
Unifying Artifacts and Activities in a Visual Tool for
Distributed Software Development Teams

Jon Froehlich and Paul Dourish
School of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425

jfroehli@ics.uci.edu, jpd@ics.uci.edu

Abstract

In large projects, software developers struggle with
two sources of complexity – the complexity of the code
itself, and the complexity of the process of producing it.
Both of these concerns have been subjected to
considerable research investigation, and tools and
techniques have been developed to help manage them.
However, these solutions have generally been developed
independently, making it difficult to deal with problems
that inherently span both dimensions.

We describe Augur, a visualization tool that supports
distributed software development processes. Augur
creates visual representations of both software artifacts
and software development activities, and, crucially,
allows developers to explore the relationship between
them. Augur is designed not for managers, but for the
developers participating in the software development
process.

We discuss some of the early results of informal
evaluation with open source software developers. Our
experiences to date suggest that combining views of
artifacts and activities is both meaningful and valuable
to software developers.

1. Introduction

Virtually all software systems of reasonable size are
developed by teams rather than by individual software
developers. In large-scale efforts, these teams may be
distributed over wide geographical areas, and often may
also be distributed in time (e.g. as team members come
and go and the system evolves). Consequently, large-scale
software development must deal with two sources of
complexity: the complexity of the artifact being produced
(the code itself), and the complexity of the activities
around that artifact (the distributed process of software
development.) Software process models (e.g. [3, 11, 29])
attempt to help teams with the complexity of activities,

while techniques and analysis and testing (e.g. [8, 22,
23]) focus on the artifacts.

 Although any development effort will inherently
involve both of these sources of complexity, most tools
and techniques offered to software developers concentrate
primarily on one or the other. It is, of course, possible to
use tools of each sort in the course of development, and
most well-managed software projects will endeavor to do
so. However, since each tool deals only with one source
of complexity, developers must switch back and forth to
solve problems that involve combinations of the two. For
example, activity-based tools can alert developers to their
colleagues’ activity and summarize recent updates, while
artifact-based tools can analyze source code and highlight
dependencies between modules; however, this separation
makes it difficult to find, for example, which modules
depend on those recently updated or currently being
worked on by others.

To address this separation, we have developed a novel
visualization system called Augur. Visually, Augur is
based on the line-oriented approach pioneered by Eick and
his colleagues with SeeSoft [1, 9]. Beyond previous
approaches, Augur’s contribution is a set of visualizations
that combine information about the structure of both
artifacts and activities. It supports two main uses:
1 . Monitoring activity in a distributed software

project. This provides developers with an enhanced
understanding of the ongoing activities of their
colleagues. Sample uses might be on a peripheral
display or on a shared view in a project warroom;

2. Exploring the distribution of activities in time and
space. This allows developers to “drill down” to
explore the history and context of particular
development activities in the code base.

Four considerations have driven Augur’s design. First, it
is designed to support end-user visualization rather than
automatic inference to better adapt to different
development settings. Second, it favors online rather than
offline analysis for dynamic integration into the
development process. Third, it is designed to be used by

developers concurrently with development rather than
retrospectively for management analysis. Finally, Augur’s
design emphasizes interoperability and extensibility so
that it may be incorporated into existing development
efforts without significant overhead.

In this paper, we first review the background of
research into technologies for collaborative software
development before exploring design criteria in more
depth, we then introduce Augur and its underlying
architecture. We close by presenting the findings of
informal evaluations, and discussing opportunities for
further work.

2. Background

A variety of tools and techniques have been developed
to help programmers comprehend software systems. Such
facilities are particularly important for effective software
maintenance. For instance, software reflexion models can
help programmers understand large systems by
highlighting how the actual system relates to a high-level
description of expectations [20, 21]. Reflexion models
can be valuable as developers analyze the structure of large
software systems. The Rigi system also uses visual
techniques to provide developers with a graphical
overview of the structure of a software system [26]; Rigi
is designed primarily to support reverse engineering tasks
where a developer must achieve a working understanding
of an unfamiliar software product. Similarly, software
development environments have long included facilities
that allow a programmer to inspect the internal structure
of the software system being developed, at least as far
back as Interlisp’s Masterscope facility [30].

These tools can give the software developer valuable
insights into the structure of the system under
examination, but our goal here is rather different. Augur
is designed not simply to help developers understand a
software system, but also as a tool to support them in
coordinating collaborative development work.

Our particular interest is to do so by bringing together
views of artifact and activities. The source code of the
system is already the central focus of developers’ activity.
Is it possible, then, to enrich this artifact in such a way as
to provide developers with information about activities?

One strategy is to allow the artifacts themselves to
carry information about previous activities. Hill and
Hollan [15, 16] propose “history-enriched digital objects,”
information artifacts that carry with them records of the
accumulated actions that they have sustained, in just the
same way that dust, dog-ears and thumb marks reveal
which books on a shelf are read often and which are not.
This mechanism allows the artifact itself to convey
information about the activities that have taken place
around it.

Researchers in Computer-Supported Cooperative Work
(CSCW) refer to this as “awareness” – the informal
understandings people maintain of ongoing activity [7].
In a shared physical space, people can monitor each

other’s activities and use this information to coordinate
their collaboration; for example, it helps them to deliver
information when it is needed, predict upcoming tasks,
know who to talk to about particular topics, avoid
contention over shared resources, etc. In distributed
collaborative work, where a shared physical space is not
available, technology may provide channels that allow
people to maintain an awareness of each other’s actions.

Studies show that these informal means of information
sharing exist alongside all formalized models, no matter
how detailed. They are the mechanisms by which people
put formal processes to work – understanding how and
when to initiate actions, meshing independent activities,
understanding upcoming actions, avoiding problematic
situations, etc. A number of studies have noted the role
that informal awareness plays in formalized software
engineering processes. For instance, Grinter’s
investigations uncovered how, in addition to their
primary function, configuration management technologies
also provided developers with a view of each other’s
activities [12]. In a more recent study, de Souza et al.,
reporting on empirical studies of a software development
team, note that even with a complex configuration
management system available to them, developers still
conduct a good deal of “out-of-band” communication and
monitoring in order to maintain a broad collective
understanding of team activity [28]. More generally,
formal processes can serve an awareness purpose; Dourish
[6] has suggested that that process models can be used not
only to regulate but also to account for activity in
collaborative settings, using the process description as a
lens through which to see collective action as it emerges.

These observations have prompted researchers to
develop technologies specifically designed to promote
awareness in collaboration. For example, RearViewMirror
[14] uses Instant Messaging technologies to support inter-
developer communication that are integrated with their
development activities; alternatively, Palantir [27]
provides an awareness framework that operates in concert
with configuration management systems.

3. Our Approach

Our current research proceeds from the observation that
software teams struggle with both the artifact and the
activities of development as sources of complexity.
Accordingly, we have been developing tools that provide
a unified approach and help developers to understand the
relationship between them.

3.1. Design Considerations

Our goal is not simply to help developers analyze the
code-base, but to help them analyze the activities that
occur around it. This change in focus leads to a number of
design considerations.

Concurrent vs retrospective. One particularly
important issue, which holds implications for the rest of

the design, is whether this system is intended primarily
for retrospective analysis of development activity, or
whether its primary use is for analyzing activity that is
currently in progress. Clearly, a case can be made for
either; for example, retrospective analysis could support
software process improvement and process reengineering.
However, empirical studies such as that by de Souza et al.
[28] point to the ongoing problems of coordination
within software teams, indicating a need for awareness
tools that can be integrated into current practice. A purely
retrospective tool would be inadequate for these
requirements. It is important, then, that Augur be able to
operate alongside existing technologies and provide
concurrent views of development activity.

Online vs offline. A related issue concerns the balance
between online and offline analysis of source code.
Offline analysis can provide more information, but at the
cost of both delays and infrastructure complexity. In the
interests of supporting concurrent exploration, we have
chosen as far as possible to emphasize analysis that can be
performed dynamically.

Interoperability. We would like Augur to be broadly
usable in real engineering practice. This means that it
must be interoperable with a range of existing tools and
infrastructures; it must not present significant
infrastructure demands, or require that developers and
development organizations abandon their own tools and
methodologies. We have designed around an open
architecture that can support different source code
repositories (such as CVS, Subversion, SourceSafe, etc.)
as well as providing a consistent framework for analytic
extensions.

Visualization vs interpretation. The most careful
balance to be resolved by the design is that between
visualizing information for the end user and interpreting it
for the system. Visualization approaches create visual
depictions of information that allow users to perceive
patterns and correlations; the alternative is to have the
system interpret the information directly and
automatically derive conclusions about system activity.

We believe that each development setting is different,
and that the correct interpretation of activity information
depends critically on local factors. Accordingly, our
overall approach is visualization-based. Rather than
encoding specific workflows, we provide a visual tool
that allows developers to explore views of their system
and its activity. The essence of the visualization approach
is to shift load from the cognitive system to the
perceptual system, capitalizing on the human visual
system’s ability to recognize patterns and structures in
visual information [24]. Research into distributed
cognition and external cognition has demonstrated the

important role of representations in information
processing tasks [17, 25]. For example, long
multiplication and division is much easier to carry out
using Arabic numerals than Roman numerals; essentially,
the effort is shared between the individual and the external
representation. Similarly, information visualization helps
users “offload” information processing to the visual
representation.

There are two reasons to take a visualization approach
to this particular problem. The first is that software
development is a particularly complex task, and the needs
of individual projects are uniquely based in their specific
domain and development history. In the face of this
variability, we find it more effective to provide users with
flexibility rather than to make assumptions about their
needs. The second is that this approach allows us to
proceed without committing to particular development
processes or organizational contexts.

3.2. Augur: Interface and Interaction

We have been exploring these ideas in a prototype
system called Augur. Augur is not a development
technology itself; rather, it is a visualization system that
accompanies existing development tools by providing a
view of the software development process as it unfolds.

Augur provides a set of linked visualizations
displaying different characteristics of the software system
under examination. The primary view is a spatially-
organized view of the software artifact, inspired by
Seesoft [9]. Seesoft and related systems (e.g. Tarantula
[18] and Aspect Browser [13]) present an overview of a
software artifact in which each line of code is represented
by a line of pixels colored to indicate some attribute of
the line such its author or modification history (these
systems will be discussed in more detail below.) The
line-oriented display provides an immediate overview of a
great deal of information.

The basic Augur interface is shown in figure 1. Each
pane displays a different aspect of the system being
examined: changes in one view are immediately reflected
in the others. The large central pane shows the line-
oriented view of the source code. In this view, the color
of each pixel line indicates how recently it was modified;
this allows a developer, at a glance, to see how much
activity has taken place recently and where that activity
has been located.

The design of Augur uses three techniques to integrate
information about the artifact and its associated activities:
annotation, interaction, and triangulation.

Annotation. In order to bring views of structure and
activity together, the primary line-oriented display is
annotated with subsidiary information in two extra
columns that run down the left-hand side of each module
block (see figure 1 top right). The leftmost column
indicates which user modified that line of code, while the
other shows code structure by indicating line type (block
comments, method definitions, method separators, etc.)
Juxtaposing these columns allows developers to see at a
glance whether recent activity has added whole new
methods or modified existing ones, for example.

By default, change history is the primary display
attribute (mapped to the pixel line color) while users and
code structure are subsidiary attributes, indicated in the
adjoining columns. However, users can switch back and
forth between different configurations of primary and
subsidiary attributes, e.g. making user or structure
primary, in order to more easily examine the relationship
between system structure and development activity.

Interaction. The interaction design extends this
relationship between structure and activity. When the
developer clicks on any text line in the line-oriented
display, Augur highlights two other sets of lines: first,
the other lines of code checked in at the same time,
allowing the developer to see the extent of the check-in
and the relationship between different parts of the system;
and second, the structural blocks (e.g. methods) within
which those lines are embedded, which the developer
characterize the kind of work being carried out by placing

the work in a structural context. So, while the
relationship between artifacts and activities is initially
conveyed through the visual representation, it is
reinforced by the application’s response to user
interaction.

Triangulation. The third mechanism by which the
relationship between activity and artifacts is made clear is
through the use of multiple, coordinated displays. While
the line-oriented view occupies the central area of the
interface, a number of other panels accompany it,
displaying related views of the system under examination.
These views are largely graph-oriented, and show
cumulative breakdowns of information to accompany the
main display. For instance, in the view in which lines are
colored by change history, the accompanying panels show
the modules according to their overall change history and
a detailed change graph for the currently selected module.
Similarly, when “user” is selected as the primary
attribute, the graphs display information concerning each
user’s history. These views are also interactive; selecting
specific objects or events in the secondary displays will
also cause information to be displayed or highlighted in
the primary view. This allows developers to “triangulate”,
moving back and forth between displays to narrow in on
the details they want to find.

 Overall, then, the central feature that Augur uses to tie
together multiple forms of information is the spatial
organization of the source code. This spatial arrangement
is familiar to all developers and common across different

Figure 1. Augur’s multi-paned interface (left) and detailed insets (right). The line-oriented view uses three columns: the
two secondary columns on the left are colored by author and structure respectively, and the primary column is colored by
check-in date for each individual line (see top right). An inset of the revision history pane (bottom right), which shows the
comments for the selected date.

perspectives. Providing a unifying framework of this sort
allows different types of information to be synergistically
combined; it supports rapid movement back and forth and
the simultaneous combination of information (e.g.
through the primary and secondary attributes in the line-
oriented view.) While Augur extends this spatially-
oriented view with graph depictions of cumulative
statistics about source code and activity, it is the common
frame presented by the spatial arrangement of the code
that ties everything together.

Before going on to discuss our experiences using
Augur, we first present an overview of its architecture and
implementation.

4. Architecture and Implementation

Augur is not a software development tool in itself, but
rather is an adjunct to existing development tools. An
overriding concern was that it be flexible enough to
accommodate different development situations, scenarios,
and technologies. Augur supports three particular forms of
extensibility – in repository protocols, in analytic tools,
and in visual displays. These elements are designed
around a central database, from which visual
representations are generated, and an event infrastructure
through which the elements communicate.

Repository protocols. This information is retrieved
from external configuration management systems; Augur
is designed to support a range of potential mechanisms
for accessing software repositories, from which it extracts

appropriate information about modules, check-ins,
branches, etc. Compatibility with CVS has been
particularly important so that Augur can be used to
visualize the activity of major open source projects. Using
network-based configuration management systems (such
as CVS or Subversion) enables Augur to be easily
incorporated into existing projects, but renders the system
subject to considerable network delays when dealing with
large projects. A caching mechanism provides some relief
from this problem by locally storing recently downloaded
project data.

Analytic tools. A second source of generality lies in
the forms of artifact analysis supported. Once the target
system has been loaded from the repository, analytic tools
can be engaged to analyze the semantics of the code,
perform structural analysis, etc. These results are recorded
in the database alongside the raw information.

Visual displays. As well as being open to different
repository protocols, the architecture also provides a
generalized interface for visual displays. Multiple visual
displays are generally available concurrently. The line-
oriented view is the central display, but it is accompanied
by other views that can compare users, present the history
of the project, compare modules quantitatively, etc.
Through an event mechanism, Augur ensures that these
displays are maintained consistently; for instance,
consistent color mappings between the displays allow
users to move seamlessly from one to another, and
changes (e.g. selections) in one display are reflected in the
other displays so that correlations can be explored.

Data Organization. The fundamental problem that
Augur must solve is to relate two different views of a
program – a spatially-oriented view, focused in particular
on the lines of source code that make it up – and a
structural view that describes the relationship between its
elements. Internally, Augur uses a spatially-based
representation as the primary organizing principle, not
least because most software configuration systems operate
in terms of lines and files rather than modules and
methods. This line-based data structure is then annotated
with a range of other properties that augment the basic
line information. For instance, a basic LineRecord in
Augur is annotated with indentation information, a date,
an author, a revision, an Abstract Syntax Tree (AST)
node, and a Structure Block Tree node (which provides
instant detail on the structural orientation of the line).
This allows Augur to see lines not only in terms of their
structural organization but also in terms of their temporal
and social organization and the interplay between them.

Augur’s interactive approach is based on multiple,
dynamic visual displays that are linked together to form a
consistent user experience. As users navigate from display
to display, a central database supports the coordination
between these views. Since each display visualizes
different aspects of the underlying information store, and
since they may interact in many different ways, we created
an explicit query layer to mediate between the
representations and the internal database. This abstraction
supports the integration of new structural analyses and
interaction models.

Structure Analysis. As the basis of structural
analysis, Augur examines the source code that it finds in
the repository, and constructs an AST. While this is a
very basic form of analysis, it has been sufficient to
demonstrate the effectiveness of combining activity and
artifact information. Augur delegates source analysis to
ANTLR, an open source, Java-based parser generator, and
so can support multiple programming languages. While
our work has primarily focused on Java source code, we

Figure 2: Augur’s architecture

have also looked at systems written in other languages in
the C family.

Currently, the parser generates two sorts of
information (which are then recorded as annotations on
the LineRecords). The first is line-type information,
distinguishing between different types of source lines
(comments, those that define methods or variables, etc).
The second is structure block information that allows us
to relate specific lines to the larger blocks within which
they appear (e.g. method definitions, instance variable
definitions, etc.) This is used to determine the extent of
specific check-ins (that is, to generalize from the lines that
have been modified to the methods that have been
modified). Clearly, this same approach can also be used
with call graph analysis or other approaches that reveal the
interrelationships between lines and blocks of code.

5. Validation and User Experiences

Augur is designed to improve coordination in software
development teams. There are two approaches to team
coordination. A centralized coordination strategy attempts
to match each user’s activity to a common reference point.
Most process models take this approach; the process is
the basis of coordination, and each user’s activity is
mapped onto the common process definition.
Alternatively, a distributed strategy attempts to support
separate coordination between individuals without
requiring a common perspective or shared understanding
across the whole team. While this approach seems less
efficient, it can be more effective for a number of reasons.
First, it is more easily introduced into existing settings,
operating alongside other software development practices.
Second, it recognizes that developers play different roles
and have different concerns, so that, for example, their
interpretations of others’ actions will differ. Third, it
more easily accommodates change and evolution in the
development process.

Augur supports decentralized coordination. It aids
coordination not by bringing everyone into alignment
with a common perspective, but rather by providing
developers with an enhanced understanding of the work of
others and of the group, allowing them to make
appropriate decisions about their own activity. So, while
we aim to support development work in teams, our focus
for validation is on individuals using Augur to visualize
and examine the work of others.

Effective evaluation of Augur cannot be conducted in
the laboratory. Augur is designed to support the ongoing
coordination of development teams, and so true validation
requires longer-term deployment and an analysis of the
impact of the system on collective development practices.
Although logistically difficult, we are currently pursuing
this goal. In the meantime, however, we felt it important
to seek some more informal validation of our approach.

5.1. Case Studies

Visualization systems work by allowing their users to
perceive meaningful patterns and regularities in the
images they present. This is a skilled task and relies on
users being able to interpret what they see. In
demonstrating and experimenting with Augur, we have
found that it is much more compelling when viewing a
codebase that is known to the viewer. Artificial
experiments in which groups worked with unfamiliar
software systems and unfamiliar partners, then, would be
inappropriate means of investigation or validation.
Instead, to gain some initial feedback on Augur’s
effectiveness, we have conducted informal evaluations
with developers engaged in active development of multi-
authored systems. These studies have been conducted
while the tool has been in development, and the interface
has changed somewhat between revisions, but the core
functionality has remained largely stable.

Case #1: J is an active member of the apache.org open
source community. He explored three Apache projects.
The primary one we report on here is a core portability
layer; it consists of 78,180 LOC1 in 332 files, with a
total of 32 authors, 16 of whom have more than 1500
LOC currently checked-in under their name. The first
check-in was August 17th, 1999 and the project is still
active. J’s projects are written in C, which at the time
was not supported by the structure analysis component,
and so he did not use those views.

J used views of project history to reveal activity
patterns: “one of the interesting things you can get here is
project growth over time. You can see there are a lot of
files that are still gray.” Scrolling forward through time
revealed which lines of code were added to the project and
even when/what files were added. This exploration was
combined with activity graphs, indicating major changes:
“All of the sudden something happened on this date
where the file went back down. Something got
refactored.” Structural details provided context to these
explorations. “Those are big preprocessor definitions. It’s
a big conditional statement, really nasty.”

Perhaps because this project is so large and complex, J
concentrated his attention on the sets of authors. One
feature that stood out was the number of multi-authored
files. In fact, though a majority of code was composed by
3 or less authors, there was a surprising amount of files
with 8, 9, or even 15 separate authors. Unusual cases
stood out; noticing a large file (over 500 LOC) with all
but two lines by the same author, J commented: “Look at
this windows file: what happened here was that [user1] is
a windows person so he writes all the windows code and
this poor guy – [user2] – just added two lines. What the
heck did [user2] do?” Then, using the magnifying box, he
could answer, “Ah, yep, later he did the include and
license line.”

1 LOC including whitespace and comment lines

Case #2: D is one of four developers on an open
source project for modeling and analysis of graph and
network data. The project was first registered at
sourceforge.net in early February 2003 and, since that
time, has seen steady growth from 1620 LOC in 10 files
to its current state of 35,000 LOC in 268 files. The
project made its first 1.0 public release in early August
(approximately 4 months after the first source check-in).

D tended to use multiple visualizations in
coordination. First, he would manipulate the graph views
until an interesting pattern emerged. Then, he would drill
down using the line-oriented view. These multiple views
allowed him to see relationships in his code at both the
broad and detailed level. D would fairly rapidly brush the
mouse over a sequence of files, stopping only when he
perceived an interesting revision pattern: “So now when I
highlight this file, this pattern or this shape says to me, I
checked it in, I made only trivial tweaks – one or two
lines – and then I stopped playing with it on that date.”

This strategy also allowed D to see how the selected
activity relates to other files in the project: “This is
intriguing now in that I am really enjoying the idea of
seeing different sorts of [line graph] patterns. You know
we had the static check-in earlier – the file was just
checked-in once and left. In contrast, over here we have
[file1.java] with a small amount of activity, followed by a
surge, followed by a ton of stuff.” He found a second file
with an unusual growth pattern: “…that file was a point
of contention in which there was some debate or
discussion about its proper role. Judging by the fact that
it kept growing; people kept sticking stuff in it and then,
in a burst, a whole bunch more stuff was put in, twice. In
that final deletion, however, 60 or 70% was cut out.”

The broad view of activity history allows users to
relate the views they see to the “natural history” of the
project, understood in terms of major transitions and
events: “Here is the check-in with the copyright notice
headers, but a lot of other stuff at the same time too. It
seems that the major check-in of this day was the
heading, which was five lines per file. There were a few
other lines in some files, where it seems that [user 1]
added more than just the license. Also, it looks like some
entire files were added that day… Sort of undisciplined of
us, wasn’t it?”

The combination of structure and user views revealed
different coding styles among the authors. For instance,
one developer had a different indentation style (“he uses a
different development system that automatically formats
his code”) and was the only author to use switch/block
statements, which prominently stood out when looking at
the line-types. This view also exposed that the developers
“seem to have a variety of import styles, sometimes
narrow, sometimes long (which is often a reflection of
how involved a file is – ‘ah, imports, this is a file that
uses lots of stuff’). Some classes have two constructors
some have many more… ”

Case #3: S is another developer working on the same
project as D. He used a slightly updated version of Augur
which could display subsets of files based on the
repository path selected in the file tree view. After
becoming acquainted with the interface, S selected a
particular repository path and began investigating. “I
selected this repository cause I know I wrote all this
code… only, oh no, let’s see, what is this?” Although he
had thought he was the only author of this module, he
noticed multiple colors in the author column. Exploring a
little further, he noted, “Oh, I see now, all the changes by
this author have only been in the comment sections in the
second column.” Interestingly, Augur first seemed to
contradict S’s understanding of other author activity in
the displayed files, but then served to reinforce this
understanding by noting that changes had only been made
to comments.

Displaying by author, S was surprised that the graph
pane showed that some authors appeared to contribute
more lines of code than he had. “Hmm, well, I’ve
definitely written more… well, in my mind I’ve written
more than [user] has.” However, correlating this with the
line-oriented view showed that [user] checked-in the
license header for every file in the project and, therefore,
his total line contribution number was a little distorted.

Finally, S commented that he found the combination
of multiple attributes in the display “extremely useful,”
since “files that are all one color in the first column are
the least interesting to me. You want to see where people
work on the same file.”

Case #4: F is the chief developer and administrator of
a large open source project (117,325 LOC) for web-based
document authoring, in progress since 1998.

The line-oriented view allowed F to correlate spatial
arrangements with structural aspects of the code. “One
thing I like with this is seeing the indentation. That gives
me a feeling that [file] is too complex – that it should be
refactored, that it should be structured differently.” This
was further correlated with structural information (“it’s
easy to see that these are all little methods”; “over here,
though, these little blocks are wrapper functions.”)

F discovered a change he had made to the handling of
global data. “Basically, before every function or every
class had some kind of error message so I took that out
and I put that into a global class.” Using the search
function revealed many single-line calls to GlobalData,
“Yeah, so you can see that most of these [highlights] are
one or two lines” Displaying search results in the line-
oriented view helped F contextualize this information
with author, structure, and time data: “What I’ve changed
fairly recently in GlobalData is, oh yes, here we are, is
configuration stuff; for storing configuration entries. You
can see this is a fairly recent change.”

Much of F’s use relied on the combination of focus
and context achieved through the magnifier tool. “Where I
always have problems with textual representations is
trying to figure out where does this function begin, where

does it end? If it goes over the screen size, then you are
scrolling back and forth and you are losing context. With
this and because you are showing indentation and the
[structure] column information, I think it’s much easier to
have the context of the functions.”

6. Discussion and Further Work

These initial experiences were positive. Our sample
users were interested and engaged, and gained insight into
their code and their development practices through their
use of Augur. They clearly exploited not just activity
information and artifact information, but the relationship
between the two, in the ways in which they interacted
with the views they saw. What is more, as one of them
noted, this information comes essentially “for free” –
Augur generates no new information by itself, nor
requires no extra work from developers, but merely
presents a visual depiction of information already
available in the repository.

Each subject’s use of Augur varied. J examined larger
projects with considerably more developers, a number of
whom were not known to him. D and S examined a
smaller project, currently in development along with a
few close colleagues. F’s use was more retrospective, and
focused on the system’s history rather than distribution of
user activities. The different uses that the subjects made
of Augur seem to reflect these patterns – D and S focused
more on the code and the change history as the primary
view, F was more concerned with larger evolutionary
patterns, and J focused more on the distribution of user
activity throughout the system.

That said, there are clearly some commonalities across
these experiences. They all made use of multiple
perspectives using graph views as well as line-oriented
views, and making use of structure, change history, and
ownership perspectives. S perhaps made the most use of
this, moving back and forth between these views, while F
relied most heavily on the coordination between multiple
columns. More importantly, they all made use of these
views in coordination, triangulating on the information
they needed by exploiting information from different
perspectives, and using one view to account for the
information revealed by another.

These informal investigations are far from conclusive,
but they nonetheless support our two initial hypotheses –
first, that combining activity and artifact information in a
single view provides developers with information that
helps them understand their systems, and second, that the
spatial organization of the code can provide a common
framework that integrates different forms of information
about software development. This common frame
provides the coordination that allows developers to
exploit multiple perspectives concurrently and deal with
the relationship between activity and artifact.

On the basis of this initial experience, we are moving
forward to deal with a number of further areas of work.
Most particularly, these including incorporating richer

measures of change severity [27], and more sophisticated
tools for analyzing structure, such as control flow analysis
[4]. We are also seeking more comprehensive evaluation
of the tool through long-term deployment to active
development groups.

7. Related Research

There are two primary areas of related work worth
noting here. The first is the set of visualization systems
descended from the original Seesoft system, while the
second looks at other approaches for understanding
activities and artifacts in development.

A range of systems have been developed that draw on
Eick’s pioneering investigations of line-oriented
visualization of software statistics. His own research
group has generated a range of extensions to the original
line-oriented view; in their more recent work, they have
explored web-based visualizations, as well as a similar
“linked visualizations” approach for large-scale software
visualization [1, 10]. By incorporating many perspectives,
their tools can provide an extremely rich picture of
organizational software activity. However, since they
based their analysis on change records, they are not easily
able to analyze the structure of the software system itself
and to combine this view of the activity with the artifact
(although change records do frequently indicate structural
units). Similarly, their analyses are oriented more towards
managers trying to understand organizational action rather
than developers attempting to understand their own work
and the work of their colleagues.

Griswold’s Aspect Browser [13] is designed to support
software maintenance and evolution. It is designed to help
a software developer understand how particular features of
a system are distributed through the code. Drawing on
work on Aspect-Oriented Programming [19], Aspect
Browser is targeted particularly towards cross-cutting
concerns – features which touch many parts of the system,
cutting across the modular organization of the system.
These are particularly difficult to track down, especially in
large programs, and so Aspect Browser’s visual overview
is especially helpful. Aspect Browser clearly focuses more
on the artifact than on activities. Given its concern with
cross-cutting aspects, though, it defines aspects textually,
using regular expressions, rather than structurally, in
terms of the semantic organization of the code.

A third example of the extended use of line-oriented
visualizations is provided by Tarantula [18]. Tarantula
uses a line-oriented visual display to assist with test
analysis and fault localization, by visually indicating the
degree to which each line of code participates in
successful or unsuccessful outcomes from a test suite.
This approach to fault localization draws on a three
properties to which a line-oriented visualization is
particularly suited – high-level overview, spatial
organization, and cumulative statistics. Like the Aspect
Browser, Tarantula uses a Seesoft-like display to focus on

features of the software itself, rather than features of the
development process.

There are two facts to note here. The first is that both
artifact-based and activity-based software technologies are
broadly useful in software development, as demonstrated
by these systems. The second is that the same visual
approach has been successfully applied to problems of
each sort. Augur’s unique contribution is in the
relationship that it draws between the two.

A second set of related investigations concern the
relationships between system components or artifacts on
the basis of development activities.

Experimental systems developed by Bieman et al. [2]
and by Zimmermann et al. [31] also aim to uncover
structural relationships between artifact and activities in
software development. The ROSE system developed by
Zimmerman and colleagues models the relationships
between different system components on the basis of
“evolutionary dependencies.” Dependencies are indicated
when two modifications to one component are always
accompanied by modifications to another. Where
Zimmerman et al. break files down into functions and
variables, Biemen et al. develop similar models at the
level of class relationships, and use pattern-based
relationships to inform class clustering.

Hipikat [5] solves a related problem. It is primarily
designed to help newcomers to a project to become
familiar with its structure quickly. Hipikat treats project
archives (including source, bug tracking information, and
discussion lists) as a group memory. It helps users
navigate them, based on a recommendation approach; as
the user examines the system archives, Hipikat
recommends other related artifacts that the user might be
interested in, based on similarity measures.

The relationships between artifacts derived by all three
of these systems are possible approaches to incorporate
into Augur; new forms of analytic interpretation that can
reveal structure. There are three primary differences
between the approach we have taken and these
alternatives. First, we take a visualization approach that is
more open to different sorts of correlations (depending on
the different circumstances of development.) Second, we
combine multiple perspectives within a single tool,
allowing developers to move easily back and forth
between different aspects of the system being examined.
Third, assuming that the source code itself is an artifact
that all developers understand, we use it to provide a
common spatial model for all views, helping to tie the
different perspectives more closely together. While this
restricts the range of displays that can be provided, it also
allows for a richer experience of the many different
perspectives at work in any system.

8. Conclusions

Software development is complex; distributed software
development is even more so, as the complexity of
collaboration is added to the complexity of the artifact.

Most tools focus on one or other of these concerns. We
have been exploring a visualization-based approach that
allows developers to understand the relationship between
them, embodied by a prototype tool called Augur. Our
initial, informal user experiences have been positive. They
demonstrate two things – first, that the tool provides
meaningful information to developers working on project
teams, and second, that the combination of information
about activities and artifacts helps provide context that
developers can use to understand development processes.

The central element of our approach is to exploit the
spatial structure of the source code as the unifying
principle for organizing many different forms of
information. The source code is the common artifact
around which all developer activities take place; its
structure unifies their actions. Our approach seeks to take
the artifacts that mediate activity and to make them into
“inhabited spaces,” revealing the actions and activities of
the communities who work with them. Our experiences
with Augur suggest that this is an effective approach for
stitching together the representations of action that many
software tools produce.

9. Acknowledgements

This work was supported in part by the National
Science Foundation through awards IIS-0133749 and IIS-
0205724. We would like to thank Andre van der Hoek,
David Redmiles, and Dick Taylor for their helpful
comments on earlier drafts.

10. References

[1] Ball, T. and Eick, S. Software Visualization in the
Large. Computer, 29(4), 33-43, IEEE, 1996.

[2] Bieman, J., Andrews, A., and Yang, H.
Understanding Change-Proneness in OO Software
Through Visualization. Proc. 11th Intl Workshop on
Program Comprehension (Portland, OR), 2003, 44-
53.

[3] Boehm, B. and Bose, P. A Collaborative Spiral
Software process Model based on Theory W,
Proceedings of 3rd International Conference on the
Software Process (Reston, VA), IEEE, New York,
1994, 59-68.

[4] Callahan, C., Carle, A., Hall, M., and Kennedy, K.
Constructing the Procedure Call Multigraph. IEEE
Trans. Software Engineering, 16(4), 483-487, 1990.

[5] Cubranic, D. and Murphy, G. Hipikat:
Recommending Pertinent Software Development
Artifacts. Proc. 25th Intl. Conf. Software Engineering
(Portland, OR), 2003, 408-418.

[6] Dourish, P. Process Descriptions as Organizational
Accounting Devices: Notes of the Dual Use of
Workflow Technologies. Proc. ACM Conf.

Supporting Group Work GROUP 2001 (Boulder,
CO), ACM, New York.

[7] Dourish, P. and Bellotti, V. Awareness and
Coordination in Shared Workspaces. Proc. ACM
Conf. Computer-Supported Cooperative Work
CSCW 1992, ACM, New York.

[8] Egyed, A. A Scenario-Driven Approach to Trace
Dependency Analysis. IEEE Trans. Software
Engineering, 29(2), 116-132, 2003.

[9] Eick, S., Steffen, J., and Sumner, E. Seesoft: A Tool
for Visualizing Line-Oriented Software Statistics.
IEEE Transcations on Software Engineering, 18(11),
957-968, 1992.

[10] Eick, S., Graves, T., Karr, A., Mockus, A., and
Schuster, P. Visualizing Software Changes, IEEE
Transactions on Software Engineering, 28(4), 2002,
396-412.

[11] Finkelstein, A., Kramer, J., Nuseibeh, B. Software
Process Modelling and Technology. RSP Ltd, 1994.

[12] Grinter, R. Using a Configuration Management Tool
to Coordinate Software Development. Proc. Conf.
Organizational Computing Systems COOCS’95
(Milpetas, CA), ACM, New York, 1995, 168-177.

[13] Griswold, W., Yuan, J., and Kato, Y. Exploiting a
Map Metaphor in a Tool for Software Evolution.
Proc. Intl. Conf. Software Engineering ICSE 2001
(Toronto, Ontario), 2001, 265-274.

[14] Herbsleb, J., Atkins, D., Boyer, D., Handel, M., and
Finholt, T. 2002. Introducing Instant Messaging and
Chat into the Workplace. Proc. Conf. Human Factors
in Computing Systems CHI 2002 (Minneapolis,
MN), ACM, New York, 171-178.

[15] Hill, W. and Hollan, J. History-Enriched Digital
Objects: Prototypes and Policy Issues. The
Information Society, 10(2), 1994.

[16] Hill, W. and Hollan, J. Edit Wear and Read Wear.
Proc. Conf. Human Factors in Computing Systems
CHI (Monterey, CA), ACM, New York, 1992, 3-9.

[17] Hutchins, E. Cognition in the Wild. MIT Press,
Cambridge, MA, 1995.

[1 8] Jones, J., Harrold, M. J., and Stasko, J.
Visualization of Test Information to Assist Fault
Localization. Proc. Intl. Conf. Software Engineering
ICSE 2002, ACM, New York, 467-477.

[19] Kiczales, G., Lamping, J., Mendhekar, A., Maeda,
C., Lopes, C., Loingtier, J.-M., and Irwin, J.
Aspect-Oriented Programming, Proc. Europ. Conf.
Object-Oriented Programming ECOOP (Lecture
Notes in Computer Science 1241), Springer, Berlin,
1997.

[20] Murphy, G., Notkin, D., and Sullivan, K. Software
Reflexion Models: Bridging the Gap Between Source
and High-Level Models. Proc. Symp. Foundations of
Software Engineering FSE (Washington, D.C.,
October), ACM, New York, 1995.

[2 1] Murphy, G. and Notkin, D. Reengineering with
Reflexion Models: A case study. Computer, 39(8),
29-36, 1997.

[22] Naumovic, G., Avrunin, G., and Clarke, L. Data
Flow Analysis for Checking Properties of Concurrent
Java Programs, Proceedings of the 21st International
Conference on Software Engineering (ICSE 1999),
pp. 399-410, May 1999, Los Angeles, CA.

[2 3] Richardson, D., Aha, S., and O’Malley, O.
Specification-based Test Oracles for Reactive
Systems, Proc. Fourteenth International Conference
on Software Engineering, May 1992.

[2 4] Robertson, G., Card, S., and Mackinlay, J.
Information visualization using 3-D interactive
animation. Communications of the ACM, 36:57-71,
1993.

[25] Scaife, M. and Rogers, Y. External Cognition: How
do Graphical Representations Work? Intl. Jnl.
Human-Computer Studies, 45, 185-213.

[26] Storey, M.-A. and Mueller, H., Manipulating and
documenting software structures using SHriMP
views. Proc. Intl. Conf. Software Maintenance,
IEEE, 1995, 275-285.

[27] Sarma, A., Noroozi, Z., and van der Hoek, A.
Palantír: Raising Awareness among Configuration
Management Workspaces. Proc. Intl. Conf Software
Engineering, ICSE 2003 (Portland, OR, May), 444-
454.

[2 8] de Souza, C., Redmiles, D., and Dourish, P.,
Breaking the Code: Moving between Private and
Public Work in Collaborative Software Development.
Proc. Conf. Supporting Group Work GROUP 2003,
ACM, New York, 2003.

[29] Sutton, S. and Osterweil, L. The Design of a Next-
Generation Process Language. Proc. Sixth European
Software Engineering Conf. (Zurich, Switzerland),
Springer, 142-158, 1997.

[30] Teitelman, W. Interlisp Programmer’s Manual. Bolt,
Beranek and Newman, Cambridge, MA, 1974.

[31] Zimmermann, T., Diehl, S., and Zeller, A. How
History Justifies System Architecture (or not). Proc.
11th Intl Workshop on Program Comprehension
(Portland, OR), 2003.

