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Figure 1: RASSAR is a mobile AR application for semi-automatically identifying, localizing, and visualizing indoor accessibility
and safety issues. (1) RASSAR scans home spaces and detects potential issues in real time using LiDAR and computer vision. (2)
RASSAR currently supports four classes of issues, including inaccessible object dimensions such as a high/low table top or the
presence of risky/dangerous items such as scissors. (3) After a scan, RASSAR generates an interactive summary of identified
problems with a 3D reconstructed model.

ABSTRACT
The safety and accessibility of our homes is critical to quality of
life and evolves as we age, become ill, host guests, or experience
life events such as having children. Researchers and health pro-
fessionals have created assessment instruments such as checklists
that enable homeowners and trained experts to identify and miti-
gate safety and access issues. With advances in computer vision,
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augmented reality (AR), and mobile sensors, new approaches are
now possible. We introduce RASSAR, a mobile AR application for
semi-automatically identifying, localizing, and visualizing indoor
accessibility and safety issues such as an inaccessible table height
or unsafe loose rugs using LiDAR and real-time computer vision.
We present findings from three studies: a formative study with 18
participants across five stakeholder groups to inform the design
of RASSAR, a technical performance evaluation across ten homes
demonstrating state-of-the-art performance, and a user study with
six stakeholders. We close with a discussion of future AI-based
indoor accessibility assessment tools, RASSAR’s extensibility, and
key application scenarios.
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1 INTRODUCTION
Safe and accessible living spaces are a fundamental human right
[43]. Yet, inaccessible housing remains prevalent throughout the
world. In the US, for example, 90% of housing units are inaccessible
to people with disabilities [53, 54]. In the UK, 98% of newly built
private homes are inaccessible to wheelchair users [28]. To improve
the safety and accessibility of domestic spaces, researchers and
health professionals have created pre-formatted checklists that
help residents and trained professionals audit and renovate indoor
spaces [11, 19, 30, 55]. For example, the Home Safety Self-Assessment
Tool (HSSAT) [24, 60] includes a checklist for issues such as uneven
flooring, cluttered areas, slippery throw rugs, and inaccessible light
switches across nine home areas (e.g., kitchens, bathrooms, and
bedrooms). Others have explored remote assessment methods via
teleconferencing and video cameras [46, 48].

With advances in computer vision (CV), augmented reality (AR),
and mobile sensors, new ways to assess indoor accessibility and
safety are now possible. For example, emerging smartphones con-
tain built-in Light Detection and Ranging (LiDAR) sensors [4], which
can reconstruct indoor spaces in real-time with high precision [15],
new CV models like YOLO [32] are capable of high recognition
rates across object types, and smartphones contain powerful com-
putational units for onboard processing. Leveraging these advances,
we created RASSAR—Room Accessibility and Safety Scanning in Aug-
mented Reality—a custommobile AR application for semi-automatic-
ally identifying, localizing, and visualizing indoor accessibility and
safety issues using LiDAR and real-time computer vision (Figure
1). With RASSAR, a user scans an indoor space with their phone;
the tool constructs a real-time parametric model of the 3D scene,
attempts to identify and classify known accessibility and safety is-
sues, and visualizes potential problems in AR overlays. Throughout
the scan, users can confirm/delete automatic detections or select
them to view more information (see Figure 5). After scan comple-
tion, RASSAR shows an interactive 3D room reconstruction with
a summary of findings (Figure 1 and Figure 6). Additionally, to
assist blind or low vision users, we designed RASSAR to support
VoiceOver and provide custom audio assistance about the scanning
process (e.g., verbalizations of detected items).

To develop RASSAR, we conducted a three-stage iterative design
process. First, informed by prior work [1, 24, 26, 60], we built a rapid
technical prototype to demonstrate feasibility and examine initial

audit possibilities. Second, using this prototype as a design probe
[16, 22, 31, 49], we conducted a formative study with 18 participants
across five stakeholder groups: wheelchair users, blind and low-
vision participants, families with young children, caregivers, and
occupational therapists. We showed working videos of RASSAR
auditing an apartment, solicited feedback on new interface mock-
ups, and engaged participants in co-brainstorming new features.
Study findings reveal common challenges in home accessibility and
auditing processes that RASSAR can potentially alleviate, along
with suggested improvements to its rubrics and UI. Third, we built
the current RASSAR system with improved detection performance,
user interaction, and interface design and performed two additional
studies: a technical performance evaluation (Study 2) and a user
study (Study 3) with six participants again drawn from our five
stakeholder groups.

As emphasized in literature [55] and further affirmed by our
formative study, home audit tools must be adaptable to address in-
dividual needs and differences across community groups. To address
this challenge, RASSAR introduces a custom and fully extensible
JSON format to encode specific accessibility/safety issues into its
audit engine. Currently, RASSAR supports 20 issues across four
problem categories: object dimension (e.g., table too low), position
(e.g., light switch too high), risky items (e.g., throw rug), and lack
of assistive device (e.g., no grab bar near toilet). New issues can be
added via a text editor with JSON. In the future, such additions
could be made via an envisioned authoring tool.

To evaluate RASSAR’s performance and usability as well as its ef-
fectiveness in real-world settings, we conducted the aforementioned
technical evaluation and user study. In the technical evaluation,
the first author visited ten homes of varying sizes and layouts,
conducting both a manual baseline audit and a RASSAR scan for
comparison. Each RASSAR scan was repeated three times to ex-
amine consistency. The user study followed a similar procedure;
however, in this case, the participants themselves conducted RAS-
SAR scans independently. We then interviewed participants about
their experience to gather qualitative insights. We found an average
scan precision/recall of 0.86/0.83 when conducted by the researcher
and 0.79/0.73 when scanned by participants. Our findings show
that RASSAR is not only usable and useful but also significantly
increases efficiency, achieving an auditing speed 3.5x faster than
manual auditing. As P4, a wheelchair user, said: “RASSAR is easy to
use and was pretty accurate in terms of ADA”.

In summary, our contributions include: (1) formative findings
from five stakeholder groups about their current indoor safety/ac-
cessibility audit practices, their methods for reconfiguring spaces to
fit their needs, and reactions to future indoor auditing tools using
advanced sensing; (2) the design and implementation of RASSAR, a
novel AR-based tool for semi-automatically detecting safety/acces-
sibility issues in indoor spaces using LiDAR and real-time CV; (3)
findings from a technical performance evaluation and a follow-up
user study demonstrating effectiveness and potential applications
of RASSAR. As secondary contributions, we introduce an extensible
JSON format for specifying indoor safety/access issues and provide
a specified object detection model and its training dataset. We have
also open sourced RASSAR along with the detection model and its
training dataset at https://github.com/makeabilitylab/RASSAR.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/makeabilitylab/RASSAR
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Our work aims to transform how people examine and configure
indoor spaces to improve accessibility/safety. We envision RASSAR
as a versatile tool to aid builders in considering and validating the
safety and accessibility of new construction, residents in planning
renovations or updating their homes due to life changes (e.g., illness,
birth), rental agencies like Airbnb in vetting and validating the
accessibility and safety of rental spaces, and occupational therapists
in assisting residents as they comprehensively assess and identify
safety/access issues during home visits.

2 RELATEDWORK
We contextualize our work within the home accessibility and safety
auditing literature as well as automatic accessibility auditing and
indoor scanning and reconstruction using LiDAR.

2.1 Home Accessibility/Safety Auditing
Methods

To improve the accessibility and safety of home spaces and improve
the person-environment ’fit’ [37], a thorough assessment for poten-
tial risks based on residents’ needs is required. This assessment—
called home accessibility and safety auditing—traditionally involved
professional occupational therapists (OTs) with experience and in-
sights about the challenges and remedies for home accessibility
issues [30]. To help OTs conduct standardized evaluations, check-
lists like WeHSA [11], Housing Enabler [30], SAFER-Home [10], and
HEAVI [57] were developed and deployed. These checklists contain
potentially hundreds of potential risks for OT’s to monitor during
home visits (e.g., uneven steps, bed too high, slippery floors).

However, healthcare system barriers like limited funding and
lengthy insurance approval processes can impede on-site OT in-
terventions [46]. In this case, occupant-oriented checklists, like
the well-known HSSAT [24, 60], help people audit home spaces by
themselves. Compared to the checklists for OTs, these consumer
checklists [18, 20, 21, 25] are designed to be more community/demo-
graphic specific (e.g., for older adults only), pictorial, and subjective.
They usually contain detailed descriptions of potential risks and
ways to overcome them.

Besides checklists, which aim to discover problems in existing
spaces, legal regulations also address home space accessibility. For
example, the Fair Housing Act (FHA) Design Manual [26] and the
Americans with Disabilities Act (ADA) Design Guidelines[1] present
detailed design guidelines for home design and construction. Unlike
home accessibility checklists, these guidelines are more specific
about measurements of dimension and positioning of housing com-
ponents, but they are less specific about specific communities/de-
mographics and usually not as close a fit for personal needs.

In general, current home accessibility assessment practices re-
quire either manual measurements and ongoing checking or the
participation of professional OTs. Such practices continue to pose
barriers to home assessments due to residents’ abilities, financial
budget, and motivational factors. We address this gap by developing
and evaluating RASSAR to enable reliable, fast, and always-available
home auditing using smartphones, reducing the effort and potential
resources needed to accomplish this vital task.

2.2 Automatic Evaluation of Real-world
Safety/Accessibility

There has been a growing interest in using the latest sensing and
computing technologies, such as crowdsourcing, indoor reconstruc-
tion, and computer vision, to improve safety and accessibility of the
built environment. However, we observe an imbalanced focus on
outdoor vs. indoor spaces. One outdoor example is Project Sidewalk
[50, 52, 63], which crowdsources annotations on street view data
and uses deep learning models (such as ResNet) to detect target
objects like curb ramps and inaccessible sidewalk conditions. Other
works apply similar pipelines to pedestrian facilities [36, 39]and
street bikeability [29]. Most relevant to our work is Ayala-Alfaro et
al.’s research on indoor obstacle identification [7]. While similar,
our work provides user participation and verification, a wider range
of accessibility issues, as well as customizability for people with
different accessibility needs.

In addition to image-based methods, researchers are using agent-
based modeling [17], graph-based methods [12, 23] and point cloud
data [2, 7, 8, 51] to evaluate accessibility in built environments. For
example, Fu et al. [17] place virtual human agents into given 3D
indoor scenes to interact with indoor objects in order to evaluate
functional accessibility. Balado et al. [8] uses a MLS (Mobile Laser
Scanner) to scan the facade of buildings and segment the point cloud
data to detect potential accessibility issues at building entrances.
Compared to image-based methods, these works are more difficult
to apply at large scale due to the cost of specialized hardware and
the complexity of data collection and analysis.

In general, existing work requires massive amounts of data col-
lection or specialized hardware to generate identified accessibility
issues. In contrast, RASSAR empowers individuals to identify home
accessibility issues tailored to their unique requirements using their
smartphones. Our distinctive approach actively engages users in
the AR-based scanning and evaluation processes.

2.3 LiDAR-based Indoor Scanning &
Reconstruction

In recent years, many mobile device manufacturers such as Apple,
Samsung, andHuawei, have incorporated LiDAR sensors into smart-
phones. Apple’s iPhone 12 Pro, for example, was released in 2020 [4]
and provides both hardware and software support for users to con-
duct scans and reconstruct indoor spaces. Although smartphone-
based LiDAR capabilities cannot match professional devices, re-
searcher evaluations demonstrate ample precision [15, 38, 62]. In
May 2022, Apple released another indoor reconstruction API called
RoomPlan [5], which uses the camera, LiDAR sensor, and deep
learning models to create real-time parameterized indoor models.
This API simplifies the indoor reconstruction process and expands
potential application scenarios by generating 3D models with di-
mension, position, and category.

Although 3D reconstruction technology is rapidly advancing,
two important gaps remain: the lack of focus on accessibility and
safety in indoor reconstruction, and the inability to detect and locate
accessibility-related objects in indoor spaces. RASSAR addresses
these gaps by combining the mobile-based indoor scanning and
reconstruction pipeline with accessibility rubrics and offering a
custom, accessibility-focused object detection model.
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3 DESIGN PROCESS
To design RASSAR, we conducted a three-stage iterative design pro-
cess. We first built an initial technical prototype to demonstrate fea-
sibility. Then, we used our initial prototype as a design probe to con-
duct a formative user study with five key stakeholder groups (Study
1). Finally, based on formative study findings, we built the current
RASSAR system with improved detection performance, rubric for-
mation, user interaction, and interface design—and then performed
both a technical evaluation (Study 2) and a user study (Study 3).

3.1 Technical Prototype
Informed by prior work in home accessibility assessment [8, 17] and
indoor reconstruction techniques [5, 64], we built a rapid technical
prototype on an iPhone 13 Pro Max using Apple’s RoomPlan API [5].
The prototype included three primary features: (1) a reconstruction
of indoor spaces with accessibility-related items, (2) the detection
of accessibility and safety issues in indoor scenes, and (3) an AR-
based visualization of and interaction with detected accessibility
and safety issues. We used this prototype to conduct controlled ex-
periments of a single apartment to demonstrate technical feasibility
and determine ideal scan conditions, such as varying levels of room
tidiness, lighting, and moving speeds [56].

Our initial findings suggest that scanning must be conducted at
moderate speed (moving at 0.5 meters/sec) while keeping the room
tidy and well-lit. Under such conditions, the technical prototype’s
detection recall reached 90%. The experiment also revealed defi-
ciencies in object detection performance and UI limitations, which
we later improved in the final RASSAR system (Section 4).

3.2 Study 1: Formative Study
To examine the potential of semi-automatic accessibility and safety
scanning with mobile phones and to solicit feedback of our initial
technical prototype, we conducted a three-part formative user study
with 18 participants drawn from five communities: wheelchair users
(N=8), families with young children (N=3), people who are blind
or low vision (N=4), older adults (N=6, including caregivers), and
occupational therapists (N=3); see Table 1.

3.2.1 Participants. Participants were recruited via email, adver-
tisements to accessibility organizations, and social media as well
as through snowball sampling. Before participating, all individu-
als filled out a screener on demographics and relationship(s) to
our target communities. To ensure a diverse sample, we recruited
at least three individuals from each community who were either
self-identified members or caregivers.

3.2.2 Procedure. We conducted a three-part, qualitative study. Part
1 addressed current practices, and Parts 2 and 3 focused on our
RASSAR design probe. Specifically, in Part 1, we asked participants
about their indoor accessibility and safety needs, their current prac-
tices for assessing those needs, and challenges therein. For Part 2,
we showed participants videos of RASSAR scanning an apartment
and solicited suggestions, concerns, and expected usage scenar-
ios in their own lives. Finally, in Part 3, we showed RASSAR UI
mockups as design probes and asked participants for preferences:
how to encode new accessibility/safety issues into RASSAR (e.g.,
rubric customization), how to guide the user-conducted scan, and

Table 1: Our formative study included 18 participants. PID
stands for Participant Index. Older Adults refers to those
aged 65 and over. Children to those families with children
between 0 and 3 years old. BLV to people who are blind or
low vision. OT to occupational therapists. CG to caregiver. As
can be observed, identities/roles are not mutually exclusive.

PID Wheelchair
User

Older
Adults Children BLV OT

P1 ✓
P2 ✓
P3 ✓
P4 ✓
P5 ✓
P6 ✓
P7 CG
P8 ✓ ✓
P9 CG CG
P10 ✓ ✓
P11 ✓
P12 ✓
P13 ✓ ✓
P14 ✓ ✓
P15 ✓ ✓
P16 CG
P17 ✓
P18 ✓

how to provide feedback for scan results and errors. Sessions lasted
between 40-70 minutes (Avg=52 mins), and all but one was con-
ducted over Zoom. The lead author conducted all 18 sessions. For
reference, we include the full interview protocol and design probe
in the supplementary files.

3.2.3 Data and analysis. We audio and video transcribed all ses-
sions via Rev [47]. For analysis, we conducted reflexive thematic
coding [9]. The first author, who also conducted the interviews, re-
viewed all transcripts to develop an initial codebook. The first four
authors then discussed the initial codebook, iteratively resolved
disagreements and developed a full version of the codebook collab-
oratively. The first author then applied the finalized codebook to
all transcripts. After coding ended, the first four authors met and
discussed general themes and findings.

3.2.4 Findings. We highlight four key findings below related to in-
door accessibility and safety needs, current practices and challenges
in assessing indoor accessibility and safety, reactions to RASSAR,
and our design probe results.

Overall reactions to RASSAR. Most participants (N=16) held
favorable opinions about the RASSAR prototype due to its measure-
ment and documentation features, its ability to help prepare a home
for visitors with accessibility needs, and its ability to customize
accessibility issues. The two participants who held unfavorable or
neutral opinions stated, “I don’t see the point since I can do these
screenings by myself ” and “I don’t know.”

Participants described a variety of usage scenarios for RASSAR.
Six participants mentioned how RASSAR could help people gain
knowledge of physical spaces before they actually visit them. For
example, P18 (BLV) said, “I think it could really help people have more
confidence when they go into a room that they’re not familiar with or
a new space.” Another commonly raised use-case was facilitating
renovation or real-estate viewings; for example, P4 (wheelchair
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user) said, “I could even see this as being incredibly helpful to send to
contractors and architects and designers.” Finally, participants were
excited about ways RASSAR could facilitate accommodation during
travel, since hotel or Airbnb managers can better communicate
accessibility situations with RASSAR scan results.

People’s unique indoor accessibility needs. Our participants
flagged common sources of indoor safety and accessibility issues,
such as stairs (N=14), doors (N=9), and floors (N=9), which also
commonly appear in accessibility checklists [24, 59, 60]. However,
we also found key differences in concerns across communities. For
example, no wheelchair user mentioned concern about hazardous
items like sharp furniture corners or knives, while all other commu-
nities (BLV N=3, older adults N=4, children N=2, OT N=1) stressed
it in interviews. This highlights the need for RASSAR to be cus-
tomizable to address different abilities and needs.

Current practices and challenges. None of our participants
with accessibility needs previously chose to use accessibility check-
lists when auditing indoor spaces. They instead relied on their
own experiences and formed methods through practice. The most
commonly used methods were exploring the space (N=6), creating
mind maps of potential issues (N=5), and asking questions about the
space (N=4). Caregivers typically put themselves in care receivers’
shoes (N=2) to better identify potential issues. Current practices
also posed inherent challenges, including other people’s limited
understanding of accessibility (N=3) and social awkwardness (N=3).

For example, P10 said, “People mean well, they really do. [But]
until you actually have to live it or be exposed to it on a routine basis,
you just really don’t understand [our accessibility challenges].” Simi-
larly, P6 said, “The main challenge is explaining to people how to look
at it from my perspective.” In this case, audits should be conducted
on-site by individuals with accessibility needs themselves for re-
liability, requiring extra time or money to resolve or circumvent
issues. P8 recalled an instance of calling a restaurant to confirm
accessibility, only to find it inaccessible upon arrival, forcing her
to choose a nearby alternative. We maintain that these challenges
can be mitigated by indoor auditing methods such as RASSAR,
which provides a holistic digital scan of space that can be evaluated
remotely based on general or personal requirements.

Design improvements for RASSAR rubrics and UI. We pre-
sented participants with a list of accessibility and safety issues
derived from literature to solicit feedback. Most participants were
satisfied, while some suggested additions. Based on feedback, we
modified and finalized RASSAR’s auditing rubrics (e.g., added new
issues like bed height). We also provided UI mockups to solicit
participants’ preferences about RASSAR’s scan experience (Fig-
ure 2). Participants preferred having text hints (N=15) and mini-
maps (N=11) for scanning support, an interactive rich text pop-up
layer (N=13) for detected issue visualization, an interactive 3D
model (N=9), and a list of issues to review (N=10) in a post-scan
summary. As for methods of error reporting, most participants
(N=15) preferred that the system learn their needs over time.

4 THE RASSAR SYSTEM
Informed by our rapid prototype and formative study findings, we
created a revised RASSAR system (Figure 3), which uses LiDAR
and real-time CV to perform a parametric reconstruction of indoor

How Should RASSAR Show the Detected Issues?

Minimal Solution
A

Rich Text Pop-Up
B

Model with Dots
C

List in AR
D

How Should Users Report Errors?

Manual Cancelling
A

Manual Adding
B

System Learns
C

How should RASSAR support scans?

Video Guide
A

Text Guide
B

Mini-Map
C

Task Based Guide
D

How Should RASSAR Summarize Scan Results?

Show 3D Model
A

Show List
B

Show in AR
C

Figure 2: Design probes for RASSAR’s interaction and in-
terface design. For each question, we provide three or four
options as interface mock-ups.

spaces, automatically identify safety and accessibility problem using
a custom JSON rubric, and visualize issues both in AR and via an
interactive 3D summary view.

The new prototype includes four key enhancements: (1) Improved
feedback: all detected accessibility and safety issues are visualized
in real time with multiple UIs, including a pop-up icon in the AR
interface, descriptive layers, and post-hoc summarization in the
3D model. This empowers users to actively engage with the sys-
tem to explore, refine, and summarize scan outcomes. (2) Reduced
scanning effort: RASSAR users can learn to scan rooms with both
textual and mini-map hints, and the app is designed to help users
scan spaces without having to move close to potential objects of
interest, thereby reducing scanning effort. (3) Customizability: RAS-
SAR users can tailor the scanning process by selecting different
accessibility communities to filter detection rubrics. They can also
manually remove detected issues that fail to match their specific
needs. (4) BLV support: To assist BLV users, each of the primary
user interactions—selecting target communities, scanning, object
identification, and summary of results—are supported by real-time
audio feedback. All user interface components, such as buttons
and text labels, are compatible with VoiceOver. Below, we describe
RASSAR’s scanning, detection, and visualization process.

4.1 Scan and Reconstruct Home Space
In Step 1 of RASSAR’s technical pipeline, we reconstruct a scanned
home space into a parametric 3D model that includes object cate-
gory, dimension, and position information. To create a reconstruc-
tion with access/safety information about both macro objects (e.g.,
furniture) and micro objects (e.g., electric sockets), we combine
Apple’s RoomPlan API [5] and a customized YOLOV5 model [32].

4.1.1 Parametric eeconstruction of major indoor components. The
RoomPlan API is the backbone of our indoor reconstruction process.
RoomPlan, which relies on both RGB camera and LiDAR sensor
data, provides real-time spatial and dimension information for ma-
jor indoor components. Currently, RoomPlan detects the following
object categories: bathtub, door, opening, wall, window, bed, chair,
sink, sofa, stairs, storage, table, television, and toilet. However, this
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1.  Scan space 2.  Detection 3.  Visualization

HOME SPACE PHONE ROOM RECONSTRUCTION ACESSIBLITY AND 
SAFTEY ISSUES

VISUALIZATION IN AR

RoomPlan 
YoloV5

LiDAR &
RGB Camera

Rubrics in 
JSON

Figure 3: RASSAR system overview. RASSAR (1) scans and reconstructs a home space, (2) detects accessibility and safety issues
in the space, and (3) visualizes real-time results in AR.

reconstruction is incomplete; it includes only walls, doors and fur-
niture but neglects smaller objects that could also pose accessibility
and safety challenges.

4.1.2 Object detection for smaller indoor objects. Based on our lit-
erature review, we identified many issues related to smaller objects,
such as grab bars, electric sockets, and sharp objects. Since no ex-
isting pre-trained model is tailored for accessibility-related indoor
objects, we trained our own object detection model to complement
our room reconstruction pipeline. Informed by [1, 24, 26, 33, 41, 60],
we selected nine initial categories of smaller indoor items that are
common problems and collected a customized dataset with 2533
images and 3943 annotations (Table 2). About one third of these im-
ages come from the Open Images dataset [35], while the remainder
comes from Microsoft’s Bing [40]. The first author manually anno-
tated annotated all instances of the nine object categories (Table 2)
with bounding boxes.

Using the dataset, we trained a state-of-the-art computer vision
model, YOLOV5[32]. We specifically selected YOLOV5-m (41 MB)
due to its fast detection speed (224ms inference time with CPU
[61]) and good performance on the baseline COCO dataset (0.63 for
mAP@0.51). In offline experiments, we found that a larger model
would slightly increase performance (0.66 for mAP@0.5) but al-
most double detection speed (430ms). We trained our model on an
NVIDIA GTX 3080 and Ubuntu 20.04.2 LTS using 900 epochs. After
obtaining the best weights, we converted them into the CoreML
format (.mlmodel) [3] by adding a non-maximum suppression layer
[32]. We randomly sampled our dataset into training, validation,
and test sets containing 70%, 15%, and 15% of the data, respectively.
The model performance is shown in Table 3. To facilitate open
science, we have open sourced the annotated dataset 2.

During the scanning process, the custom YOLOV5 model runs
continuously on the camera feed to detect the nine accessibility-
related objects in the scanned space. Since YOLO detection results
are 2D bounding boxes on images instead of 3D coordinates in a
room, we perform raycasting [6] to convert the 2D location from

1mAP@0.5 represents the Mean Average Precision at an Intersection over Union (IoU)
threshold of 0.5
2https://github.com/makeabilitylab/RASSAR

Table 2: The number of images and annotations for training
RASSAR’s customized YOLO model. Some images contained
multiple objects, which is why the annotation count exceeds
the image count.

Object Images Annotations
Door handle 370 530
Electric socket 181 370
Grab Bar 395 503
Knife 451 622
Medication 325 688
Rug 377 470
Scissors 226 270
Smoke alarm 176 191
Light switch 138 299
Total 2533 3943

Table 3: Performance of our trained model for each object
category. mAP is mean Average Precision, and 0.5 is a com-
mon threshold to determine the effective intersection over
union (IoU).

Class Target Precision Recall mAP@0.5
All 587 0.744 0.865 0.869
Door Handle 66 0.601 0.803 0.746
Electric Socket 30 0.719 0.867 0.877
Grab Bar 104 0.777 0.952 0.972
Knife 93 0.682 0.71 0.756
Medication 113 0.831 0.938 0.944
Rug 60 0.965 0.983 0.994
Scissors 60 0.775 0.85 0.887
Smoke Alarm 29 0.765 0.931 0.873
Switch 32 0.579 0.75 0.767

the center of the YOLO bounding box into 3D coordinates in physi-
cal space. To improve accuracy and reduce noise and outliers, we
smooth out the raycasting results by averaging across multiple
frames and setting up filtering thresholds. For a YOLO-detected

https://github.com/makeabilitylab/RASSAR


RASSAR CHI ’24, May 11–16, 2024, Honolulu, HI

object to be considered valid, it needs five raycasting results with
location offset of fewer than 0.3 meters and YOLO detection confi-
dence scores greater than 0.65.

Combining the results of RoomPlan and YOLOV5, RASSAR pro-
duces a real-time indoor reconstruction that includes category,
dimension and position information of both larger barriers and
many smaller indoor objects. This room reconstruction provides a
solid basis for accessibility and safety auditing.

4.2 Detection of Accessibility and Safety Issues
In Step 2 of RASSAR’s pipeline, we filter and identify relevant
accessibility and safety issues based on the selected stakeholder
group(s) and a customizable rubric.

4.2.1 Rubric formation. RASSAR’s auditing rubric is drawn from
ADA Design Guidelines [1], the Home Safety Self Assessment Tool
(HSSAT) [24, 60], the US Fair Housing Act Design Manual [26, 54],
and other sources [44, 58]. Creating the default rubrics for each
stakeholder group was iterative and additionally informed by Study
1. The final rubrics include 20 issues across four categories (Fig-
ure 1.2, Figure 4): object dimension (e.g., high table height), object
position (e.g., out-of-reach light switch), risky items (e.g., presence
of a sharp object like scissors), and lack of assistive items (e.g., miss-
ing bathtub grab bars). For more details, see Appendix B. When
RASSAR starts, users can select one or more target communities,
which will load the relevant rubric(s).

4.2.2 JSON-encoded rubrics. To facilitate both automated screen-
ing of room reconstruction and individual customization, we trans-
formed our original text-based rubrics into JavaScript Object No-
tation (JSON) format. Each JSON-formatted rubric encompasses
essential details, such as the target object category (e.g., table), its
relevant user community (e.g., wheelchair users), the dependent
other object when rubric involve multiple objects (e.g., tub for the
issue of No Grab Bar Near Tub), and the violation criteria (e.g., di-
mensions less than 68 cm, and relative distance more than 70 cm
away). Moreover, we enriched these JSON files with supplemen-
tary information, including warning messages, issue descriptions,
suggestions, and information sources. This additional context aids
users in comprehending detected issues and assists in the removal
of invalid or irrelevant results. See Appendix A for an example.

4.3 Visualization of scans
Finally, in Step 3, RASSAR provides a real-time 3D reconstruction
to aid scanning, a visualization of identified issues in AR, and a
post-hoc summary of scan results.

4.3.1 Facilitating user scanning. The RASSAR interface employs
several user feedback methods to facilitate scanning. First, real-time
room reconstruction progress is visually represented through a dy-
namic mini-map (Figure 5d). This mini-map adapts to the user’s
orientation and shows real-time reconstruction progress with dis-
tinct visual cues (e.g., black lines signify walls, yellow lines denote
doors, and the orange triangle indicates the user’s current position
and direction). Second, to enhance the capture of smaller indoor
objects from a distance, RASSAR optimizes its camera feed by utiliz-
ing only the central part of the screen as input to the YOLO model.
Users are guided by a subtle, dimmed white box (Figure 5b). Third,

all object detection results are presented in YOLO-style bounding
boxes (Figure 5c). Finally, users can also enable audio feedback
during the scanning process, which verbally guides the scan with
instructions such as “Please point camera at top and bottom of wall
to initialize”, “Please slow down”, and “Please step away from wall.”
All major indoor objects, such as doors, windows, tables, and sofas,
are read out when detected.

4.3.2 AR visualization of detected issues. We also overlay detec-
tions in real-time using AR. The four classes of accessibility issues
(object dimension, object position, risky item, and lack of assistive
item, see Figure 4) are encoded and shown via four corresponding
pop-up icons. Icons are clickable to inspect detailed information
(Figure 5.2) and verify if the issue is valid. If not, the user can re-
move the issue (Figure 5e). With audio support enabled, RASSAR
also verbalizes when an accessibility or safety issue is detected,
such as “Too narrow door opening is detected!”, “The bed is too high!”,
and “No grab bar detected near toilet!”

4.3.3 Post-scan interactive 3D summary. After a scan, RASSAR pro-
vides a brief summary of detected issues, including issue counts
and their category—which can be read out with VoiceOver RASSAR
then shows an interactive 3D model of results where indoor compo-
nents and objects are represented as geometries and detected issues
are shown in red. The user can pan, zoom and move the 3D model
to inspect more closely or tap on any object to see more details.
The lower half of the UI shows details about user-selected objects,
including object category and dimension. The user can also delete
detected issues or export all scan results into a JSON file.

5 STUDY 2: TECHNICAL EVALUATION
Prior work in automatic accessibility auditing typically includes

technical performance evaluation "case studies" in 3-4 real-world en-
vironments [8, 13, 14]. Expanding on this approach, we performed
technical evaluations of RASSAR in 10 home spaces, including
seven apartments and three houses of varying sizes and layouts
(Table 4). The first author, an experienced accessibility researcher
and expert RASSAR tool user, conducted all scans.

5.1 Experiment Procedure
For each indoor space, we performed a three-step process. First, we
conducted a manual audit to identify any existing accessibility and
safety issues using RASSAR’s accessibility rubrics (Appendix B).
We inspected and measured each indoor space, used the rubric for
assessment, and took additional notes about found issues3. Second,
we scanned each space with RASSAR, which we recorded and ex-
ported to JSON format. Finally, we compared the scan results with
the manual audit data. We repeated the last two steps three times,
resulting in 30 RASSAR scans across the ten indoor spaces.

5.2 Evaluation Metrics
To evaluate RASSAR, we used three primary evaluation measures:
detection performance, scanning consistency, and scanning time.

3We excluded the ‘Knob Height’ issue from this study to avoid imbalance of issues in
the manual inspection results.
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Object Dimension
Object Too Tall or Short

Bed Height
Table Height
Counter Height
Door Width
Opening Width

Assistive Item
If Non-Existent

Grab Bar Near Toilet
Grab Bar Near Tub
Fire Alarm

Risky Item
If Existent

Rug
Scissors
Knife
Medication

Object Position
Object Too High or Low

Cabinet Height
Sink Height
Knob Height
Door Handle Height
Light Switch Height
Outlet Height
Grab Bar Height
Grab Bar Height

Blind or Low Vision Wheelchair User Children Older Adults

Figure 4: Informed by literature and our formative study, RASSAR can detect 20 types of accessibility and safety issues across
four categories: object dimension, object position, risky item, and assistive item. Each issue has relevance to specific accessibility
communities, marked with black icons. We acknowledge that safety/accessibility issues can be fluid marked not just by
(dis)ability but fatigue, time-of-day, etc. and that individuals may not map exactly to these categories. Our custom JSON-based
rubric could allow for precise individual specification in the future (e.g., with a custom authoring interface.

A

A

D

B

C

E
1 2

Figure 5: RASSAR’s AR-based scanning interface and a de-
tailed view of a detected issue. (1) During a scan, RASSAR
shows detected problems in real-time via AR overlays, in-
cluding (a) red spheres, which can be selected to view more
information and to confirm/delete detection and (b) CV-based
detections with green bounding boxes, a text label, and con-
fidence score. To aid understanding of the CV field-of-view,
we draw a (c) gray bounding box. We also show a mini-map
(d) that adapts to users’ orientation/position with real-time
reconstruction results. (2) The user can click on identified
issues (a) to view more information, see recommended solu-
tions, and to (e) confirm/delete problems.

5.2.1 Detection performance. For detection performance, we calcu-
late the number of true positives (TP), false positives (FP), and false
negatives (FN ) based on whether RASSAR successfully detected an
issue listed in the RASSAR accessibility rubric, reported an issue

Figure 6: Three examples of the post-scan interactive sum-
mary of results. A user can interact with the 3D reconstruc-
tion, inspect detailed information about objects or issues, and
remove any errant or disagreed upon issues. The top-right
button lets user export scan results to a JSON file.

that did not appear in the rubric, or failed to detect an issue. No-
tably, we did not calculate true negatives since it entail RASSAR
not reporting on accessible and safe items, which is not meaningful
for this evaluation.

Based on TP, FP, and FN counts, we calculate four evaluation met-
rics, including precision (calculated as ��

��+�� ), recall (calculated
as ��

��+�� ) , F1 score [45], and accuracy (calculated as ��
��+��+�� ).

These metrics assess the quality of RASSAR’s output, how many
issues RASSAR missed, and RASSAR’s ability to capture existing
issues and avoid false alarms.

5.2.2 Scanning consistency. To examine RASSAR’s consistency
across scans (three per indoor space), we use Krippendorff’s alpha
[34], a common measure to assess agreement level among multiple
raters. Specifically, we considered each scan a distinct rater and
treated each space’s accessibility and safety issue as a scoring task.
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Figure 7: RASSAR’s technical evaluation performance over
ten indoor spaces. (Top) A scatter plot of precision and recall
over 30 scans in 10 home spaces. (Bottom) A histogram of
Krippendorff’s alpha values across 10 home spaces (3 scans
each).

5.2.3 Scanning time. Finally, we computed the average scanning
time for each indoor space using screen recordings of scans.

5.3 Evaluation Results
Table 4 and Figure 7 shows RASSAR evaluation results. For readabil-
ity, we present averaged performance stats for each space. The full
results can be found in the appendix: Table 9. Overall, our analysis
shows that RASSAR can effectively identify indoor accessibility
and safety issues, with an average precision of 0.86, recall of 0.83,
F1 score of 0.84, and accuracy of 0.72. We observe that most Krip-
pendorff’s alpha values fall in the range between 0.4 and 0.7, which
indicates "substantial consistency" [27]). Finally, RASSAR scanning
took 99.9 seconds on average (SD=27.4), much faster than manual
auditing, which took the lead author approximately 10 mins/space.

5.4 Performance Analysis
Below, we describe more detailed findings related to performance
as a function of issue and potential error causes.

5.4.1 Performance by accessibility & safety issue. Unsurprisingly,
RASSAR’s technical performance varies across accessibility and
safety issue. In Table 5, we show individual performance metrics
for 13 commonly encountered issues. Almost all exhibit strong
detection performance, with F1 scores exceeding 0.65. Some issues,
like ‘bed height’ and ‘cabinet height’, even achieved 1.0 accuracy.
However, there is one notable exception: ‘counter height’. This
particular issue, whose rubric requires a counter surface height
of between 28 and 34 inches, shows subpar performance, a result
that can be attributed to the RoomPlan API consistently classifying
‘kitchen counters’ as ‘storage units.’ This systematic error causes
RASSAR to ignore ‘counter height’ in most scans.

5.4.2 Causes of error. To better understand RASSAR errors, we
classified them into six categories (Table 6). About half of all errors
come from the object detection model, YoloV5, due to misclassi-
fications (i.e., the YOLO model reported incorrect category labels
for detected objects). Because indoor spaces contain many similar
objects, misclassification is a significant technical challenge. For
example, condiment bottles were misclassified as medicine, drawer
handles were perceived as grab bars, and bed sheets were classified
as rugs, leading to invalid results. These errors usually cause false
positives, which can be alleviated by manual checking and filtering,
as discussed in Section 4.3.2.

The other primary cause of error was due to RoomPlan API lim-
itations, particularly RoomPlan misclassifications. The RoomPlan
API provided inaccurate object category labels, which led RASSAR
to overlook underlying accessibility issues related to that object.
For example, RoomPlan classifying a kitchen counter as storage,
causing RASSAR to ignore underlying counter height issues.

6 STUDY 3: USER STUDY
Finally, for our last evaluation, we performed a user study with

six participants across our stakeholder groups, including twowheelchair
users, one older adult, two new parents, an OT, and a person with se-
verely low vision (legally blind)—see Table 7. Among the wheelchair
users, P1 used a manual chair and P4 an electric wheelchair—both
had high-functioning upper-body motor control. Because we also
envision RASSAR being used by non-stakeholders (e.g., Airbnb
hosts), we also recruited one additional participant. For recruit-
ment, we used mailing lists, outreach to local disability groups, and
snowball sampling.

P1 P3 P4 P5 P6

Figure 8: Study 3 participants conducting RASSAR scans.

6.1 Procedure
For the user study, two researchers visited participants’ homes to
conduct a three-part investigation: first, one researcher manually
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Table 4: Information about the ten home spaces and RASSAR’s performance results.Scanning time was measured in seconds.
Precision, recall, accuracy, F1 score and Krippendorff’s Alpha are described in Section 5.3. Performance metrics are averaged
for each space. Raw scan performance data can be found in Appendix C

ID Home
type

Size
(sqm)

Rooms
Scanned

Average
Precision

Average
Recall

Average
F1 Score

Average
Accuracy

Krippendorf
Alpha

Scan
Time

S1 Apartment 65 3 0.75 0.91 0.82 0.70 0.73 113
S2 Apartment 63 2 0.72 0.73 0.72 0.56 0.7 120
S3 House 45 4 0.85 0.79 0.81 0.69 0.67 148
S4 Apartment 55 3 0.90 0.79 0.84 0.73 0.82 80
S5 Apartment 50 3 0.94 0.91 0.92 0.86 1 84
S6 Apartment 90 4 0.92 0.82 0.87 0.76 0.83 125
S7 Apartment 65 3 0.84 0.87 0.85 0.74 0.62 96
S8 Apartment 50 3 1.00 0.70 0.82 0.70 0.69 80
S9 House 24 2 0.73 0.90 0.81 0.68 -0.05 53
S10 House 60 3 0.92 0.88 0.90 0.82 0.43 100

Average 0.86 0.83 0.84 0.72 0.64 99.9

Table 5: Detection performance of different accessibility/safety issues. GT stands for ground truth from manual auditing. Prec
is the abbreviation of precision. F1 is short for F1 score. Acc is the abbreviation of accuracy.

Category Issue Name
Count
of GT

Count
of TP

Count
of FP

Count
of FN

Precision Recall F1 Score Accuracy

Counter Height 42 3 1 39 0.75 0.07 0.13 0.07
table height 42 38 8 4 0.83 0.91 0.86 0.76
Door radius 27 17 3 10 0.85 0.63 0.72 0.57Object Dimension

Bed Height 15 15 0 0 1.00 1.00 1.00 1.00
Sink height 57 54 0 3 1.00 0.95 0.97 0.95
Cabinet Height 48 48 0 0 1.00 1.00 1.00 1.00Object Position
Grab bar height 15 12 8 3 0.60 0.80 0.69 0.52
Rug 48 48 2 0 0.96 1.00 0.98 0.96
Medication 21 19 18 2 0.51 0.91 0.66 0.49
Knife 15 14 7 1 0.67 0.93 0.78 0.64

Existence of
Risky Item

Scissors 15 15 0 0 1.00 1.00 1.00 1.00
No Grab bar near toilet 27 24 0 3 1.00 0.89 0.94 0.89Non-existence

of Assistive Item No Grab bar near tub 18 16 0 2 1.00 0.89 0.94 0.89

Table 6: The causes for RASSAR scan errors

Cause Name Description Total
count

% across
all errors

RoomPlan
Misclassification RoomPlan API misclassified an object 42 32.8

RoomPlan
Measurement

RoomPlan API provided inaccurate object
measurement 13 10.1

RoomPlan Miss RoomPlan API missed an object 11 8.6
YOLO
Misclassification

YOLO misclassified an object into another class,
or falsely report an non-existing object 55 43.0

YOLO Miss YOLO missed an object of interest 3 2.3

Raycast Issue Raycasting process went wrong, resulting in
missing or misplacement of object 4 3.1

conducted a ground truth inspection (similar to Study 2) in selected rooms (e.g., kitchen, living room, and bathroom). Second, partic-
ipants were provided with an iPhone 13 Pro Max with RASSAR
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installed. After a brief tutorial, they were asked to independently
conduct a RASSAR scan of the same rooms. The research team ob-
served the scanning behavior and took notes. Third and finally, the
research team conducted a semi-structure debrief interview about
RASSAR, inquiring about the overall experience, ideas for future
work, and concluding with 7-point Likert scale ratings for usability,
usefulness, perceived accuracy, and willingness to use RASSAR in
the future (see Table 7). For analysis, we compared ground truth
to RASSAR’s detections (similar to Section 5.1) and thematically
analyzed the interview data.

6.2 Findings
Overall, all six participants could independently use and scan their
space with RASSAR, rating the app highly usable and accurate
(avg=5.5 and 5.8 out of 7, respectively). Below, we expand on the
technical performance, usability, usefulness, and user suggested
improvements and application areas.

Technical Performance The scans resulted in an average pre-
cision and recall of 0.79 and 0.73, which is slightly lower than the
scanning performance in Study 2, where precision was 0.86 and
recall was 0.83. This difference can likely be attributed to Study 2’s
scans being performed by a single member of our research team,
whereas in the current study, actual stakeholder users conducted
the scans. When asked to rate their perception of RASSAR’s detec-
tion performance, the average response from participants was also
high: 5.8/7 (min: 5). “The 3D reconstruction results are way better than
my imagination” (P5). Regarding scanning speed, participants com-
pleted their RASSAR-based scans in 3.3 minutes on average—3.5x
faster than the ground truth manual auditing (avg=11.8min).

Usability. As noted above, all six participants successfully fin-
ished their home scans with RASSAR and rated the app highly
usable (avg=5.6/7; min: 5). We observed different scanning prac-
tices, which may have also impacted technical performance. For
example, P3, P4 and P6 constantly tilted phone up and down during
scan, while P2 and P5 fixed phone vertical thus missed accessibility
and safety issues on the floor. This oversight may be alleviated by
visual or audio hints for missed indoor surfaces during scan. For
P6, the low vision user, he was able to complete his scan with the
audio assistance feature. Interestingly, though unexpected, other
participants also found utility in the audio assistance. For example,
both P4 and P5, who are sighted, conducted RASSAR scans with
audio feedback enabled, which they felt increased their awareness
of the scan progress and detected issues. “The audio helped me a
lot in understanding what’s happening and what should I focus on
during the scan.” (P5)

Usefulness. In terms of perceived usefulness, the results were
more nuanced: P3 and P4 rated usefulness as 6/7 because “I would
never know that the throw rug could be an issue” (P3) and “These
results will be potentially useful if I want to pick a new home” (P4).
However, P1 and P2 rated usefulness as 4/7. P1, a manual chair
user, felt that the ADA-based issues did not match her needs since
“My house is very usable to me, but in RASSAR’s head, it wasn’t”.
Interestingly, P1 still rated the app highly usable and wanted to
use the app in the future. For the OT (P2), they wanted RASSAR
to be more customizable (“it’s not customized enough”)—a feature

we hope to support in the future. P6, who is low vision, provided
high ratings for all aspects except usefulness. He found the detected
issues interesting and helpful, but rated usefulness low because the
last part of the scan process—the scan summary of results—was not
as accessible as he needed.

Potential applications. In the debrief interviews, participants
offered a variety of use cases for RASSAR. P1, who rated full marks
for her willingness to use RASSAR, envisions RASSAR as a way to
scan, assess, and share the accessibility of public spaces: “It would
be really helpful in public spaces. I’m on several Facebook groups for
people with disability. And we will all turn to write reviews of different
places that we go. [With RASSAR], we can have a more objective way
to share that information.” Similarly, P2 (the OT), felt that RASSAR
could be used to help raise awareness about accessibility issues and
scale better than on-site OT inspections: “What OT can do [to help
people] is very limited. There are so many people in need but very
few have access to OT service.”. Although P2 rated low for her own
willingness to use, she was happy to recommend RASSAR to others.
“I might not use it since I already have this knowledge. But I would
recommend it to my family or anyone in need. It’s so convenient and
way better than me lecturing them!”

P3 found more personal use cases instead. “If I move to a new
home, or when I get injured someday, I might want to use this (to
check for home safety)”. Similarly, P4 thinks RASSAR can be used
in auditing new homes to help make the most suitable purchase.
“It would be helpful for auditing another place.” P5 thinks RASSAR
could be helpful for child-proofing if more children-related issues
get implemented in the future.

System Improvements. Participants provided valuable feed-
back on enhancing user interaction with the system. A prevalent set
of suggestions regarded the summary view (Figure 6), particularly
in improving the manipulation of the 3D model (P1) and organiz-
ing scan results by specific rooms, such as the kitchen, bedroom,
and restroom (P2). Additionally, both P2 and P5 wanted the scan
summary in a list format. P6 also echoed this suggestion since a
list view is more compatible with screen readers. Another set of
recommendations revolved around improving scanning support. P5
suggested additional audio or visual cues to alert users when they
miss certain indoor surfaces, like the floor. Similarly, P6 wanted
extra audio alerts for the proximity of indoor objects, in order to
prevent BLV users from bumping into barriers. Furthermore, P3
advocated for more direct visual guidance, such as arrows, to assist
users in conducting thorough scans without overlooking key areas.

7 DISCUSSION
We introduce the first mobile AR system to detect accessibility
and safety issues in home spaces. Using RASSAR, individuals can
semi-automatically audit their home spaces and generate real-time
3D reconstructions that highlight accessibility and safety issues.
Additionally, we conducted three studies to examine real-world
needs, technical performance, and user experience of our proposed
method. Below we elaborate on the implications of our findings
and opportunities for future work.
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Table 7: User study demographics, scan stats and user ratings.

Ratings from 1-7

ID
Stakeholder
Identity

Home
Type

Scan Area
(sqm)

Rooms
Scanned

Manual Audit
Time (Min)

Scan Time
(Min)

Prec. Rec. Acc App
usability

Usefulness
of results

Detection
performance

Willingness
to use

P1 Wheelchair user House 120 4 12 5.02 0.74 0.67 0.54 6 4 6 7
P2 OT Apartment 43 2 21 3.08 0.54 0.88 0.5 5 4 5 1
P3 None House 60 2 14 2.25 0.92 0.85 0.79 5 6 6 4

P4 Wheelchair user,
older adult Apartment 70 4 10 3.25 1 0.73 0.73 6 6 7 6

P5 New parents House 150 3 7 3.38 0.67 0.46 0.38 6 - 5 5
P6 BLV Apartment 55 3 7 3.05 0.88 0.78 0.7 5 1 6 6

Average 11.83 3.34 0.79 0.73 0.61 5.5 4.2 5.83 4.83

7.1 Application Scenarios
Unlike prior work in automatic accessibility auditing—which often
involves complex data collection processes [8, 17] or specific hard-
ware [7, 51]—the RASSAR system is a plug-and-play application on
smartphones. This ease of use significantly expands its appeal and
potential applications. From the formative study (Section 3.2.3) and
user study (Section 6), we identified numerous possible use-cases
for RASSAR, which we expand on below.

Prior-visit Auditing. One common challenge identified in the
formative study is the uncertainty about a location’s accessibility be-
fore visiting, including rental spaces, such as hotel rooms or Airbnb
accommodations, public spaces, like restaurants and shops, as well
as friends’ or family’s homes. Based on our user study feedback
(Section 6), RASSAR emerges as a practical solution by offering
a standardized scanning and detection process for previewing ac-
cessibility and safety issues. Site owners could employ RASSAR to
ensure that their spaces meet general accessibility requirements or
share the scan results to help people preview and evaluate a space
before visiting. Future work should examine sharing interfaces to
support this desired feature.

Improve Spaces to Accommodate Life Changes. All lives
undergo transformation, which can impact accessibility and safety.
For people undergoing significant life events such as illness, child-
birth, or the need to care for older family members, we found that
RASSAR can serve as a convenient evaluation tool that raises aware-
ness of potential risks under such changes, and could also provide
home renovation suggestions such as removal of dangerous items
and adjustment of object dimensions.

Complement OT’s Home Visits. As previous research [46]
and our own studies with OTs indicate, it is often challenging for
individuals to request, schedule, and pay for OT home visits. With
RASSAR, OTs can offer remote assistance by reviewing the system’s
scanning results, which not only encompass visual information but
also include 3D positions and measurements. Consequently, remote
auditing processes could become more standardized, efficient, and
precise compared to existing methods like video calls.

Beyond residential.While RASSAR is presently designed for
residential spaces, its technical framework could be applied to non-
residential areas such as offices, schools, and restaurants. In initial
work, we conducted successful tests of RASSAR in two offices. In the
future, we would like to incorporate new rubrics for non-residential
spaces and examine methods to upload and view assessments.

7.2 Detection Performance
As described in subsection 5.3 and section 6, RASSAR yielded an
average precision/recall of 0.86/0.83 when operated by our research
team, and 0.79/0.73 by stakeholder participants. Compared with
manual auditing, scans are also about 3.5x faster. While preliminary,
these results are promising. Still, RASSAR’s performance could be
improved. Most error cases were caused by deficiencies in our
YOLOV5 model (Section 4.1.2) and the RoomPlan API. In the future,
we plan to further improve RASSAR performance by expanding our
object detection model to also detect furniture categories to correct
RoomPlan misclassifications, and also expand training dataset on
micro indoor objects to improve detection performance. More work
is necessary to determine what accuracy is required for the different
application scenarios proposed above.

7.3 Accessibility Issue Scope
Currently, RASSAR detects 20 types of accessibility and safety

issues across four categories (Figure 4). We plan to expand this list
based on needs found in the literature (e.g. detecting sharp edges of
furniture [42]), our formative study findings (e.g., home entrances,
stairs and bath facilities), and user study findings (e.g. wheelchair
maneuvering spaces).

7.4 Potential Beyond the ADA
The current RASSAR system relies on ADA design guideline as the
main source of accessibility rubrics. But as found in both our forma-
tive and summative user studies, ADA design guidelines are often
minimum requirements and may not fit everyone’s needs. “ADA
is just a fixed standard for reference, thus it cannot ensure fitting on
everyone.” (P2, Study 3 ) Similarly, one wheelchair participant from
Study 3 complained that she once found out a non-ADA hotel room
also worked great for her when the ADA units were booked out. In
this case, the binary classification of "ADA accessible" became ex-
clusionary. With RASSAR’s custom JSON-based rubric definitions,
assessments could be personalized to individual needs. Future work
should explore rubric authoring interfaces.

8 CONCLUSION
We introduced RASSAR, amobile AR system that semi-automatically
audits indoor residential spaces for accessibility and safety issues.
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Built with state-of-the-art mobile LiDAR scanners and mobile com-
puter vision models, RASSAR efficiently and effectively identifies,
localizes, and visually displays accessibility and safety issues and
provides recommendations for mitigation. RASSAR is both cus-
tomizable, letting users specify their target accessibility communi-
ties, and verifiable, letting users manually verify detected issues.
Our technical evaluation (Study 2) in ten home spaces shows that
RASSAR’s performance is accurate, consistent, and efficient. Our
initial user study (Study 3) further demonstrates RASSAR’s poten-
tial among stakeholder groups. Our work advances the literature on
indoor accessibility and safety auditing, contributes indoor accessi-
bility object detection model and dataset to the research community,
while simultaneously opening up new research avenues for human-
AI collaborative indoor auditing.
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A JSON EXAMPLE
1 "Counter":{
2 "Dim_Height":{
3 "Community":["Wheelchair"],
4 "Dependency":null,
5 "Dimension":{
6 "Comparison":"Between",
7 "Value":[28,34]
8 },
9 "RelativePosition":{
10 "Comparison":null,
11 "Value":null
12 },
13 "Existence":null,
14 "Note":"replace PLACEHOLDER to either 'short' or

'tall' depends on the actual height of the
counter.",

↩→

↩→

15 "Message":"Warning: Counter is too PLACEHOLDER.",
16 "Description":"According to ADA compliance,

counters must be at the proper height (this often
is 28-34 inches from the floor).",

↩→

↩→

17 "Suggestions":["Replace to an adjustable height

counter"],↩→

18 "Sources":[
19 {"name":"2010 ADA Standards for Accessible

Design", "url":"https://www.ada.gov/regs2010/201 ⌋

0ADAStandards/2010ADAstandards.htm"},
↩→

↩→

20 {"name":"Aging in place: Designing, adapting, and
enhancing the home environment","url":"https://s ⌋
cholar.google.com/scholar?hl=en&as_sdt=0%2C48&q= ⌋
Aging+in+Place+Designing%2C+Adapting%2C+and+Enha ⌋

ncing+the+Home+Environment&btnG="}]

↩→

↩→

↩→

↩→

21 }
22 },
23

24 "Cabinet": {
25 "Pos_Height": {
26 "Community": ["Wheelchair"],
27 "Dependency": null,
28 "Dimension": {
29 "Comparison": "LessThan",
30 "Value": [27]
31 },
32 "RelativePosition":{
33 "Comparison":null,
34 "Value":null
35 },
36 "Existence": null,
37 "Note": null,
38 "Message": "Warning: The cabinet is too TALL!",
39 "Description": "According to ADA compliance, the

height of cabinets should be no more than 27
inches from the floor.",

↩→

↩→

40 "Suggestions": [ "Move things you frequently use to

places within easy reach."],↩→

41 "Sources": [

42 {"name":"2010 ADA Standards for Accessible
Design", "url":"https://www.ada.gov/regs2010/201 ⌋
0ADAStandards/2010ADAstandards.htm"},
{"name":"HSSAT","url":"https://www.tompkinscount ⌋

yny.gov/files2/cofa/documents/hssat_v3.pdf"}]

↩→

↩→

↩→

↩→

43 }
44 },
45

46 "GrabBar_Existence_Tub": {
47 "ExistenceOrNot": {
48 "Community": ["Wheelchair", "Elder"],
49 "Dependency": ["Tub"],
50 "Dimension": {
51 "Comparison": null,
52 "Value": null
53 },
54 "RelativePosition":{
55 "Comparison":"LessThan",
56 "Value":[27]
57 },
58 "Existence": true,
59 "Note": null,
60 "Message": "Warning: No grab bar detected near

tub!",↩→

61 "Description": "For safety, there should be grab

bars near tub.",↩→

62 "Suggestions": ["Add a bath grab bar on the wall or

a clamp-on grab bar to the tub."],↩→

63 "Sources": [
64 {"name":"HSSAT","url":"https://www.tompkinscount ⌋

yny.gov/files2/cofa/documents/hssat_v3.pdf"}]↩→

65 }
66 },
67 "Knives": {
68 "ExistenceOrNot": {
69 "Community": ["Children"],
70 "Dependency": null,
71 "Dimension": {
72 "Comparison": null,
73 "Value": null
74 },
75 "RelativePosition":{
76 "Comparison":null,
77 "Value":null
78 },
79 "Existence": false,
80 "Note": null,
81 "Message": "Warning: Knives have been detected in a

dangerous place!",↩→

82 "Description": "For safety, no knives should be

present on reachable surface.",↩→

83 "Suggestions": ["Move out of reach of children"],
84 "Sources": []
85 }
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B ALL SUPPORTED ACCESSIBILITY AND SAFETY ISSUES

Table 8: 20-item RASSAR Accessibility and Safety Issues.

Issue name Category Rubirc (inch) Rubric (cm)
Bed height Object Dimension 20 - 23 50.8 - 58.42
Table height Object Dimension 28 - 34 71.1 - 86.4
Counter height Object Dimension 28 - 34 71.1 - 86.4
Door Radius Object Dimension >32 >81.3
Opening Width Object Dimension >32 >81.3
Cabinet height Object Position <27 <68.6
Sink Height Object Position <17 <43.1
Door Handle Height Object Position 34 - 48 86.4 - 122
Knob Height Object Position 34 - 48 86.4 - 122
Light switch Object Position 15 - 48 38.1 - 122
Electric socket Object Position 15 - 48 38.1 - 122
Grab bar height for adults Object Position 33 - 36 83.8 - 91.4
Grab bar height for children Object Position 18 - 27 45.7 - 68.6
Fire alarm Lack of Assistive Item Should exist
Grab bar near tub Lack of Assistive Item Should exist
Grab bar near toilet Lack of Assistive Item Should exist
Rug Risky Item Shouldn’t exist
Scissors Risky Item Shouldn’t exist
Knife Risky Item Shouldn’t exist
Medication Risky Item Shouldn’t exist
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C TECHNICAL EVALUATION FULL RESULTS

Table 9: Information of ten scanned home spaces and RASSAR evaluation results on them. GT refers to ground truth obtained
from the RASSAR accessibility rubrics. Scanning time was measured in seconds. Definition of precision, recall, accuracy, F1
score and Krippendorff’s Alpha are introduced in subsection 5.3

Space Size
(sqm)

Home
Type

Rooms
Scanned

Count
of GT Prec. Recall F1

Score Accuracy Krippendorf
Alpha

Scan
Time

0.74 0.93 0.82 0.70
0.72 0.87 0.79 0.65S1 65 Apt 3 15
0.78 0.93 0.85 0.74

0.73 113

0.64 0.82 0.72 0.56
0.73 0.73 0.73 0.57S2 63 Apt 2 11
0.78 0.64 0.70 0.54

0.7 120

0.78 0.88 0.82 0.70
0.82 0.75 0.78 0.64S3 45 House 4 24
0.95 0.75 0.84 0.72

0.67 148

0.89 0.73 0.80 0.67
1.00 0.82 0.90 0.82S4 55 Apt 3 11
0.82 0.82 0.82 0.69

0.82 80

0.91 0.91 0.91 0.83
0.91 0.91 0.91 0.83S5 50 Apt 3 11
1.00 0.91 0.95 0.91

1 84

0.92 0.85 0.88 0.79
0.85 0.85 0.85 0.73S6 90 Apt 4 13
1.00 0.77 0.87 0.77

0.83 125

0.76 0.87 0.81 0.68
0.81 0.87 0.84 0.72S7 65 Apt 3 15
0.93 0.87 0.90 0.81

0.62 96

1.00 0.70 0.82 0.70
1.00 0.60 0.75 0.60S8 50 Apt 3 10
1.00 0.80 0.89 0.80

0.69 80

0.78 1.00 0.88 0.78
0.75 0.86 0.80 0.67S9 24 House 2 7
0.67 0.86 0.75 0.60

-0.05 53

0.92 0.86 0.89 0.80
0.92 0.86 0.89 0.80S10 60 House 3 14
0.93 0.93 0.93 0.87

0.43 100

Average 0.86 0.83 0.84 0.72 0.64 99.9
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