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ABSTRACT 

Previous work has explored scalable methods to collect data 

on the accessibility of the built environment by combining 

manual labeling, computer vision, and online map imagery. 

In this poster paper, we explore how to extend these methods 

to track the evolution of urban accessibility over time. Using 

Google Street View’s “time machine” feature, we introduce 

a three-stage classification framework: (i) manually labeling 

accessibility problems in one time period; (ii) classifying the 

labeled image patch into one of five accessibility categories; 

(iii) localizing the patch in all previous snapshots. Our 

preliminary results analyzing 1633 Street View images 

across 376 locations demonstrate feasibility.  
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INTRODUCTION 
Recent work has explored scalable methods to identify and 

characterize accessibility features in the built environment 

using remote crowdsourcing, machine learning, and online 

map datasets (e.g., Google Street View (GSV) [5, 7, 11], 

satellite photographs [1]). For example, Tohme [7] combines 

computer vision with web-based crowd work to semi-

automatically label curb ramps in GSV. While accurately 

finding and assessing accessibility features in map imagery 

is still an active research area, in this poster paper, we begin 

to explore a related but even more data-intensive process—

how to semi-automatically track the evolution of urban 

accessibility over time using historical map data (Figure 1).  

Our work builds on decades of past research in urban studies, 

geography, and ecology, which analyze temporal changes in 

land use from remote sensors. Typically, however, the focus 

is on macroscopic trends (e.g., urbanization [8, 14, 18], 

deforestation [13]), which do not require the detailed sensing 

of small entities that our work requires (e.g., light poles, curb 

ramps). In addition, rather than rely on satellite images, we 

use the historical omnidirectional panoramic imagery found 

in GSV’s “time machine” [4]. With the emergence of large-

scale image sets and an interest in vision algorithms to 

support autonomous vehicles, computer scientists have also 

begun to develop techniques to detect and model urban 

change [2, 9, 12]. Our techniques are informed by these 

approaches but with a distinct focus on tracking accessibility. 

Our contributions include: (i) a preliminary examination of 

using GSV’s “time machine” as a data source for tracking 

(in)accessible pedestrian infrastructure over time; (ii) an 

initial three-stage classification framework for labeling and 

categorizing accessibility features through time; (iii) a 

preliminary study validating our approach. 

FEASIBILITY STUDY 

To examine the feasibility of our approach, we created a test 

dataset, implemented a classification framework, and 

performed initial validation. Based on [6, 11], we track five 

classes of sidewalk features: accessible sidewalks (i.e., no 

problems), accessible curb ramps, missing curb ramps, 

objects in path, and surface problems. 

Dataset  

We built our dataset by randomly selecting locations in 

Washington DC and Maryland, examining the GSV imagery 

to identify accessibility features, and then using “time 

machine” to capture historical panoramas. As we are 

primarily interested in how accessibility features change 

over time, we iteratively diversified the dataset to include 

locations where features: (i) changed over time; (ii) persisted 

over time; or (iii) were occluded in at least one time period 

(e.g., by a passing car), making it difficult to track temporal 

changes. For each location, we captured a screenshot of all 

available images across time and recorded GPS coordinates, 

Street View URL, capture timestamp, and the camera’s yaw, 

pitch, and field-of-view.  
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Figure 1. In this paper, we examine the feasibility of using Google Street View’s “time machine” feature [4] and basic computer vision algorithms to track 

changes in urban accessibility over time. For each location, accessibility problems are manually labeled in the most recent Street View image (blue outline) 

then are automatically back propagated through time (red outlines) to track and discover potential changes. In the example here, an object in the pedestrian 

path has persisted over time to the most recent data (2014), while a sidewalk surface problem from 2007 was resolved by 2009.  

 

https://doi.org/10.1145/3234695.3240999


In total, the dataset includes 1633 images at 376 locations 

(332 in DC; 44 in Maryland), 90% of which contain at least 

one accessibility problem; see Table 1. While Google does 

not publish how often they update GSV imagery, the dataset 

includes 4.3 snapshots on average per location (SD=1; 

range: 2–9). The dataset was collected in 2015, with image 

timestamps roughly every two years back to 2007. As 

snapshots can occur at slightly different camera positions due 

to differences in the Google car position, we manually 

aligned the images at each location—a process that will need 

to be automated in the future. 

 Missing 
ramps 

Objects  
in path 

Surface 
problems 

Accessible 
Sidewalks 

Curb  
ramp Total 

Per Location 52 96 123 35 70 376 

Per Image 231 449 374 285 267 1606 

Table 1. Our study dataset broken down by category. Per Location refers to 

the existence of an accessibility feature in at least one snapshot; Per Image 

represents category counts across all images (regardless of location or time). 

Approach 

Our initial approach employs a three-stage framework: 

manually outlining an accessibility feature in a single time 

period, categorizing the outlined feature, then back 

propagating that label through time. For this feasibility study, 

we used Matlab’s built-in Image Labeler and Computer 

Vision Toolbox System.  

Stage 1: Manual Labeling. For the most recent image at 

each location, we manually draw bounding boxes around 

identified accessibility features (similar to [6]). Example 

image patches are shown in Figure 2.  

Stage 2: Categorizing Image Patches. To categorize the 

image patches, we use a Bag of Visual Words (BoVW) 

approach [3]—a common image classification technique 

inspired by natural language processing. BoVW works by 

extracting local descriptors that are repeatable and invariant 

to image transformations (e.g., translation, scaling) and 

building a “visual vocabulary” by clustering features into 

visual words (analogous to words in text documents). A 

supervised machine learning model—in our case, a multi-

class SVM—can then be trained to classify feature vectors 

into categories. 

Stage 3: Detecting Objects through Time. While BoVW 

provides a robust approach to categorize pre-segmented 

image patches, it cannot be used to localize accessibility 

features in previous snapshots. For this, we use Matlab’s 

built-in implementation of the Viola-Jones cascade object 

detector [17] with Histogram of Oriented Gradients (HOG) 

input features—similar to Tohme [7]. For training, we 

provide a large set of negative examples (image patches that 

do not contain accessibility features) and positive examples 

(image patches with accessibility features). While the 

number of classifier stages is a function of dataset size, we 

found that 12-15 stages performed best. We trained five 

object detectors for the five accessibility categories. To 

improve accuracy and speed, we reduce the search area of 

the sliding window to within 300 pixels of the original Stage 

1 bounding box (as the x,y pixel location does not change 

significantly across time given our manual alignment). 

Preliminary Experiments and Results 

We first evaluate the performance of the category classifier 

(Stage 2) before analyzing the full three-stage framework. 

Category Classification. To evaluate the performance of 

our image patch classifier alone, we used k-fold cross 

validation (k=5; each fold consisted of 326 image patches). 

Overall, our classification performance varied from 66.3% 

for missing curb ramps to 97.3% for objects in path, which 

is consistent with prior work [7]. See Table 2. 

System Evaluation. To evaluate the performance of our 

classifier and object detector combined, we randomly split 

our dataset (per location) into 70% training (N=264) and 

30% test (N=112). The input for each location is the 

bounding box from Stage 1. To measure correctness, we 

examined whether the image patch was correctly categorized 

and found in previous images at each location. Overall, our 

approach was able to find 77% of the labeled accessibility 

features (recall) in historical images with a precision of 78%. 

Missing curb ramps again fared worse: 63% recall and 58% 

precision most likely because they lack strong discriminant 

visual features. Due to the manual alignment of historical 

images, these results should be considered preliminary.  

DISCUSSION AND CONCLUSION 

The long-term goal of this work is to develop accurate and 

scalable methods for tracking how urban accessibility 

changes over time. With the resulting temporal datasets, our 

hope is to enable new data-driven research inquiries such as: 

what geo-spatial and socio-economic factors seem to 

correlate with changes in urban accessibility? How do 

temporal patterns of urban accessibility compare across 

cities in the US and beyond? What are the appropriate 

models and metrics to capture this change? Can we build 

predictive models of accessibility evolution? While our early 

results demonstrate feasibility, we plan to build a larger test 

dataset and conduct a more comprehensive evaluation, 

integrate state-of-the-art deep learning methods for object 

identification, and experiment with methods to reduce 

manual labeling requirements. 
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Missing 
ramp 

Objects in 
path 

Surface 
problem 

Access. 
sidewalk 

Curb ramp 

Missing ramp 66.3% 1.6% 0.1%   12.6% 

Objects in path   97.3%     0.6% 

Surface problem 12.8%   81.4% 14.1% 3.3% 

Accessible sidewalk 11.7%   17.2% 85.7% 9.3% 

Curb ramp 10.2% 1.1% 0.3% 0.2% 74.2% 

Table 2. A confusion matrix of Stage 2 performance. 

 

Figure 2. Example image patches extracted in Stage 1. 
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