (GSV static API, ACS and OSM), our approach en-
sures methodological consistency and facilitates replication across
various urban contexts. Furthermore, the Python-based analytical
pipeline, combined with interactive visualizations, supports rapid
scalability, enabling systematic audits of street-level imagery re-
cency and potential disparities in digital visibility across diverse
geographic settings.

4 Results

Across all four metropolitan areas studied, we observe a generally
consistent “digital redlining” pattern in Google’s SVI update fre-
quency. Neighborhoods that are higher-income, higher-value, pre-
dominantly single-family, or suburban tend to exhibit higher image
staleness while denser, pedestrian-oriented, and higher-minority
communities receive more regular updates. Among the variables
tested, Walk Commute Share emerges as the most robust and
consistent predictor of update frequency across all cities. Notably,
Detroit stands out as an exception, with generally weaker and more
variable correlations, suggesting that local demographic or opera-
tional factors may be moderating the broader trend. To provide a
more intuitive view of the spatial distribution of image staleness,
we use Seattle as an example (Figure 1).

In detail, we retain sufficient observations (N) for each city
(NAtlanta = 425, NChicago = 2142, Npetroit = 622, Nseattle = 537) af-
ter filtering, ensuring adequate statistical power. Figure 2a presents
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a heatmap of Pearson correlation coefficients (r) across seven vari-
ables and Figure 2c present the correlation landscape with signifi-
cance for each city. across seven variables. In Seattle and Chicago,
both median income and median home value exhibit positive correla-
tions with staleness (e.g., rppy = 0.344, v = 0.276 in Seattle), indi-
cating that wealthier areas tend to have older imagery. In contrast,
non-white ratio and population density show negative correlations
(e.g., rnwR = —0.282, rpp = —0.197 in Seattle), suggesting more fre-
quent updates in denser and more racially diverse neighborhoods.
In Atlanta, population density correlates negatively with staleness
(r = —0.281, p < 0.001), while the single-family ratio correlates
positively (r = 0.230, p < 0.05), consistent with slower updates
in suburban areas. Detroit, however, diverges from this pattern:
population density and median build year correlate modestly posi-
tively with staleness (r = 0.175 and r = 0.154, both p < 0.01), and
all other socioeconomic variables exhibit weak or nonsignificant
correlations (|r| < 0.05, p > 0.05).

Variable-level consistency scores across cities further reinforce
these patterns. As shown in Figure 2b, Walk Commute Share achieves
the highest consistency score (Cywcs = 0.92), reflecting a uniformly
negative relationship with staleness. Median Build Year also scores
highly (Cvy = 0.91), as do non-white ratio (Cywr ~ 0.85) and
population density (Cpp =~ 0.83). By contrast, median income, home
value, and single-family ratio show slightly lower consistency scores
(approximately 0.81-0.83), reflecting more variable relationships
across cities (e.g., positive in Seattle, near 0 in Detroit).

Finally, a multivariate regression on the combined dataset con-
firms that all predictors except median income (p > 0.3) are sig-
nificantly associated with imagery staleness when controlling for
one another (@ = 0.05). This supports the conclusion that image
update disparities align closely with known patterns of spatial and
socioeconomic inequality.

5 Discussion and Conclusion

In this work, we introduce a novel pipeline for assessing coverage
bias in the recency of publicly available Google Street View (GSV)
and Census APIs across socioeconomically varied neighborhoods.
Our approach computes Pearson correlations between key socioe-
conomic indicators (e.g., median income, population density) and
image staleness using high-quality North American Census APIs.
Our findings have important implications for researchers relying
upon SVI data instead of in-person audits, as bias can be propagated
into downstream analysis without correction [13].

We also developed GSVantage, an interactive dashboard that
maps spatial staleness patterns, enables synchronized scatterplot
comparisons, and allows filtering based on user-selected demo-
graphic thresholds. Our case studies reveal statistically significant
evidence of “digital redlining”: higher-income, higher-value suburbs
tend to have older imagery compared to denser, more pedestrian-
oriented areas. Interestingly, this contrasts with some findings from
Latin American cities [11], suggesting contingencies that warrant
future research. The modular framework can be extended to other
cities with minimal input adjustments; however, researchers out-
side the US may need to identify analogous census-data APIs as
alternatives. Our code and datasets are publicly available on GitHub.
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