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Welcome to GeoQA*3. This is a choropleth map of population density

in the U.S. You can ask me questions like:
Focusing on lllinois.

What's the population density in New Jersey?

Is there a pattern on this map?

Illinois has 229.81 people per square mile.

What's the relationship between population and income?

Ask GeoQA*3 Ask GeoQA*3

What's the population density here?

/N
< viD -+
Go to lllinois. Showing county level data in North Carolina.
Which county has the highest population density?
Mecklenburg County in North Carolina has the

highest population density, with 2130.23 people per
square mile.

Ask GeoQA"3

Figure 1: We introduce GeoQA?3, a novel accessible Al-based question-answering system for geovisualizations designed for
screen-reader users. (A) Through a custom query pipeline, we combine geo-statistical analysis with an LLM to balance accuracy
and performance. (B) Users can navigate the map through natural language commands or keyboard controls and (C) zoom in to
view county-level data. The AI Chat system is context-aware, taking into account user interactions. See video for demonstration.

Abstract

Geovisualizations are powerful tools for analyzing and interpret-
ing spatial data; however, they are historically inaccessible to
screen-reader users. We introduce GeoQA3, an Accessible Al-based
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Question-Answering (QA) system to enable blind users to perform
geo-spatial analytics. GeoQA3 relies on a custom QA pipeline that
combines map interactions with chat questions to form queries and
uniquely combines geo-statistical analysis with LLM-based sum-
maries. In a remote lab study with six screen-reader users, we found
that participants successfully employed diverse querying strategies
for spatial analysis and highly valued the AT Chat component for its
interactive responses. During the ASSETS demo session, attendees
will use GeoQA3 to explore two key questions, mirroring our user
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study: potential biases in digital access in the US and how energy
sources differ geographically across the US.
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1 Introduction

Interactive map visualizations, or geovisualizations, are powerful
tools that allow users to discern and analyze patterns, trends, and
relationships in spatial data [1, 23]. Despite their importance, most
geovisualizations are inaccessible to screen-reader users due to
their inherent reliance on spatial data and visual form [6, 21, 22].
Even when accessibility features such as alt text and data tables are
available, they do not capture the full analytical and interpretive
potential of geovisualizations [8, 11].

While recent work like AltGeoViz [12] offer dynamic alt text
for geovisualizations based on user selections and zoom, these ap-
proaches remain largely descriptive, akin to "map reading" rather
than "map analysis" [13]. Our goal is to support deeper spatial analy-
sis—allowing screen reader users to identify patterns, relationships,
and geometric characteristics that are crucial for insight building
and interpretation [15, 16]. Emerging question-answering (QA) sys-
tems for geovisualizations such as MapQA [4] and VoxLens [19-21]
are an important step but rely on keyword matching or rigid rule
sets, limiting interactive queries.

In this demo paper, we introduce GeoQA3, an accessible Al-based
question-answering system for geoanalytics. Through a custom
interactive query pipeline that combines geo-statistical analysis
with an LLM, GeoQA? uniquely supports seven analytical query
types for screen reader users, including: retrieve, compare, find
extrema, sort, filter, compute derived values, and cluster by val-
ues [10]. Moreover, GeoQA? specifically handles geospatial queries
for spatial patterns [18], spatial relationships, and geometric char-
acteristics. To ease interaction, users can fluidly switch between
keyboard-based navigation and conversational commands for map
exploration. GeoQA? was designed iteratively using co-design with
two screen-reader users and drawing on design principles from QA
literature, including disambiguating deictic references [9, 10] and
supporting general/contextual queries [8, 10]). See video demo.

To evaluate GeoQA3, we conducted a user study with six screen-
reader users asking participants to perform exploratory data analy-
sis for two tasks: (1) distributing digital equity funding based on
underserved populations and lack of digital access, and (2) identify-
ing predominant energy sources in different regions and explaining
potential reasons. We found that participants successfully employed
diverse querying strategies for spatial analysis, valued the chat com-
ponent for its informative and clear responses, and highlighted the
system’s navigation autonomy, while also identifying areas for
improvement in navigation complexity and answer specificity.

In summary, we contribute: (1) GeoQA3, a novel LLM-powered
interactive QA system for accessible geoanalytics; (2) an initial
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validation with six screen-reader users demonstrating effectiveness
and important areas for future work. During the ASSETS’25 demo
session, attendees will be invited to use GeoQA3 to analyze our two
study datasets (digital equity, U.S. energy sources), interact with
our custom QA pipeline, and discuss future work.

2 The GeoQA? Prototype

GeoQA? is composed of two primary components: (1) a screen-
reader compatiable UI with an interactive map and an Al-based chat
that supports analytical, geospatial, visual, and contextual queries;
(2) a custom QA pipeline that combines map interactions with chat
questions to form queries and uniquely combines geo-statistical
analysis with LLM-based summaries. GeoQA%’s frontend is imple-
mented in Mapbox]S and React.js, and the backend in Python’s
Flask framework. For the LLM, we use GPT-40-mini, which bal-
ances computational efficiency and performance [17]. We begin by
describing the QA pipeline as it is a central technical contribution
of our work.

2.1 QA Pipeline

Our custom QA pipeline consists of four components (Figure 2):
Input Classifier, Query Refiner, Scope Assessor, and Query Processor.
We used few-shot prompting with LLMs for all pipeline compo-
nents (rather than fine-tuning) due to its high performance in tra-
ditional classification tasks [3, 7]. See Supplementary Materials for
the prompts.

Input Classifier. Upon receiving user input, GeoQA3 first de-
termines whether to perform an action command or information
query. Action commands, such as “Pan to Minnesota” or “Zoom to
Minneapolis” trigger direct map manipulation while information
queries proceed to Query Refiner for further processing.

Query Refiner. Because natural language queries can be am-
biguous, the Query Refiner addresses (1) location ambiguity, where
deictic references such as “here” or “this state” are resolved using
the current map focus or previous conversation, e.g., “What’s the
population density here?” when a specific state is highlighted; and
(2) topic ambiguity, where pronouns like “that” or “it” are resolved
using conversation history, e.g., “How does that compare to Ohio?”
where “that” refers to previously discussed population density.
Some queries exhibit both ambiguity types, e.g., “How does it com-
pare to its neighbors?” where “it” refers to a previously discussed
metric and “its” refers to the focused state.

Scope Assessor. Following disambiguation, GeoQA3 evaluates
whether the query falls within the scope of local processing capa-
bilities: within-scope queries proceed to the Query Processor for
classification and local operations, while beyond-scope ones are
routed to GPT-40-mini. For example, queries requesting Idaho’s
population density are resolved using local datasets when such
data is available, whereas queries about Idaho’s median household
income are routed to GPT-40-mini when income data is not present
in our local repository.

Query Processor. The Query Processor classifies the query type
according to Kim et al’s visualization query taxonomy [10] (ex-
tended for geovisualization interactions): map actions, analytical
queries such as retrieval, comparison, or aggregation; geospatial
queries such as pattern or outlier detection; visual queries such
as color, shape, or spatial relationship queries; contextual queries
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Figure 2: The QA pipeline consists of four components: Input Classifier, Query Refiner, Scope Assessor, and Query Processor
and uniquely combines geostatistical analyses with LLM output to produce accurate calculations with explanatory summaries.

such as visualization concept queries (e.g., “What is a choropleth
map?") or general knowledge queries (e.g., “Is there a relationship
between income and population density?"). Crucially, for both ana-
lytical and geospatial queries, we conduct analyses locally without
the LLM—this ensures both valid and efficient responses. For ana-
lytical queries, GeoQA3 executes appropriate local operations on
the dataset such as sorting, clustering, comparison. For geospatial
queries, GeoQA3 conducts spatial statistical analysis by (1) comput-
ing global Moran’s I [14] to identify overall spatial autocorrelation
patterns, then (2) calculating Local Indicators of Spatial Association
(LISA) clusters [2]. Rather than showing raw statistical output, we
use GPT-40-mini to produce interpretable summary explanations.
Queries that fall outside these types are processed by GPT-4o0-mini.
Output Generation. Finally, we output results through coor-
dinated updates to both the map and Al chat. Geospatial analyses
are visualized as an additional map layer showing LISA clusters
represented as colored outlines on the map, providing visual con-
firmation of the patterns described in the textual response.

2.2 User Interface

GeoQA?’s Ul is composed of a map visualization and an AI Chat
subsystem—both feed into the QA pipeline. Screen readers parse the
map and messages and convey them through audio to participants.

Interactive Map Though customizable for other regions, our
current map visualization includes state- and county-level repre-
sentations. To start map interactions, users can press and
then to focus on a state as well as arrow keys to move between
states. Since the four cardinal directions are insufficient to represent
all possible spatial relationships (e.g., both Ohio and Indiana are
north of Kentucky), we developed a custom algorithm to select at
most one neighboring state for each cardinal direction. The algo-
rithm: (1) identifies adjacent states by detecting shared boundaries,
(2) determines cardinal directions between states by comparing
their centroids, and (3) selects the closest neighbor in each cardinal
direction for each state. For states with complex geometries and
atypical centroid positions, we implemented manual adjustments to
ensure natural navigation (e.g., New York, DC, Rhode Island). When
users attempt to navigate in a direction where no neighboring state
exists, the system indicates the boundary condition, e.g., “There is
no state south of Texas”. Once focused on a state, users can press
to zoom in to county-level data. The system automatically focuses
on the county closest to the state’s centroid, after which similar
arrow key navigation becomes available at the county level. Users
can return to the state-level view by pressing the (=) key.

AI Chat The Al chat interface follows conversational Ul design
standards while accommodating screen-reader interaction. Users
can toggle focus between map and chat by using [Ctrl + M]. Upon
focus, GeoQA3 announces, “Type your question here, press enter to
submit.”. Following question submission, the system repeats the
user query followed by a status indicator (“Looking for answers...”).
Users can navigate to previous conversation history by using (Tab).
repeats the most recent system response while maintaining
the input field focus.

When AI Chat first loads, we provide an introduction to GeoQA3
and provide three selectable example geoanalytic questions. Below
these examples, a More Suggestions button (accessible via [Ctrl + I])
refreshes the question set, cycling through a list of 12 predefined
example questions. Al Chat also displays contextual questions that
extend beyond the immediate dataset, e.g., “What is a choropleth
map?”. For additional assistance, users can ask “What else can you
do?” to retrieve supported query types. The shortcut dis-
plays a comprehensive list of navigation commands.

Map and Chat Synchronization To support a tightly inte-
grated, holistic interactive experience, the map and chat compo-
nents are bidirectionally synchronized. When users query specific
geographic entities through AI Chat, the system automatically up-
dates the map to provide relevant spatial context. For example,
when a user asks about a single state’s value (e.g., “What is the
population density of Illinois?”), the map centers on Illinois and
highlights the boundary (Figure 1B). Beyond queries, GeoQA3 also
responds to explicit navigation commands in natural language, such
as “Take me to Wyoming”, “Focus on Cook County, Illinois”, or “Go
to Sacramento”, by immediately updating the map focus accord-
ingly. Moreover, GeoQA® maintains contextual awareness of the
user’s current map focus during free exploration, enabling implicit
geographic referencing in AI Chat. For example, when focused on
Colorado, users can ask “What’s the population density here?” or
“What are the neighboring states?”.

3 User Study

To evaluate GeoQA3, we conducted a 90-120 min remote user study
with six screen-reader users. Participants were completely blind
(ages 25-64), used JAWS or NVDA screen readers, and had limited
geovisualization experience. As the first Al-based accessible geoan-
alytic system, our study goals were twofold: first, to explore what
types of queries do screen reader users make when interacting with
an accessible geovisualization; and second, to examine how well the
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current GeoQA3 prototype supports these queries, builds appro-
priate mental models of the underlying data, and leads to accurate
insights and takeaways. All study sessions were audio and video
recorded and we used a combination of measures to address our
research goals.

Study Tasks. After a brief tutorial, participants were asked to
perform two geoanalytical tasks. For both tasks, we emphasized
interest in studying participants’ analytical approaches and not
their derived answers. In Task 1, participants were asked to imagine
themselves as decision-makers responsible for distributing State
Digital Equity Planning Grant funding across states—a task adapted
from the U.S. Census on mapping digital equity, which originally
contained inaccessible geovisualizations'. Participants were told to
select both a single state and a cluster of four to six geographically
contiguous states most deserving of funding allocation. For Task
2, we adapted a Washington Post news article entitled “U.S. Home
Heating is Fractured in Surprising Ways”? into GeoQA3. Participants
were asked to identify predominant heating fuel sources in different
U.S. regions and consider potential explanations for these patterns.

Findings. Overall, participants found GeoQA3 to be a valuable
tool for engaging with geovisualizations, demonstrating map read-
ing, analysis, interpretation, and navigation. They unanimously
rated the chat component as 7/7, highlighting its effectiveness in
providing information. Participants employed diverse query strate-
gies, including ranking, sorting, comparing, and inquiring about
geographic patterns and spatial relationships, often relying on a
combination of verbal queries and key navigation. The system ef-
fectively supported basic map reading and facilitated the recall of
geographic knowledge, with participants describing responses as
“very informative”, “clear and concise”, and “very accurate”. GeoQA3
also enabled BLV users to interpret complex spatial data, facilitating
a deeper understanding of patterns and relationships and allowing
them to query across datasets for more specific insights.

While promising, participants also identified important areas for
future work. They requested enhanced navigation beyond cardi-
nal directions and more specific responses with source attribution.
Moreover, they suggested future domains of interest including the
interpretation of election maps, accessing news-related informa-
tion, and understanding resource distribution, with half of them
requesting continued access to the system post-study.

4 Discussion and Conclusion

In this demo paper, we introduced GeoQA3, a novel accessible Al-
based question-answering system for geovisualizations designed
for screen-reader users. Our study revealed key insights into how
LLM-based QA systems can support screen-reader users in explor-
ing and analyzing geovisualizations. While GeoQA3 demonstrates
potential, we also observed areas for improvement. For instance,
participants sometimes misinterpreted spatial patterns, such as in-
correctly identifying states with the highest values, necessitating
additional queries about spatial relationships to confirm connec-
tions. Furthermore, traditional cluster identification methods like
Moran’s I have inherent limitations in fully representing patterns

!https://www.census.gov/library/stories/2022/05/mapping-digital-equity-in-every-
state html
Zhttps://www.washingtonpost.com/climate-environment/interactive/2023/home-
electrification-heat-pumps-gas-furnace/
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that might be more intuitively understood through other means.
Future work should explore advanced pattern detection approaches
such as incorporating estimate errors.

While participants generally trusted GeoQA>’s answers, they
lacked straightforward methods to verify responses. This under-
scores the importance of communicating uncertainty and providing
source attribution for Al-generated information [5]. Additionally,
our study revealed that successful interaction often required a de-
gree of data literacy from participants, who sometimes struggled
with query formulation (e.g., asking about "fuel” instead of "heating
fuel"), which returned results about automotive fuel rather than
household energy. This highlights a clear need for dynamic guided
prompting, where GeoQA3 proactively clarifies user intent during
the querying process.

Finally, screen-reader participants expressed a strong desire for
more direct manipulation capabilities, such as the ability to select
multiple states simultaneously for comparison and analysis. This
interest reflects a broader challenge inherent in purely language-
based interfaces.
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