Experimental Crowd+AI Approaches to Track Accessibility Features in Sidewalk Intersections Over Time

ATHER SHARIF, Allen School of Computer Science, University of Washington, asharif@cs.uw.edu
PAARI GOPAL, Allen School of Computer Science, University of Washington, paarig@cs.uw.edu
MICHAEL SAUGSTAD, Allen School of Computer Science, University of Washington, saugstad@cs.uw.edu
SHIVEN BHATT, Allen School of Computer Science, University of Washington, shivbat@cs.uw.edu
RAYMOND FOK, Allen School of Computer Science, University of Washington, rayfok@cs.uw.edu
GALEN WELD, Allen School of Computer Science, University of Washington, gweld@cs.uw.edu
KAVI DEY, Seattle Academy High School
JON E. FROEHLICH, Allen School of Computer Science, University of Washington, jonf@cs.uw.edu

How do sidewalks change over time? Are there geographic or socioeconomic patterns to this change? These questions are important but difficult to address with current GIS tools and techniques. In this demo paper, we introduce three preliminary crowd+AI (Artificial Intelligence) prototypes to track changes in street intersection accessibility over time—specifically, curb ramps—and report on results from a pilot usability study.

CCS CONCEPTS • Human-centered computing → Accessibility → Accessibility systems and tools

Additional Keywords and Phrases: Mobility, disability, sidewalks, crowdsourcing, machine learning, change tracking

ACM Reference Format:

1 Introduction

In 1990, the US passed the Americans with Disabilities Act (ADA) [1] requiring that public infrastructure—including sidewalks and street crossings—be accessible. Yet, more than 30 years later, cities struggle to meet accessibility requirements, often only pursuing large-scale sidewalk renovations in response to civil rights litigation such as in New York [12], Seattle [9], and Los Angeles [18]. Observing these challenges and to help stimulate and structure ADA renovations and city planning, in 2015, the US Federal Highway Administration requested that local governments develop sidewalk ADA transition plans, including an inventory of accessibility barriers and a description of accessible renovations [25]. In a recent study of 401 municipalities, however, only 54 (13%) had published plans and only seven met the minimum ADA criteria [7].

Such findings reflect the challenge in making infrastructure accessible. Viable solutions require substantial political, economic, and technical investment—training, resources, community involvement, specialized tools, and the work and coordination of multiple governmental agencies [19]. And there is a lack of open tools, techniques, and datasets to
track how urban infrastructure is becoming more or less accessible. To help understand how sidewalks are changing, where resources are being invested, and whether governments are acting on ADA requirements, our research group is developing new spatio-temporal tracking tools to analyze, visualize, and study changes in urban accessibility over time. While our current focus is on the US, tracking sidewalk accessibility is of interest to cities across the world [8]. With our tools, we hope to support overarching research questions such as: How does sidewalk infrastructure change over time? What are the spatiotemporal patterns of change? How do these changes correspond to socioeconomic and demographic factors? Where does inaccessibility persist? As a preliminary step towards addressing these questions, we introduce three new experimental crowd+AI (artificial intelligence) prototypes for semi-automatically tracking changes in street intersections, specifically curb ramps (or "curb cuts")—Figures 1-3. While curb ramps are only one part of accessible urban infrastructure, they are critical to mobility and required by the ADA [29]. Moreover, prior work has found that trained computer vision (CV) models can detect curb ramps at higher accuracy than surface degradations or sidewalk obstacles [11,27], making curb ramps a good starting place for initial crowd+AI work.

Studying and characterizing spatiotemporal patterns of urban change from remote imagery is a longstanding thread in the urban- and geo-sciences [13,23,28]. Recent developments in CV, specifically deep learning, and the widespread availability of historic street-level imagery have enabled new urban change detection techniques [3,5,15,21,26]. However, limited work exists on applying these techniques to urban accessibility to characterize how and where sidewalks are changing. Below, we describe design considerations for tracking accessibility-related changes in street intersections, three preliminary crowd+AI prototypes, and results from a pilot usability study with five users. During the ASSETS demo session, we will provide interactive demonstrations of our prototypes, solicit feedback from attendees, and guide discussion about open challenges and the future of sidewalk “change tracking” tools.
UI Design Considerations for Tracking Changes in Sidewalks

In brainstorming and working on initial prototypes, we developed the following design considerations:

Humans struggle with change detection. Studies in perceptual psychology have consistently found that humans perform poorly in identifying differences between images [17,22]. How can we create tools that help humans identify and label accessibility features in time-series imagery while mitigating these perceptual effects [22]?

Leverage temporal similarity. Unlike general street scene labeling tasks [6,16], we are interested not just in identifying objects in a single snapshot but tracking these objects over time. How can we leverage structural similarities in time-series photography to create efficient and accurate labeling interfaces?

Combine AI + human labeling. Similarly, how can humans + machine learning work together to maximize labeling efficiency and accuracy [4,14]? How should AI-based detections and uncertainty be represented to humans? Can the underlying ML model also leverage similarities across time-series images?

Interactive training. Ultimately, to scale our approach, we will deploy our interfaces to crowdworkers who likely have minimal experience with sidewalks, curb ramps, and advanced labeling interfaces. How can we develop interactive training UIs that allows our users to quickly learn and perform accurately in our tasks?

Three Crowd+AI Interfaces for Tracking Curb Ramps Over Time

Towards these considerations, we have developed three early-stage interactive prototypes for tracking changes in street intersections over time, which differ in the amount of simultaneous time-series imagery shown, how labels propagate from one time-series snapshot to the next (using a derivation of linked editing [24]), and how we incorporate a deep learning model for automatic curb ramp detection (from [27]). Rather than ask users to detect changes, users find and label curb ramps in each image. To improve labeling efficiency, we leverage similarities across time shots to auto-propagate labels through linked editing and CV. Each prototype begins with a step-by-step tutorial to train users on the task and the interface. Prototype details with example screenshots are shown in Figures 1-3.

For our historic street scene dataset, we use Google Street View’s “time machine” feature, which provides high-resolution street-level panoramas dating back to 2007 captured every ~1-3 years. Our test set consists of 100
intersections drawn from Washington DC and Seattle (50 each). The DC dataset contains an average of 6.4 time-series images per location ($SD=1.7$) while Seattle has 7.8 ($SD=2.6$). The first capture dates are 2008 and the last are 2019 (while our research is ongoing, this initial test dataset was created in 2019).

4 Pilot Usability Study

To assess the usability and understandability of our prototypes and to prepare for larger web-based deployments, we conducted an in-person “think aloud” usability study with five participants (ages 20-45; all had technical backgrounds). Sessions were ~50 minutes. To simulate the experience of using the prototypes in an online deployment, we provided limited instruction and, instead, asked participants to follow the interactive tutorials.

Findings. While users were appreciative of the step-by-step tutorials, some aspects of label propagation, and the promise of CV-assisted labeling, we found important areas for future work. First, participants wanted more information on how they should label—the size of their bounding boxes, pixel-level precision, etc. Second, participants were confused about label propagations—should they trust them or modify them? Because auto-propagations only work in one direction (labeling is propagated backwards but not forwards through time) and because only some operations are supported (additions but not deletions), users did not have a strong understanding or confidence in this feature. Finally, though the automatic CV detections (visualized as red squares) were deemed helpful in drawing attention to curb ramps, participants felt that it was too often incorrect and thus distracting (though one participant enjoyed “outperforming” the AI).

5 Conclusion and Future Work

In this demo paper, we introduced three novel crowd+AI tools aimed at rapidly labeling and tracking changes in sidewalk accessibility features over time. In addition to addressing results from our usability study, we aim to support
richer qualitative labels about how curb ramps are changing (e.g., tactile strips, flares, steepness) and other accessibility-related labels for crosswalks [2], accessible pedestrian signals [10], and street/sidewalk surfaces [20]. We also plan to conduct a larger-scale deployment study to further assess our tools and progress towards public deployment, like Project Sidewalk [20], for tracking changes in urban accessibility infrastructure across cities and creating open “change tracking” datasets.

ACKNOWLEDGMENTS

This work was partially funded by the USDOT Pacific Northwest University Transportation Center (PacTrans) and the UW Center for Research and Education on Accessible Technology and Experiences (CREATE).

REFERENCES

[1] United States Department of Justice Civil Rights Division Ada.gov. Introduction to the ADA.
[18] Emily Alpert Reyes. 2015. L.A. agrees to spend $1.3 billion to fix sidewalks in ADA case. Los Angeles Times.

