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ABSTRACT
We introduce the “Accessible Area Mapper,” a novel system de-
signed to map accessible pathways using airborne point clouds. By
harnessing the 3D terrain information from these point clouds, our
system delineates physically navigable areas that are customized
to suit individual mobility requirements. This allows for a com-
prehensive understanding of pathways suitable for active mobility
methods, like walking and bicycling. In addition, it can also identify
accessible routes for individuals with disabilities, thereby promot-
ing sustainable urban mobility as a whole. While it’s currently in
early stages, our work marks a transformative step towards reshap-
ing 3D urban pathway mapping, making strides towards a more
sustainable and inclusive transport ecosystem. We demonstrate our
system’s preliminary capabilities and discuss its potential.

CCS CONCEPTS
• Human-centered computing → Accessibility systems and
tools.
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1 INTRODUCTION
Modern urban mobility faces dual challenges: ensuring accessibility
for citizens with diverse mobility needs and driving sustainable mo-
bility solutions to reduce the carbon footprint of their commuting
patterns [12]. Unfortunately, traditional navigation and pathway
mapping systems often fail to deliver the necessary information on
pathways like slope and width, vital for ensuring accessibility and
promoting active mobility like walking or cycling. This hinders the
broader goal of sustainable urban mobility.

The prime sources for creating pathway networks have been
GPS or image data. These tools, while invaluable, have largely
been focused on mapping roadways for motor vehicles [7, 10, 22].
With vehicular transport accounting for a significant percentage
of greenhouse gas emissions, there’s a pressing need to encourage
alternative, sustainable modes of transport like walking. To pro-
mote this shift, comprehensive pathway data is essential. While
there have been recent strides in sidewalk mapping [4, 5, 8, 11, 13],
they often yield simplified centerlines tailored for able-bodied walk-
ers, overlooking critical dimensions like width and slope that are
essential for accommodating a wide spectrum of urban mobility.

Recent advances in vehicle-mounted LiDAR systems offer the
potential to capture detailed pathway information, including as-
pects like width and slope. However, since these systems are often
tied to vehicles, they predominantly provide a vehicular perspec-
tive [2, 14, 16, 19, 21]. This limits their potential for promoting
active and sustainable mobility. While newer systems are available
that target sidewalks using mobile LiDAR [6] and photogrammet-
ric point clouds [20], their ground-based data acquisition confines
them to smaller areas, preventing a comprehensive understanding
of city-wide pedestrian networks.

Some studies have specifically focused on enhancing accessibility
for people with disabilities by crafting navigation tools tailored to
specific mobility needs. Some of these tools either integrate slope
data into pathways [1, 3, 9] or employ crowdsourcing to deter-
mine pedestrian accessibility [15, 17]. While these efforts enhance
navigation for disabled individuals, these often focus only on ex-
isting vectorized paths, missing opportunities for exploring new
pathways and capturing width information. Furthermore, while
mobility needs vary greatly, many tools are designed for a singular
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Figure 1: The DSM, derived from airborne point clouds, is utilized to identify regions compatible with a user’s abilities.
Specifically, the Accessible Area Mapper evaluates slope and width and shows areas that align with the user’s travel capabilities.

mobility need (e.g., wheelchair user) [3, 9], which narrows their
adaptability and overall utility.

To address these challenges, we propose a novel approach to ac-
cessible pathway mapping, dubbedAccessible Area Mapper. This
system identifies accessible pathways based on physical surface
information and their connectivity, using 3D terrain data derived
from airborne point clouds. Using airborne point clouds allows ac-
cessible routes to be determined over large areas, even areas without
previous route databases. Features that hinder the accessibility of
pathways are directly measured from 3D terrain data, allowing our
system to delineate navigable areas tailored to individual mobility
needs, supporting active mobility in alignment with the sustainable
urban vision.

2 THE DESIGN OF ACCESSIBLE AREA
MAPPER

The Accessible Area Mapper is designed to answer the question,
“What areas of the terrain are accessible to me?” In contrast with
existing systems that analyze accessibility along predetermined
pathways based on a one-size-fits-all definition of a user’s abilities,
our system shows the user all accessible areas of the surrounding
environment based on the user’s custom mobility settings. This
holistic and customizable approach is made possible by leveraging
3D terrain information derived from airborne point clouds.

By converting airborne point clouds into a digital surface model
(DSM), our system creates a seamless representation of the ground
elevation. This allows our system to analyze any potential route,
whether it exists in a routes database or not, and determine if it is
suitable for the user to safely and comfortably navigate.

For instance, a steady increase in the elevation captured by the
DSM suggests a hilly region, while abrupt changes might point to
curbs, stairs, or some other barrier. By using this elevation data,
our system can determine which neighboring portion of the DSM
is navigable based on the user’s mobility by assessing the slope
and the width of the path linking one part to another. This process
mirrors the user’s potential movement across the virtual landscape,
modeled by the DSM, and determines if such a move would be
feasible for the individual in the real world.

In our system, “mobility” is defined according to individual travel
requirements. Figure 1 shows how the width and slope parameters
are determined from the DSM and how these parameters relate to
determining an area’s accessibility. Person A (Figure 1) requires a
pathway at least 1m wide and can navigate slopes up to 15 degrees.
These parameters establish person A’s mobility and are used to
delineate the passable areas in the environment. In contrast, other
individuals, like Person B, possess varying capabilities. The system
calculates pixel-level slope utilizing the Sobel operator, discerns
impassable objects via the ground filtering algorithm [18], and
uses morphological operations to gauge width. Finally, it factors in
user-specific mobility parameters to adaptively identify accessible
pathways by examining the connectedness of navigable areas.

Thus, our system, unlike previous methods that define accessibil-
ity along existing vectorized pathway networks, identifies passable
areas seamlessly across large areas with high resolution raster. It
uses detailed slope and width information to determine the ter-
rain’s accessibility for any potential movement direction. Also, by
considering the user’s mobility, our system provides customized
navigable space, ensuring its usefulness for a wide set of needs and
transportation modes.

3 DEMONSTRATION OF THE ACCESSIBLE
AREA MAPPER SYSTEM

3.1 Datasets and Experimental Areas
We demonstrate our system using a UAV image-based high-point-
density (1600pts/𝑚2) point clouds constructed from a Structure from
Motion (SfM) procedure, and also explore its scalability with low-
point-density (20pts/𝑚2) but widely available airborne LiDAR data.
Both datasets cover an urban area in Lakewood, Ohio, USA. The
UAV images were captured using a DJI Zenmuse P1, and SfM was
executed using Agisoft’s Metashape. The LiDAR point clouds were
sourced from the US Geological Survey’s 3D Elevation Program.

3.2 Demonstration 1: Slope and Width Map
Our first demonstration showcases our system’s capability to visual-
ize the slope and width information of navigable spaces. Figure 2-A
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Figure 2: (A) The slope gradation map indicates the degree of slope which must be overcome to access each area. (B) The
proximity map shows the available clearance between a position and a barrier to travel.

Figure 3: (A) illustrates areas accessible to wheelchair users, while (B) depicts cases where wheelchair access may be restricted.

shows the slope gradation map, indicating how our system inter-
prets terrain slope. Figure 2-B shows the proximity map, illustrating
how it gauges proximity to impassable objects. Specifically, colored
areas in the slope gradation map indicate spaces where specific
mobility is needed. Each color represents successively increasing
slopes that must be surmounted to access that area. Conversely,
the proximity map represents the proximity to impassable barriers.
Each color indicates the clearance available if a user were to try to
access the area.

As shown, our system can filter both the slope gradation and
proximity maps to highlight areas that align with the user’s mobility
needs. This unique capability allows users to understand and plan
their routes better, based on their requirements. Consequently, this
could contribute to creating a more inclusive and accessible urban
environment.

3.3 Demonstration 2: Adaptable Navigation
Scenario

Figure 3 illustrates how our system identifies accessible areas tai-
lored to specific mobility requirements. Yellow and green show pass-
able spaces for able-bodied pedestrians, but wheelchair users may
be able to access only green spaces. For these computations, we de-
fined user-specific mobility capabilities: the pedestrian needs a 0.5m
width and can pass up to 50-degree slopes, while the wheelchair
user needs a 1.5m width and can handle up to 10-degree slopes.

Figure 4 envisions how our system could shape future navigation
by offering individualized route suggestions. For instance, a curb
ramp on the sidewalk, too narrow for wheelchair users requiring at

least 1.5m in width, prompts the suggestion of a detour (transition-
ing from the red path to the blue one in Figure 4). While our current
system automatically identifies impassable objects, including vege-
tated areas, it lacks the ability to discern permissible spaces (e.g.,
private property, vehicle-only roads). Hence, we manually exclude
such areas from navigation.

Figure 4: Contrary to existing navigation systems, our system
offers the potential to suggest routes specifically tailored to
a user’s mobility needs. The blue path in the figure indicates
a route deemed passable for wheelchair users.

4 LIMITATIONS AND FUTUREWORK
Our proposed system, while innovative, is still evolving and has
several challenges that need addressing. These include:

• Permissibility Understanding: Our current system, while
able to assess physical accessibility from 3D surfaces, doesn’t
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discern permissibility like pedestrian vs. vehicle routes or
public vs. private property.

• Slope Calculation: The system uses the Sobel operator to
provide pixel-level slope estimates. However, this method
does not distinguish between uphill and downhill gradients.

• Route Optimization: Our current system finds accessible
areas but lacks automated navigation or route optimization
feature.

• Data Quality and Scalability: Our system’s performance
hinges on the quality of airborne point clouds, with factors
like noise and tree occlusions potentially affecting outcomes.
Although UAV-based systems provide superior precision and
detail, their scalability is limited. Airborne LiDAR data, on
the other hand, offers greater scalability but may deliver
lower point density and precision (Figure 5). Additionally,
auxiliary optical imagery might be necessary to discern non-
accessible vegetated areas, particularly under tree canopies.

Figure 5: (A) Google Maps, the slope gradation maps from
(B) UAV-based system and (C) airborne LiDAR-based system.
While the airborne LiDAR-based system holds promise for
its scalability, it may necessitate auxiliary optical imagery
to mask vegetation.
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