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Figure 1: We contribute ARSports, a near real-time wearable stereo AR system to enhance sports playability for people with low 
vision composed of: (1) first-person basketball and tennis image datasets, which we manually collected and annotated; (2) accom-
panying fine-tuned instance segmentation models; and (3) a wearable AR research prototype that overlays visual augmentations 
(i.e., instance segmentation masks) in an LV user’s residual field-of-view. 

ABSTRACT 

People with low vision (LV) experience challenges in visually 
tracking balls and players in sports like basketball and tennis, which 
can adversely impact their participation and health. We introduce 
ARSports, a wearable AR research prototype that overlays instance 
segmentation masks in near real-time for improving sports acces-
sibility. To create ARSports, we manually collected and annotated 
novel first-person perspective sports datasets, fine-tuned instance 
segmentation models using this labeled data, and built an initial 
wearable AR prototype by combining the ZED Mini stereo cam-
era with the Oculus Quest 2 VR headset. Our evaluations suggest 
that combining real-time computer vision and augmented reality to 
create scene-aware visual augmentations is a promising approach 
to enhancing sports participation for LV individuals. We contribute 
open-sourced egocentric basketball and tennis datasets and mod-
els, as well as insights and design recommendations from our pilot 
study with an LV research team member. 

Index Terms: augmented reality, accessibility, visual augmenta-
tion, computer vision, sports 

1 INTRODUCTION 

Low vision (LV) individuals face unique challenges in sports and 
exercise, which can negatively impact participation as well as phys-
ical and mental health [1, 11, 13, 22, 3, 32, 30]. Competitive ball-
based sports like basketball, tennis, and soccer, for example, involve 
fast-moving objects such as balls and players that are difficult to 
visually identify and track [30]. However, prior HCI studies have 

largely focused on improving how blind or low vision (BLV) people 
watch sports [26, 8, 14, 15, 27], rather than enabling their participa-
tion. While some research has examined camera-based assistance 
for casual non-ball games [18, 19] and exercise video games intro-
ducing ball sports to LV people [25, 24, 29, 28, 31], a significant 
gap remains in developing real-time wearable AR-assisted vision 
to empower LV individuals to play ball sports independently [20]. 

In this paper, we explore how augmented reality (AR) glasses 
and computer vision (CV) may enable broader sports participa-
tion for LV individuals. We introduce ARSports, a wearable AR 
prototype for supporting LV people to play ball-based sports us-
ing near real-time instance segmentation and visual augmentation 
(Figure 1). To create ARSports, we: (1) manually collected and 
labeled novel egocentric basketball and tennis image datasets; (2) 
fine-tuned instance segmentation models on these datasets; and (3) 
constructed a wearable stereo AR prototype capable of displaying 
visual augmentations in near real-time (∼20-25 FPS). Our work 
bridges the fields of HCI and CV: existing sports datasets [6, 7, 21] 
and models [12, 10, 33] are often designed for third-person views, 
and current off-the-shelf AR headsets like the Microsoft HoloLens 
2 do not support long-range real-time depth sensing, both of which 
have prevented the use of AI-powered AR in sports scenarios. 

To address these limitations, we first recorded first-person 
point-of-view basketball and tennis 1080p@30fps videos using 
a HoloLens 2 headset. We then selected critical frames with 
YOLOv8 [16] followed by manual filtering, and labeled them using 
Roboflow1 equipped with the Segment Anything Model (SAM) [17]. 
This resulted in a dataset of 5,412 egocentric sports images (2,430 
basketball images and 2,982 tennis images). We then fine-tuned RT-
MDet [5], a state-of-the-art instance segmentation model2 on our 

1 https://roboflow.com 
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datasets. Finally, to help LV sports players identify key objects, 
we implemented near real-time AR visual augmentations using an 
Oculus Quest 2 virtual reality (VR) headset3 combined with a ZED 
Mini stereo camera4 for depth estimation. 

To evaluate our approach, we conducted two studies: first, a tech-
nical performance evaluation of our fine-tuned segmentation mod-
els, which shows the effectiveness of fine-tuning for targeted tasks 
versus the base RTMDet model. Then, we conducted a pilot eval-
uation with an LV research team member on actual basketball and 
tennis courts. He interacted with our wearable AR prototype for 30 
minutes per sport, then shared his feedback and design suggestions. 
Preliminary findings suggest that ARSports is effective in helping 
LV people visually perceive various sports elements such as play-
ers, balls, and nets. Our LV research team member emphasized 
the need for simple designs to ensure visual augmentations do not 
interfere with an LV person’s remaining visual field-of-view. 

In summary, our key contributions include: (1) open-sourced 
first-person basketball and tennis image datasets, as well as ac-
companying fine-tuned instance segmentation models; (2) a re-
search prototype for wearable AR capable of tracking and visu-
ally augmenting different elements of basketball and tennis such 
as balls and players; and (3) findings from a pilot evaluation with 
an LV research team member. To enable others to build off our 
work, we open-sourced our datasets and models here: https: 
//github.com/makeabilitylab/ARSports. 

2 SYSTEM IMPLEMENTATION 

We first explain our methods for collecting and annotating egocen-
tric image datasets in basketball and tennis, followed by how we 
fine-tune instance segmentation models to these datasets and gener-
ate visual augmentations in stereo AR. By augmenting LV people’s 
residual field-of-view with instance segmentation results, we aim to 
enhance the visual saliency of different sports elements to provide 
a better sense of shape, contour, location, and depth. 

2.1 Data Collection and Annotation 

To address the lack of first-person sports recordings, we first man-
ually assembled egocentric sports datasets by collecting and anno-
tating video recordings captured from a first-person perspective. 

2.1.1 Data Collection 

Our custom ARSports image datasets currently feature two sports: 
basketball and tennis, which were selected due to their popularity 
and the presence of fast-moving elements such as balls and players. 

We instrumented a player with a Microsoft HoloLens 2 head-
set to actively engage in each sport and collect video recordings 
(1080p@30fps). We chose a commercially-available AR headset 
over more sophisticated cameras like a GoPro because the latter 
produces high-resolution, stabilized video that does not accurately 
represent the video capture capabilities of AR headsets and user’s 
constant head motion when playing sports. For basketball, a player 
wearing the HoloLens performed various common tasks such as 
shooting, passing, dribbling, defending, and being defended in an 
indoor 3 vs. 3 basketball game. Tennis data was collected from 
three 1 vs. 1 rallies, where players executed ground strokes, volleys, 
serves, and return of serves. We then carefully trimmed irrelevant 
parts from the recordings, such as the player interacting with the 
HoloLens to start and stop video capture, and compiled the clips 
into approximately an hour of footage for each sport. 

To extract images from the finalized basketball and tennis video 
footage, we first utilized YOLOv8 [16] to find frames with a sports 
ball, skipping 20 frames each time one is found to reduce redun-
dancy. Then, we manually removed repetitive, excessively blurry, 

3 https://www.meta.com/quest/products/quest-2/ 
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and non-informative frames. This process resulted in a total of 
1,431 first-person basketball images and 1,754 first-person tennis 
images. Lastly, we blurred people’s faces using the CenterFace al-
gorithm [34] to ensure anonymity. 

2.1.2 Data Annotation 

We labeled the extracted frames using Roboflow1 , an online tool for 
annotating, training, and optimizing CV models, and the included 
Segment Anything Model (SAM) [17]. For basketball, we labeled: 
people, basketball, hoop, and backboard. For tennis, we labeled: 
people, tennis ball, net, and racket. The polygon annotations were 
initially done by SAM, which we then adjusted manually. We em-
pirically ignored objects that were too blurry to label. 

To handle occlusion (e.g., a basketball can obscure parts of a 
person or a tennis net can cover a person’s leg), we employed the 
following heuristic (Figure 3): (1) an object fully split by another 
object is treated as a single annotation with correct layering (e.g., 
if a basketball fully splits a person, the person is labeled using one 
polygon annotation, and the basketball is in a layer above the per-
son); (2) parts of an object that are occluded by another object but 
still visible are included in the annotation (e.g., a tennis player’s 
legs are often behind the net, but still visible, and so the legs are 
included in the person’s polygon annotation); and (3) parts at the 
ends of an object fully occluded by another object are not included 
in the annotation (e.g., if a tennis player’s shoes are not visible be-
cause they line up with the top of the net, then the person’s polygon 
annotation stops at their ankles). 

After annotating, discussing, and cross-checking amongst the re-
search team, we applied several image transformations including 
crop with 0% minimum zoom and 40% maximum zoom, rotation 
between -15° and +15°, brightness between -15% and +15%, blur 
up to 2.5px, and noise up to 0.1% of pixels, and the images were 
adjusted to fit a 640x480 resolution (i.e., MS COCO [23] average 
image resolution), resulting in the final dataset of 5,412 total im-
ages: 2,430 basketball and 2,982 tennis. 

2.2 Fine-tuning an Instance Segmentation Model 
As we aim to display visual augmentations in real-time, we ex-
perimented with approaches that can deliver both speed and accu-
racy. We chose to fine-tune the RTMDet model [5], specifically 
its RTMDet-Ins-l variant, on our datasets, as it is a state-of-the-art 
real-time instance segmentation model2 trained on the MS COCO 
dataset [23], promising accuracy up to 43.7% mask AP and speeds 
up to 271 FPS on an NVIDIA 3090 GPU. 

2.2.1 Fine-tuning RTMDet 
We chose to fine-tune RTMDet rather than train it from scratch 
to make it work for our smaller, class-specific dataset. To 
achieve this, we utilized the fine-tuning pipeline provided by the 
MMDetection library [4], a PyTorch-based open-source toolbox 
for object detection. We began with a pre-trained RTMDet-Ins-l 
model, froze its backbone, modified the model configuration file 
to match our label classes, and then trained it on our basketball 
and tennis datasets. These customized models, dubbed RTMDet-
Ins-l-Basketball and RTMDet-Ins-l-Tennis respectively, underwent 
training for 150 epochs using a batch size of 4 on a single 
CUDA-enabled NVIDIA 4080 GPU. We show inferencing results 
of RTMDet-Ins-l-Basketball and RTMDet-Ins-l-Tennis on images 
from the validation subset of our datasets in Figure 2. We also 
open-sourced our datasets and model weights, as well as our fine-
tuning steps, giving researchers the tools to expand ARSports. 

2.2.2 Model Evaluation 

To evaluate RTMDet-Ins-l-Basketball and RTMDet-Ins-l-Tennis, 
we compared their performance against the base RTMDet-Ins-l on 
our sports datasets. We used MMDetection’s [4] model testing 
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Figure 2: Example inference results of RTMDet-Ins-l-Basketball (left) and RTMDet-Ins-l-Tennis (right) on validation images from our datasets. 

Figure 3: Our annotation heuristic: (1) A basketball fully splitting a person is labeled with the person as one polygon and the basketball on a 
layer above, (2) A net occluding parts of a visible player is labeled with the person as one polygon and the net on a layer above, (3) A person’s 
feet are fully occluded, so the person polygon stops at the ankles. 

Model Name mAP AP@50 AP@75 

RTMDet-Ins-l (COCO) 0.437 0.660 0.470 

RTMDet-Ins-l (tennis dataset) 0.284 0.483 0.266 
RTMDet-Ins-l-Tennis 0.419 0.656 0.37 

RTMDet-Ins-l (basketball dataset) 0.211 0.348 0.219 
RTMDet-Ins-l-Basketball 0.569 0.878 0.576 

Table 1: Evaluation of our fine-tuned instance segmentation models. 
RTMDet-Ins-l-Tennis and RTMDet-Ins-l-Basketball achieves superior 
performance across all metrics on our egocentric sports datasets, 
outperforming the state-of-the-art RTMDet-Ins-l model. For refer-
ence, we also include RTMDet-Ins-l results on the COCO dataset. 

pipeline, which conducts evaluations using the test subset of a given 
dataset. With Roboflow, we generated a test set of 145 basketball 
and 175 tennis images with an 82-12-6 train-validation-test split. 

Accuracy in instance segmentation tasks is typically assessed us-
ing three key metrics: segmentation mean average precision (mAP), 
AP at a 50% Intersection over Union (IoU) threshold (AP@50), 
and AP at a 75% IoU threshold (AP@75) [9]. IoU, integral to 
these metrics, measures the overlap between predicted segmenta-
tion masks and the ground truth, providing a direct indication of 
spatial alignment accuracy. Both RTMDet-Ins-l-Basketball and 
RTMDet-Ins-l-Tennis outperform the RTMDet-Ins-l baseline on 
our sports datasets across mAP, AP@50, and AP@75 (See Table 1). 

2.3 Generating Visual Augmentations 

With our fine-tuned models, we built a wearable stereo AR proto-
type that can overlay instance segmentation masks on top of sports 
elements in near real-time (∼20-25 FPS). To generate visual aug-
mentations in 3D space, we built a custom stereo video-see-through 
AR system by combining a ZED Mini stereo camera4 with an Ocu-
lus Quest 2 VR headset3 , as current AR headsets like the Microsoft 
HoloLens 2 do not support long-range real-time depth sensing. Our 

research prototype streams image frames to an external server over 
TCP, performs instance segmentation using our fine-tuned mod-
els, converts the resulting JSON into a Protocol Buffers message 5 , 
streams this message back to ZED, deserializes the message back 
into JSON, creates ZED-compatible textures (colored overlays), 
and performs depth estimation to position the visual augmentations. 
See Figure 4. 

Figure 4: System diagram of ARSports showing how data flows be-
tween an AR headset and an external server. 

3 PILOT EVALUATION 

To further evaluate our models and research prototype, we con-
ducted a pilot study with an LV research team member, who played 
basketball and tennis while wearing our system. He has no light 
perception in his left eye and a visual acuity of 20/400 in his right 
eye. He played each sport for 30 minutes (Figure 5), then pro-
vided feedback regarding the usability and design considerations of 
a wearable AR system aimed at enhancing sports playability for LV 
people. We report preliminary findings below. 

Overall, our LV research team member highlighted ARSports 
as “effective,” “helpful,” “reasonably fluid,” and “full of potential.” 
Despite technical challenges such as latency and inconsistent track-
ing, ARSports is the most advanced AR and CV solution he has 
tried for fast-paced tasks like playing basketball and tennis. He en-
visions that a system like ARSports will promote sports participa-
tion among LV individuals by empowering them to better visually 
perceive balls, teammates, and relevant sports equipment. From a 

5 https://protobuf.dev 
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Figure 5: Example images from the first-person view of our LV research team member playing basketball and tennis while using ARSports. We 
cover different plays that commonly occur in each sport. 

Figure 6: Proposed designs sketched by our LV research team member. He emphasized simple designs with customization options. 

design perspective, displaying whole instance segmentation masks 
for sports components is impractical, as they obstruct crucial parts 
of objects and his remaining field-of-view. For example, applying 
a solid polygon mask over the basketball hoop and net impedes the 
view into the hoop. In tennis, a large net polygon obscures most of 
his visual field, hence we had to disable it during our evaluation. 

Our LV research team member suggested two primary improve-
ments: (1) creating simple visual augmentations to lower occlu-
sion and cognitive load; and (2) maximizing user customization. 
When playing tennis with ARSports, he noted “Desaturating large 
graphics preserves general visibility for me. For example, the ten-
nis net perhaps shouldn’t be highlighted entirely because it covers 
too much of my remaining field-of-view. Instead, a line at the top 
of the net is sufficient for understanding how high I need to hit the 
ball to make it over the net.” 

To control how much screen space visual augmentations should 
cover, he suggested defining “visual pressure” of rendered graph-
ics: “I recommend defining a measure for ‘visual pressure’, which 
could be the ‘total weight’ of rendered graphics on screen or even 
total augmented pixels for a given frame. This serves as a minimum 
and maximum for rendering amount.” Additionally, he emphasized 
the importance of customization options like colors, which shapes 
to render, and visual pressure threshold. “For example, in tennis, 
users with an acuity of 20/200 may benefit from seeing the silhou-
ettes of other players. However, those with an acuity of 20/800 may 
benefit from an even more abstracted depiction of others, such as 
rectangular estimates of key features like head and racket. Not ev-
eryone needs perfect polygon segmentation masks.” 

He concluded by saying “I think simplicity actually affords the 
most utility for low vision people.” He then sketched design recom-
mendations, which we converted to mockups in Figure 6. 

4 FUTURE WORK AND CONCLUSION 

In this paper, we introduce ARSports, a significant advancement 
over prior work in aiding low vision sports play via real-time CV 
and visual augmentations. We contribute first-person perspective 
basketball and tennis image datasets, instance segmentation models 
fine-tuned on these datasets, and a wearable AR research prototype 
that overlays visual augmentations in an LV person’s residual field-
of-view. A preliminary evaluation with an LV research team mem-
ber suggests that merging CV and AR technologies can effectively 
enhance the playability of sports for LV individuals, but should be 
carefully designed to not add visual clutter. 

For future work, (1) our RTMDet-Ins-l-Tennis model occasion-
ally fails to detect tennis balls, highlighting the need for a larger 
dataset [2] and the selection of more suitable models; (2) we need 
improved real-time object tracking and depth sensing to ensure 
more consistent visual augmentations; and (3) we need to study 
a wider range of augmentation designs, from basic shapes and out-
lines to more intricate masks, to accommodate users’ diverse vision 
levels. We invite the community to explore ways to improve first-
person sports playability for people with different abilities. 
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