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Figure 1: An example interaction with GazePointAR. The user’s query “What is this?” is automatically resolved by using
real-time gaze tracking, pointing gesture recognition, and computer vision to replace “this” with “packaged item with text
that says orion pocachip original,” which is then sent to a large language model for processing and the response read by a
text-to-speech engine.

ABSTRACT
Voice assistants (VAs) like Siri and Alexa are transforming human-
computer interaction; however, they lack awareness of users’ spa-
tiotemporal context, resulting in limited performance and unnatural
dialogue. We introduce GazePointAR, a fully-functional context-
aware VA for wearable augmented reality that leverages eye gaze,
pointing gestures, and conversation history to disambiguate speech
queries. With GazePointAR, users can ask “what’s over there?” or
“how do I solve this math problem?” simply by looking and/or point-
ing. We evaluated GazePointAR in a three-part lab study (N=12):
(1) comparing GazePointAR to two commercial systems, (2) exam-
ining GazePointAR’s pronoun disambiguation across three tasks;
(3) and an open-ended phase where participants could suggest and
try their own context-sensitive queries. Participants appreciated
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the naturalness and human-like nature of pronoun-driven queries,
although sometimes pronoun use was counter-intuitive. We then
iterated on GazePointAR and conducted a first-person diary study
examining how GazePointAR performs in-the-wild. We conclude
by enumerating limitations and design considerations for future
context-aware VAs.
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1 INTRODUCTION
Voice assistants (VAs) are transforming human-computer inter-
action. In a recent study of 2,000+ people [65], 72% of respon-
dents indicated that they use VAs for tasks such as playing music,
setting timers, controlling IoT devices, and managing shopping
lists [6, 8, 78]. While widespread and useful, state-of-the-art VAs
like Amazon Alexa, Google Assistant, and Apple Siri do not yet
consider a user’s spatiotemporal context, which can result in unnat-
ural dialogue or unanswerable queries [6]. For example, the query
“What is that?” requires the VA to understand what “that” refers
to—a problem known as pronoun disambiguation [18]. Despite their
prominence in human speech [23], pronouns are not well supported
by current VAs.

To resolve pronoun ambiguity, humans employ a variety of con-
textual clues, including eye gaze, pointing, and conversation his-
tory [23]. For example, a person may physically gesture at an item
in a store and ask “How much is this?” While straightforward for
a human to resolve, current VAs are unable to answer this query
precisely because they lack spatiotemporal context. Pronoun dis-
ambiguation and multimodal input have a rich history of research
in HCI [71, 84]—perhaps best marked by Bolt’s visionary “Put That
There” system in 1980 [9] and beyond [17, 44, 92]. With recent ad-
vances in machine learning, speech recognition, and large language
models (LLMs), new approaches are now possible. For example,
emerging context-aware VA prototypes such as WorldGaze [60],
Nimble [83], and TouchVA [47] examine how to use head gaze, point-
ing, and touch to resolve ambiguous queries. While promising and
informative to our own work, these prototypes share similar limi-
tations: they useWizard-of-Oz (WoZ) setups [19], are accompanied
by tightly-controlled lab studies vs. open-ended queries, employ
only one additional modality alongside speech, and are designed
for smartphones rather than always-available head-worn displays.

In this paper, we introduce GazePointAR, a context-aware VA for
wearable augmented reality (AR), which uses eye gaze, pointing
gestures, and conversation history to support pronoun disambigua-
tion. If a user’s spoken query contains a pronoun, we process the
user’s field-of-view using real-time computer vision, automatically
extract objects and written text in the scene, and generate a new
coherent query phrase that is sent to OpenAI’s GPT-3 [70] for pro-
cessing. The response is then verbally read using speech synthesis.
Pronouns are replaced using an empirically-tuned heuristic model
that incorporates CV results based on gaze and pointing. For exam-
ple, when asking “How much is this?” while looking at a bottle of
mango juice (Figure 2), GazePointAR extracts information such as
object type, brand name, and flavor name to generate “How much
is a bottle with text that says Naked Mighty Mango 290 Calories?”.

To evaluate GazePointAR and explore the potential of context-
aware VAs in wearable AR, we conducted two studies. First, we
performed a three-part qualitative laboratory study with 12 par-
ticipants to compare GazePointAR to two state-of-the-art query
systems (i.e., Google Voice Assistant and Google Lens) (Part 1) and
examine GazePointAR’s usability and performance across various
scenarios (Parts 2 & 3). For example, participants searched for the
price difference between two salt boxes (e.g., “Can you compare
the price between these two?”). In Part 3, we invited participants to

brainstorm and try their own queries to further assess how context-
aware VAs may be used in the future and how well GazePointAR
currently supports such uses. Participants primarily used gaze to
ask a diverse range of queries, from retrieving object information to
foreign language translation, andwere impressed by GazePointAR’s
ability to include their gaze to resolve queries. Participants also
noted limitations, such as only capturing gaze data once after a
query is spoken, the inability to handle queries with multiple pro-
nouns, lack of AI explainability, and object recognition errors.

Informed by these findings, we created a second GazePointAR
prototype with improved object recognition and phrase generation
techniques using prompt engineering, and conducted a follow-
up first-person diary study [22]. Here, the first author used Gaze-
PointAR in their daily life for five days and recorded a written
diary of usage, reflections, and observations of both successes and
failures. In 20 hours of usage (4 hrs/day), the first author used
GazePointAR across various contexts from cafes and restaurants to
shopping malls and cinemas, and posed 48 queries, including rec-
ommendations for allergy-friendly menu items, ratings of movies,
and cheaper alternatives to expensive clothing. Although the first
author found GazePointAR to be more natural, instinctual, and
robust against complex-to-describe objects in the real world than a
traditional VA like Siri, they also encountered similar limitations as
the study participants, such as static gaze data and limited object
recognition capabilities, as well as privacy concerns with using a
speech- and camera-based system in public.

In summary, our contributions include: (1) a fully-functional,
context-aware VA for wearable AR that uses real-time computer vi-
sion and LLMs for pronoun disambiguation and more natural query
dialogue; (2) findings from two user studies, including how users
instinctively generate context-sensitive queries, how GazePointAR
performs on queries from different scenarios, and limitations such
as continuously tracking gaze information and AI explainability;
and (3) a discussion on how to design future context-aware VAs
that support any natural query a user poses spontaneously.

2 RELATEDWORK
We provide background on pronoun usage in speech before enu-
merating relevant literature in multimodal interaction with a focus
on voice assistants and augmented reality.

2.1 Pronoun Usage in Speech
Pronouns are frequently used in human speech, both in conver-
sations between humans and in task-oriented dialogue systems—
computational systems that complete tasks described in natural
language. Leech et al. ranked the frequency of 100 million spoken
English words showing that pronouns, including demonstrative
pronouns (e.g., “this,” “that,” “these,” “those,” “here,” and “there”) and
third-person pronouns (e.g., “it,” “he,” “him,” “she,” “her,” “they,” and
“them”) all ranked in the top 200 [48]. As further evidence, By-
ron and Allen annotated a corpus of task-oriented dialogues and
found that over one-third of 1,068 dialogue turns contained ref-
erential occurrences of pronouns “it” and “that” [13]. Similarly,
HCI studies have highlighted the importance of pronouns in hu-
man speech as they contribute to enhancing its naturalness and
expressivity [9, 42, 47] and that users desire to communicate to
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VAs using pronouns [34]. To resolve pronoun ambiguity, humans
rely on multimodality such as looking at or pointing at referents
while speaking and conversational context [23]. In our work, we
investigate real-time gestures, eye gaze, and conversation history
to enable pronoun disambiguation in human-VA interaction.

2.2 Multimodal Interaction
The HCI community has long been interested in multimodal inter-
action, highlighting various benefits such as improved naturalness,
robustness, and expressiveness compared with unimodal interac-
tion techniques [71, 84]. For instance, researchers explored gaze as
a multimodal input technique in mobile devices to address short-
comings of touch, such as slow interaction speed, limited reach on
large screens, and impreciseness on small screens [26, 28, 43, 58, 76].
Additionally, gestures and speech have often been combined with
gaze to improve the accuracy of gaze-alone systems [15, 62]. In our
work, we rely both on gaze and, if identified in the visual frame,
pointing gestures to resolve speech ambiguities. Many consumer
products now support multiple modes of input, which allow users
to interact using both touch and speech. Although the field of mul-
timodal input is vast [71, 84], for the purposes of this paper, we
focus primarily on its use in voice assistants and augmented reality.

2.2.1 Multimodal Interaction with Voice Assistants. The integra-
tion of speech with additional input modalities has long been a
topic of interest in HCI. For example, Bolt’s foundational “Put That
There” explored the use of speech and gestures as input [9]. Further
research has expanded on this idea by examining other input modal-
ities, such as gaze pointing [92], pen and voice interaction [17, 46],
and merging speech, gestures, and eye gaze [44]. More recently,
researchers have examined multimodal speech and gaze interac-
tions in the context of hands-free communication between humans
and vehicles [4, 64, 82], as well as speech and gestures to support
natural interactions with virtual objects in AR [36, 50, 77]. Others
have explored AR-based WoZ VA prototypes that support more
natural dialogue between users and VAs by employing gaze [60],
touch [47], or gestures [83] alongside speech. The importance of
multimodality in the design of voice user interfaces is widely ac-
knowledged [1, 23] because it enables flexible, expressive, natural,
and contextual human-VA communication [9, 32, 42]. Our work
aims to contribute to this literature by implementing and evaluating
a fully-functional multimodal VA with ambiguous speech support.

2.2.2 Multimodal Interaction in Augmented Reality. In AR specif-
ically, multimodal interaction is frequently employed to improve
object selection and manipulation, typically using hand gestures,
gaze, and/or voice [35, 89]. For instance, both Olwal et al. and Pium-
somboon et al. used speech as a supplement to gesture for improved
object selection in AR [67, 77]. Additionally, Kytö et al. used both
head motion and eye gaze to increase the efficiency and accuracy
of target selection in AR [45]. Furthermore, Lystbæk et al. used
eye gaze to assist mid-air gestures with distant object selection in
AR [57]. Lastly, Liao et al. used gestures and speech to generate
and interact with AR presentation augmentations [50]. Similarly,
GazePointAR employs hand gestures to support gaze with a goal
of enhancing real-world object selection.

Most relevant to our work, recent research has explored multi-
modal interaction in AR for pronoun disambiguation. More specifi-
cally, when a multimodal VA receives an ambiguous query, such as
“When does this store open?”, AR is used to analyze various visual
contexts, including objects, texts, gaze, and gestures. For instance,
Mayer et al. presented WorldGaze, a WoZ smartphone-based multi-
modal VA that leverages head gaze information to clarify ambigu-
ous queries [60]. Others have explored touch [47] and pointing
gestures [83] to resolve ambiguity. Each modality has tradeoffs:
head gaze is quick and hands-free but can be inaccurate [60], touch
is accurate but slower and not hands-free [47], and gestures fall in
between the two modalities [83]. In this work, we employ a combi-
nation of gaze supported by pointing gestures to create a efficient,
mostly hands-free, and accurate input modality for speech disam-
biguation. We evaluate this in a fully-functional VA for wearable
AR in various contexts.

2.2.3 Other Uses of Gaze, Pointing, and Speech in Wearable AR.
We conclude by highlighting recent studies that, while not em-
ploying gaze, pointing gestures, and speech as multimodal interac-
tion techniques, present novel applications for each of these input
sources in wearable AR. For instance, researchers have used eye
gaze to design AR interfaces that adaptively control the display
of information based on context, including its timing, placement,
and volume [52, 56, 75, 80]. Additionally, hand gestures are often
classified using machine learning to enable more natural object
and UI manipulation [72, 86, 91]. Furthermore, wearable AR glasses
have been used to caption, translate, and augment speech in a non-
intrusive way [29, 37–39, 53, 61, 66, 73, 80, 87]. GazePointAR, while
multimodal, is influenced by this prior work in wearable AR for
enhanced interaction and context.

3 GAZEPOINTAR PROTOTYPE 1
To advance the naturalness and economy of expression in how
humans interact with VAs, we designed and built GazePointAR—a
fully-functional context-aware VA for AR glasses that uses eye gaze,
pointing gestures, and conversation history to support pronoun
disambiguation. Below, we describe GazePointAR’s design and
implementation, starting with a taxonomy of pronoun usage drawn
from linguistics literature.

3.1 Taxonomy of Pronoun Use and Resolution
To design GazePointAR, we first examined commonly-spoken pro-
nouns in human speech and referent resolution strategies. We ana-
lyzed Leech et al.’s ranked frequency list of 100 million spoken Eng-
lish words [48] and filtered to pronouns spoken at least 500 times
per one million words. From this process, we extracted thirteen
pronouns across three distinct groups of pronouns, all of which
GazePointAR supports: nominal demonstrative pronouns: “this,”
“that,” “these,” and “those”, adverbial demonstrative pronouns: “here”
and “there”, and third person pronouns: “it,” “he,” “him,” “she,” “her,”
“they,” and “them”.

Demonstrative pronouns are used to point to specific people or
things and can be further broken down into nominal and adver-
bial [25]. In human conversations, gaze and/or pointing gestures are
often used for referent disambiguation [23]. While demonstrative
pronouns such as “this” and “that,” “these” and “those,” and “here”



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Lee, et al.

and “there” seem similar, humans naturally employ one based on
relative distance from the speaker to the referent [23]. For example,
a person may ask “How much is this?” when referring to a nearby
object and “How much is that?” if the object is further away.

For third-person pronouns, “it” may function as an anaphoric,
which refers to a word used previously in a phrase such as “I have
a bicycle. It is red.”; pleonastic, which is the use of more words than
needed to express meaning either unintentionally or for emphasis
such as “kick it with your feet.; or as an event reference such as
“He lost his job. It came as a total surprise.” [54]. When resolving
the anaphoric or pleonastic “it,” humans need prior conversation
history, while for event reference, “it” can be used interchangeably
with “this” or “that” [33, 54]. For other third person pronouns,
humans often refer to entities such as other people or animals
with “he” or “her”, for example, but these pronouns must be used
cautiously, as they can introduce gender bias [14].

Grounded in this analysis, we designed a taxonomy of frequently-
spoken pronouns and how ambiguity from each pronoun can be
resolved. When implementing GazePointAR, we adhered closely to
this taxonomy, enabling our system to handle all thirteen pronouns
and determine their referents based on gaze, pointing gesture, and
conversation history.

3.2 System Implementation
We designed and implemented GazePointAR for the Microsoft
HoloLens 2 with Unity 2021.3.16f11 and Mixed Reality Toolkit
(MRTK) 2.8.22. While our overarching vision is to develop an al-
ways available context-aware VA for lightweight AR displays, the
HoloLens 2—despite its bulk—allowed us to rapidly prototype an
implementation.

We designed GazePointAR to resemble the user experience of a
commercial VA such as Apple Siri or Amazon Alexa. GazePointAR
waits for a user to say “Hey Glass” and make a verbal query. If the
user’s query contains one of thirteen pronouns in our taxonomy, it
analyzes the user’s field-of-view using various machine learning
(ML) solutions, constructs a coherent phrase to describe the user’s
referent, replaces the pronoun with its referent, and sends the
modified query to a large language model (OpenAI’s GPT-3 [70]).
The query response is vocalized to the user using a text-to-speech
engine within 10 seconds. See the system diagram in Figure 2.
We expand on key components below. As a rough examination
of system response time, we asked the query “How much is this?”
while gazing at a bottle of mango juice (a tutorial task) ten times.
GazePointAR responded in 7.51 ± 0.45 seconds. We include sub-
component performance times from this same procedure below.

Activating GazePointAR. To activate GazePointAR, the user
states “HeyGlass.” For this, we implemented a continuously-running
background process checking for the trigger phrase. Upon recogni-
tion, GazePointAR replies, “Hi, I’m listening.” and waits for a spoken
query. After the query, GazePointAR performs a substring search
to check for pronouns from our taxonomy.

Capturing and analyzing the user’s field-of-view. If the
query contains a pronoun, GazePointAR prompts the HoloLens
to take a 1080p photo of the user’s field-of-view. For user and

1https://unity.com
2https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2

bystander privacy, the captured image is stored temporarily and
deleted once a query response is received. This process takes 2.27±
0.16 seconds to complete.

Once the user’s field-of-view is captured, we begin analyzing the
image for objects, texts, and faces. We send the captured image to
three MLmodels through asynchronous POST requests to minimize
runtime:Google Cloud Vision’s (1)Object Localization and (2)Optical
Character Recognition (OCR) models [16], as well as (3) Amazon
Rekognition’s Celebrity Recognition model [7]. This process takes
3.37 ± 0.23 seconds to complete.

After receiving JSON responses from the ML services, Gaze-
PointAR identifies hierarchical relationships between the detected
objects, faces, and texts. We treat the object detection and celebrity
recognition results as the parent layer. The child layer, comprised
of OCR results, is connected to parent bounding boxes that have at
least 70% pixel overlap (a threshold tuned empirically). Each parent
can have up to five OCR results, ranked by bounding box size. This
ensures that GazePointAR prioritizes important textual informa-
tion, such as product and brand names, which tend to be larger
in the user’s field-of-view, while ignoring less important, smaller
details like promotional blurbs. For example, as shown in Figure 2,
when a user asks “How much is this?” while holding a bottle of
Naked Mighty Mango juice, possible parent layer objects include
“person” and “bottle”, with “bottle” having child layer objects such
as “Naked”, “Mighty”, “Mango”, “290”, and “calories”.

Gaze tracking and gesture recognition. To capture the user’s
eye gaze and pointing gesture, we customized MRTK’s built-in gaze
and pointer modules. For gaze, we designed a white sphere that
follows the user’s gaze from a fixed distance (i.e., 2 meters) and is
overlaid in their field-of-view. This allows us to retrieve 3D gaze
coordinate data and also provides visual feedback to the user about
their system-inferred gaze.

For pointing, we implemented a finger-pointing gesture to sup-
plement the base palm-pointing gesture, since extending the arm
and index finger is a more typical pointing gesture [23]. Performing
a pointing gesture creates a ray that extends away from the user’s
hand until a collision with an object in the physical world occurs.
To achieve this, we integrated MRTK’s spatial awareness into Gaze-
PointAR to detect collisions between user inputs and spatial meshes
generated in real-time.

As the HoloLens captures an image, GazePointAR simultane-
ously logs the locations of both the user’s gaze and pointing gesture.
To convert 3D gaze and pointing gesture coordinates to their corre-
sponding pixel locations on the captured image, we use projection.

Query assembly and pronoun replacement. Using the ML-
generated results and pixel coordinates of gaze and pointing ges-
ture, GazePointAR assembles a coherent phrase to replace the user-
spoken pronoun. To accomplish this, we employ a state diagram,
which encompasses the differences in pronouns in our taxonomy.

If a pronoun is singular, GazePointAR computes whether any
input coordinates fall within any parent (i.e., object recognition and
celebrity recognition results) bounding boxes. If so, GazePointAR
takes that parent object’s child layer (i.e., OCR results) and creates
the following phrase: “[parent] with text that says [children]”. Oth-
erwise, GazePointAR takes the five nearest child layer texts from
each input coordinate, computes a union, orders them by distance,
and uses the five closest to build the following phrase: “[OCR Result

https://unity.com
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2
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Figure 2: System overview and implementation details of GazePointAR

1] [OCR Result 2] ... [OCR Result 5].” For example, returning to the
price of a Naked Mighty Mango juice in Figure 2, a user is looking
at the “Bottle”, meaning GazePointAR generates the phrase “Bottle
with text that says Naked Mighty Mango 290 calories”.

If the pronoun is plural, GazePointAR expands the gaze and
pointing gesture pixel coordinates into bounding boxes with width
and height equivalent to half of the captured image’s width and
height. Then, GazePointAR computes whether any input bounding
boxes have at least 70% overlap with any parent bounding boxes.
The rest of the procedure is the same as with singular pronouns.

Answering the query. GazePointAR assembles the final query
by combining the user-spoken query, the ML-generated phrase,
and text from the five most recent query-answer pairs. The final
result is processed by OpenAI’s GPT-3 [70], which takes 1.87± 0.43
seconds to complete. The output is displayed as text and read aloud.
If there are no ML results or GPT-3 cannot process the modified
query, GazePointAR responds “Sorry, I did not understand your
question.” Users can ask follow-up questions or provide additional
information appropriately.

4 STUDY 1: THREE-PART LAB EVALUATION
OF GAZEPOINTAR

To evaluate GazePointAR and explore the potential of context-
aware VAs in wearable AR, we conducted two studies: (1) a labora-
tory study to compare GazePointAR to two state-of-the-art query
systems and examine how participants generate and use their own
context-sensitive queries; and (2) a first-person diary study using
GazePointAR in the real world. We report on the first study below.

For the lab study, we sought to address three primary research
questions: (1) How do users initially perceive and use a multimodal,
context-aware VA for pronoun disambiguation? (2) How does per-
formance compare to traditional VAs? (3) What types of queries do
users want to perform with a context-aware VA, and how well does
GazePointAR support these queries? As initial work, our primary

aim was not to quantitatively examine GazePointAR’s performance
but rather to observe how participants reacted to and used a fully-
functional, context-aware query system for AR glasses.

To address these questions, we conducted a three-part, within-
subjects laboratory study with 12 participants. In Part 1, we asked
participants to complete a common query task with GazePointAR
as well as two state-of-the-art commercial systems: Google Voice
Assistant (voice input) and Google Lens (image+text input). In Part 2,
participants completed three additional context-dependent query
tasks with GazePointAR, which were designed to highlight different
aspects in our design space (e.g., pronoun use, gaze, gesture, and
conversation history). Finally, in Part 3, participants brainstormed
and tried their own context-sensitive queries.

4.1 Participants
We recruited 12 participants via mailing lists, social media, and
snowball sampling. Participants were screened via a demographic
questionnaire, which asked about prior experiences with VAs, AR,
and AI chat systems. Given the reliance on gaze and speech in our
study, we filtered participants who indicated visual or auditory
disabilities, have a history of seizures or epilepsy, or are not fluent
in English. All twelve participants indicated at least some previous
experience with VAs, including Amazon Alexa, Apple Siri, Google
Voice Assistant, Microsoft Cortana, and Samsung Bixby. Most (9/12)
had not previously usedAR headsets or glasses—those that did (3/12)
mentioned Google Glass, Microsoft HoloLens, and Meta Quest Pro.
Finally, all participants indicated at least some familiarity with AI
chat systems with six stating that they use them at least once a
week (two participantsmarked never). Most commonly, participants
mentioned ChatGPT (8/12) and customer support chatbots (2/12).

4.2 Procedure
The in-person laboratory study took place on a university cam-
pus and lasted 60 minutes. Instructions were presented orally with



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Lee, et al.

backing slides to improve comprehension. Consent and background
forms were emailed in advance; written consent was taken in per-
son. All sessions were video recorded for post hoc analysis. Because
we were interested in candid reactions, we did not tell participants
that we created GazePointAR.

Tutorial. After consenting, participants completed a short tuto-
rial about each VA system: GazePointAR, Google VA, and Google
Lens. The tutorial order was counterbalanced but the query task
was the same: “Your task is to find the price of this bottle of Naked
Mighty Mango juice” (Figure 2). During the tutorial, participants
could ask questions of the study facilitator and, for GazePointAR,
configure the AR headset fit and calibration. The study commenced
once each participant was comfortable with all three VA systems.

Part 1: Comparing VAs. Part 1’s goal was to examine how
participants constructed queries for a common VA scenario: cook-
ing. Specifically, we asked participants to “find a marinara pasta
recipe that uses this jar of Rao’s Marinara sauce; the more specific,
the better” (Figure 3) using each of the VA systems—which were
again counterbalanced. For each VA system, we encouraged partic-
ipants to construct the query to best leverage the system’s input
modality (e.g., taking a picture for Google Lens, gazing or pointing
for GazePointAR). The search task was deemed complete when the
participant had found, from their perspective, a satisfactory recipe.
After using each VA, participants filled out a System Usability Scale
(SUS) [12, 74] questionnaire and answered interview questions re-
garding their experience. At the end of Part 1, we asked participants
to rank the three systems in terms of perceived intelligence, helpful-
ness, naturalness, and overall preference. We then asked follow-up
questions to justify rankings.

Part 2: Context-sensitive Queries with GazePointAR. While
Part 1 examined differences in query behavior depending on modal-
ity and technology, Part 2 specifically focused on examining context-
sensitive queries with GazePointAR. We asked participants to com-
plete three tasks that, based on our own usage of GazePointAR,
benefited from context-dependent queries and pronoun disambigua-
tion: (1) Write a simple math equation on a sheet of paper and ask
GazePointAR if it is mathematically accurate; (2) Use GazePointAR
to find the cost difference between two items; (3) Use GazePointAR to
find more information about a person in a magazine article (Figure 4).
Again, at the end of Part 2, we asked participants to remark on their
GazePointAR experiences and the additional search tasks.

Part 3: Design Probe and Co-design. Finally, in Part 3, partic-
ipants helped co-design the future of context-aware VA systems.
Using a design probe method similar to Mauriello et al. [59], par-
ticipants first watched five video clips of GazePointAR being used
across diverse scenarios: cooking, math, language translation, re-
cycling materials, and asking if there are dangerous items nearby
(Figure 5). After viewing and discussing the design probe videos,
participants brainstormed and then actually attempted their own
context-sensitive queries—a study task that is only possible with a
fully-functional prototype like GazePointAR.

4.3 Data and Analysis
We analyzed three sources of data: interview transcripts, observa-
tions from the user study sessions, and the post-task questionnaires.
For the qualitative data, we used reflexive thematic coding [10, 11].

The first author, who facilitated all user study sessions, created an
initial codebook by reviewing study transcripts. The entire team
then collaboratively iterated on the codebook while checking for
bias and coverage. With a final codebook consisting of 34 codes, the
first author coded participants’ quotes, after which the team dis-
cussed the resulting themes. While this exploratory study focused
on participants’ reactions to GazePointAR, we also collected quan-
titative data from Part 1 to compare GazePointAR with existing
systems. For SUS scores, we converted survey responses, which are
on a scale of 0-40 when summed, to a range between 0-1003 [12].
We then conducted a Friedman test as an omnibus test with an
appropriate number of Wilcoxon signed-rank tests corrected with
Holm’s sequential Bonferroni procedure for statistical significance.
See Figure 6 for a summary of quantitative results.

4.4 Findings
We report key findings, including howVA inputmodality influenced
perceived performance and query formation, the queries partici-
pants generated using GazePointAR, and successes and failures of
GazePointAR in various scenarios. We denote each participant as
P# (e.g., P1 for participant 1). Quotes have been lightly modified for
concision and clarity.

4.4.1 Part 1: Comparing VAs.
In Part 1, participants completed an open-ended query task to
find a recipe for a specific marinara sauce with the three different
VA systems (Figure 3). We first provide overall reactions before
analyzing query formations, perceived intelligence, naturalness,
and helpfulness, task completion time, and usability.

Overall. Overall, participants preferred using Google VA
(𝑚𝑒𝑎𝑛𝑟𝑎𝑛𝑘 =1.7; SD=0.7) and GazePointAR (1.8; SD=0.9) over
Google Lens (2.6; SD=0.7)—lower is better, range is 1-3. For Google
Lens, participants emphasized that while taking photos was famil-
iar (3/12) and lessened the specificity of their queries compared
to voice-only systems (3/12), manually capturing an image and
supplying written text felt tedious (3/12) and unnatural (2/12). As
P2 stated, “I had to take a picture and then add more information...
It’s like an extra step, right? Is this necessary?”. Similarly, P4 said,
“Google Lens is the most unnatural, because sometimes you have to
type extra context, and I feel like that’s just another hurdle.”. Finally,
the quality of Google Lens’ responses influenced opinions: four
participants were initially guided to a recipe for making marinara
sauce rather than using Rao’s Marinara sauce. Two participants
mentioned losing confidence in Google Lens due to poor responses.

For Google VA, participants appreciated the straightforward
(6/12), quick (4/12), and hands-free (2/12) nature of the system. Ad-
ditionally, four participants emphasized that, compared to Google
Lens and GazePointAR, it was easier to review query responses,
visit different links, and decide on the best answer themselves. As
P5 said, “Google voice assistant displayed a typical Google search
result [on the phone], which gives me a lot of options... clicking into
them allows you to try until you find the recipe that you’re satisfied
with.” Half of the participants also mentioned the familiarity of
Google VA and the results interface. For limitations, participants
noted that Google VA requires queries to be highly specific (4/12),

3(((Q1 + Q3 + Q5 + Q7 + Q9) - 5) + (25 - (Q2 + Q4 + Q6 + Q8 + Q10))) * 2.5
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Figure 3: Cooking scenario and the three VAs used in Part 1 of the study.

Figure 4: Usage scenarios in Part 2 of the study.

Figure 5: Design probes in Part 3 of the study. See supplementary materials for the videos.

necessitates accurate pronunciation of complex words like “Rao’s”
(4/12), and leads to longer queries, which are laborious to say (3/12).
P12 aptly summarized theses issues by stating, “You have to be more
specific and have to say a lot more... I also think that a lot of people
might mispronounce Rao’s.” One participant (P3) felt strongly about
voice-edit capabilities—as Google VA only allows query iteration
through text but not voice-based editing.

Finally, for GazePointAR, participants felt that it was simpler
(8/12) and faster (8/12) to interact with as well as more natural (7/12)
and human-like (6/12) to speak to than Google VA and Google Lens.
In part, this was because participants could reduce the specificity
of their queries with GazePointAR’s context-awareness features.
As P10 said, “When speaking to GazePointAR, I am giving it a voice
input while also interacting with the product that I am talking about.
Perceptually, this is the most natural way of speaking, which is why

we do this when talking to other people as well.”. Another said: “When
you’re talking to someone, you point to or look at something and say
’what is this?’ They can see what you’re pointing to or looking at,
which is exactly what the headset is doing... I was also able to receive
an answer quickly without having to look through web pages.” (P4).
However, the most common criticism (8/12) was that GazePointAR
provided only a single answer rather than an interactive, explorable
list like a traditional search engine. Participants also requested
more transparency from the system about their gaze and pointing
gestures, the image GazePointAR took for scene processing, desired
citations in the query response, and wanted queries to be editable.

Query formations. Beyond overall reactions, we also explored
how participants formed queries with the three systems. When
examining query length, unsurprisingly, the two multimodal sys-
tems had shorter queries on average: Google Lens (avg=1.3 words
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Figure 6: The mean and standard deviation of task time, usability, perceived intelligence, helpfulness, naturalness, and overall
preference. Task Time is in seconds. Usability is 0-100; higher the better. Rankings are 1-3; lower is better. For statistical
significance, one asterisk (*) is 𝑝 < 0.05; two asterisks (**) is 𝑝 < 0.01.

long; SD=0.5) and GazePointAR (avg=6.3; SD=1.8) than Google VA
(avg=8.4; SD=2.2). With Google Lens, all participants took a picture
of the sauce jar then supplied additional text, including “recipe”
(9/12) and “recipe using” (3/12). With GazePointAR, all participants
used the pronoun “this” along with gaze but did not use pointing.
P2 reasoned that “If you’re pointing at something, you have to use
your hand. This implies that you still have use of your hands during
some tasks. Also, because the jar is so close, the system shouldn’t need
pointing to tell what I’m talking about.” Finally, with Google VA, all
participants used proper nouns, including various formations of
“Rao’s homemade Marinara sauce”. Full queries are in Appendix 1.

Perceived intelligence, helpfulness, and naturalness. For
perceived intelligence, participants ranked GazePointAR the high-
est with 𝑚𝑒𝑎𝑛𝑟𝑎𝑛𝑘=1.5 (SD=0.8), followed by Google VA (2.0;
SD=0.7), then Google Lens (2.5; SD=0.7). A majority of participants
(8/12) reasoned that GazePointAR “recognized things I am talking
about just from my gaze and pointing” (P3), while for Google VA and
Google Lens, “instead of it figuring things out itself, I have to provide
everything” (P12). For perceived helpfulness, participants ranked
Google VA the highest with𝑚𝑒𝑎𝑛𝑟𝑎𝑛𝑘=1.3 (SD=0.6), followed by
GazePointAR (2.1; SD=0.7), then Google Lens last (2.7; SD=0.5). Half
of the participants reasoned that Google VA displays multiple op-
tions and images in a familiar UI, which helped them decide on a
satisfactory answer.

For perceived naturalness, participants ranked both Gaze-
PointAR and Google VA highly with𝑚𝑒𝑎𝑛𝑟𝑎𝑛𝑘=1.6 (SD=0.8) and
1.7 (SD=0.5) respectively, followed by Google Lens (2.8; SD=0.6).
Participants generally equated naturalness to the ease with which
the query was constructed (10/12). As P12 said, “I wish I can say
queries with and without pronouns, because whichever comes to mind
first, that’s the one I want to say.” Given the simplicity of the search
task, P5, P11, and P12 indicated that the high specificity demanded
by Google VA is not much of a concern; however, as search queries
become more complex, Google VA can quickly fall behind other
systems. As one example, three participants were unsure how to
pronounce “Rao’s” so felt more comfortable saying “this”. While

seven participants felt GazePointAR was most natural, P12 empha-
sized that humans are conversationally adaptable and have learned
how to speak to modern VAs: “GazePointAR was definitely the most
human-like if we mean most ’natural’ and ’human-like’ in terms of
speaking to another person; however, if we say ’natural’ as in speaking
to a machine, then Google Voice Assistant wins”.

Task completion time. While we allowed participants to de-
fine their own stoppage mark for determining a satisfactory query
answer, task time is still an interestingmetric and central to informa-
tion retrieval [30]. On average, the fastest completion was Google
VA (avg=26.3 secs; SD=12.2) followed by GazePointAR (37.4 secs;
SD=11.6) then Google Lens (60.7 secs; SD=28.3). For both Google
VA and Google Lens, participants primarily spent time clicking and
viewing links to find a satisfactory recipe while with GazePointAR,
participants received a direct answer but were delayed by query and
image processing. To form the query, Google Lens took the longest
as participants had to input both an image and textual content; for
both Google VA and GazePointAR, participants could form queries
hands-free, which increased interaction speed.

System usability. Finally, for the SUS questionnaire, partici-
pants gave Google VA a higher usability score (avg=80.0; SD=14.3)
than Google Lens (66.3; SD=14.8) and GazePointAR (62.1; SD=20.0)—
higher is better, range is 0-100. Various factors influenced usability,
including familiarity with Google suite, autonomy in choosing a
satisfactory answer from Google UI, naturalness in coming up with
and vocalizing queries, and task completion time.

4.4.2 Part 2: Context-sensitive Queries.
While Part 1 explored differences between VA systems, Part 2
focuses specifically on GazePointAR and three context-sensitive
queries: solving a math equation, comparing costs between items,
and finding information about a celebrity (Figure 4). We did not
guide participants in how to complete the queries, so our findings
are based on participants’ initial instincts. For all tasks, participants
chose to use gaze+speech rather than pointing as participants felt
that pointing was unnecessary (7/12) and like extra work (6/12).
In a few instances, participants relied on conversation history; for
example, P1 asked “How much do these cost?”, then, after receiving
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the prices of two items, they asked “What’s the cost difference?”. Be-
low, we report on participants’ query formations and their overall
reactions across tasks.

Solving a math equation. Interestingly, all participants con-
structed this query similarly: using the pronoun “this”, which felt
most natural (9/12). As P10 said, “the equation I wrote is right there,
but I don’t want to say the whole thing out loud... being able to just
look and say ‘this’ and have it read the equation is pretty useful.” All
but one participant preferred using a context-sensitive query and
pronouns compared to vocalizing the whole equation. Some partic-
ipants (5/12) mentioned feeling unsure where to look to properly
capture the equation during their query: “having to keep my gaze
on the equation is more difficult than a jar, since I know I have to fix
my gaze, but I am not sure where I should look” (P3).

Comparing costs between two items. Unlike the math equa-
tion, participants constructed this query using two different pro-
nouns: ten used the pronoun “these” and two used “them”. Cur-
rently, GazePointAR only supports one pronoun per query. Five
participants felt that constructing a comparative query with mul-
tiple pronouns would have felt more natural such as, “Compare
the cost of this to that.” As P1 stated, “when there are exactly two
objects, I feel like I will more likely say ‘this or that’ rather than
‘these’”. Similar to the math task, participants were unsure where
to look to communicate intent (i.e., multiple object referents) with
GazePointAR. Participants also reiterated wanting more system
transparency to understand what GazePointAR was capturing for
the context-sensitive query: “It is impressive that it can figure out
multiple objects, but it will likely be more incorrect when trying to
guess multiple objects I am talking about, so I really want to know
what it thought I meant” (P5).

Finding information about a celebrity. For this task, the
query construction was most varied: five used the pronoun “this’
(e.g., “Who is this?” ), four “her” (e.g., “Tell me about her.” ), and three
“she” (e.g., “Who is she?”. Seven participants specifically mentioned
how helpful pronouns were with this task: “if you are looking at
something you don’t know, like a photo of a person, the only way to
ask a question is by saying ’who is she’ or ’who is he’” (P11).

4.4.3 Part 3: Design Probe and Co-design.
Finally, for Part 3, we showed five video clips of GazePointAR and
then invited participants to co-brainstorm and try their own context-
sensitive queries (Figure 5). Below, we first report on reactions to
our design probe and then describe participant-generated queries
and how well GazePointAR performed.

Reactions to design probes. Overall, participants believed that
GazePointAR has many uses, as many referents are difficult to
describe in words. As P10 said: “although I use voice assistants al-
most every day to play music or something, I now realize that many
things I look at are difficult to clearly describe in text... since with this
people can now input their environment easily, I think it will make
speaking to voice assistants easier in many everyday activities.” P3
was surprised with the range of supported queries. Additionally,
participants expressed a particular interest in the societal impact
examples, such as the hazardous object clip (7/12), which shows an
accessibility example where a user is asking “Anything dangerous
here?” while looking ahead, and the recycling clip (4/12), which

shows a user asking “What goes in these trash bins?”. After view-
ing the hazardous object probe, P5 said, “all you have to do is use
pronouns and it can process objects in a person’s field-of-view... that’s
great for blind people, which I really like.” Participants summarized
that when a visual referent is either unknown or difficult to vocalize,
pronouns become especially useful.

Brainstorming and trying queries. For the co-design task,
participants generated a total of 32 queries—see Appendix 3—and
used gaze (32/32), pointing (6/32), and conversation history (1/32).
Queries in which participants used pointing gestures had pronouns
“that” (4/6), “there” (1/6), and “they” (1/6), which were all referring
to objects faraway from the user. Conversation history was used
when asking follow-up questions to find more information about a
celebrity. Most queries (23/32) were aimed at deriving information
about an object or person, including an object’s name and price,
a location’s distance, and a person’s name and accomplishments.
Other queries included foreign language translation (4/32) like “How
do you pronounce this?”, object comparison (3/32), and to confirm
the correctness of a user’s action (e.g., “Can I put this [trash] in
here [recycling trash bin]?”) (2/32). In analyzing pronoun usage,
participants most commonly used “this” (16 occurrences), followed
by “that” (8), “s/he” or “him/her” (5), and “they” (1).

GazePointAR provided a satisfactory answer for 13 of the 32
queries, including “Who is s/he [person]? What is his/hers [musi-
cian] top hit?” and “What’s happening over there?”. Many of the
unanswerable queries were due to lack of information, such as
limitations in object recognition (e.g., while a object localization
model can recognize a car, it does not know the make and model of
the car) and missing access to information online (e.g., a price of
an item may vary and GPT does not have access to store-specific
information).

Other unanswerable queries were due to GazePointAR’s inability
to handle multiple pronouns in a single query (e.g., “Tell me the
price difference between this and that.”) or past referents (e.g., “Who
was s/he again?”). Participants suggested that GazePointAR should
capture gaze over time. P3 added that this will remove the need
for dwelling on a referent, which will allow users to gaze more
naturally and improve the system’s overall usability. While P10
was in favor of this feature, they also expressed privacy concerns.
P5 went even further and said GazePointAR should record objects
nearby gaze to support scenarios where gaze target is not the object
in question (e.g., “What is the object next to that chair”).

4.5 Study 1 Summary
Participants appreciated GazePointAR for its simplicity, naturalness,
and human-likeness. When using GazePointAR, participants mostly
relied on gaze to keep the interaction hands-free and efficient, while
occasionally using pointing gestures and conversation history. Par-
ticipants preferred to speak pronouns, especially when referents
had difficult-to-pronounce, long, or unknown names. In some cases,
including pronouns in a query felt less natural (e.g., “What can I
make with this?” vs. “What can I make with Rao’s Marinara sauce?”).
In terms of limitations, we found that GazePointAR should support
multiple pronouns, provide more answer options and explanations
when answering queries, use more robustMLmodels, and that users
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Figure 7: A subset of the scenarios participants came up with during Part 3 of Study 1. The top row shows recreations of
answerable queries while the bottom rows highlights example queries that returned unsatisfactory responses.

could tire due to explicit gazing. Participants suggested several fea-
tures for improvement: capturing gaze information over time, com-
municating to the user about captured images, gaze, pointing, and
citations used in deriving answers, and displaying an explorable
search result similar to Google.

5 GAZEPOINTAR PROTOTYPE 2
Informed by Study 1 findings and our own experiences using Gaze-
PointAR, we created a second GazePointAR prototype with three
advancements: first, we replaced Google Cloud Vision’s Object
Localization model with YOLOv8 [41]; second, we redesigned the
multimodal contextual phrase generator using prompt engineer-
ing [79]; third, and finally, we updated the chat completions API to
leverage GPT-3.5. We describe these advancements below and then
discuss our five-day first-person diary study using GazePointAR
version 2 “in the wild” [81].

Updating GazePointAR’s object recognizer. For the initial
GazePointAR prototype, we chose Google Cloud Vision’s Object
Localization model, as it enabled rapid prototyping. However, a key
limitation of this model is that it categorizes an object as “packaged
goods” if it cannot precisely identify the object, which confused both
GPT-3 and our participants. In this iteration of GazePointAR, we
instead employed a state-of-the-art YOLOv8 model trained on the
MS COCO dataset [51] by building a local API server using FastAPI4
and Docker5, and tunneling the local API using Localtunnel6. This
increased the ML services’ runtime to 3.75± 0.31 seconds (+11.28%)
and the overall runtime to 7.94 ± 0.38 seconds (+5.73%).

4https://github.com/tiangolo/fastapi
5https://www.docker.com
6https://github.com/localtunnel/localtunnel

New contextual phrase generator. In GazePointAR v1, our
phrase-generator automatically replaced query pronouns with ML
results using a hierarchical heuristic model. In the revised Gaze-
PointAR prototype, we instead use prompt engineering that lever-
ages GPT, rather than heuristics, to integrate all pieces of infor-
mation together. This enabled GazePointAR v2 to support mul-
tiple pronouns, since the entirety of the original query was cap-
tured in the prompt. For example, if the user asks “I love this cloth.
Who designed it?”, rather than creating the modified query “I love
clothing with text that says [brand name] cloth. Who designed it?”,
GazePointAR includes the user’s original query as raw informa-
tion in the engineered prompt—see Figure 8. Note: to supply gaze
and pointing gesture information, we still treat the YOLOv8 object
recognition and celebrity recognition results as parent layer and
OCR results as child layer to create the phrase. Additionally, as part
of the prompt, we asked GazePointAR to briefly explain its answers
in an attempt to enhance explainability.

GPT-3.5 Lastly, with the introduction of GPT-3.5, we updated
GazePointAR to use gpt-3.5-turbo, which has been trained on more
up-to-date data and is more efficient than GPT-3 [68].

6 STUDY 2: GAZEPOINTAR DEPLOYMENT
After iterating on GazePointAR, we carried out a first-person, five-
day diary study [22]. While informed by related first-person study
methods like autoethnography [21, 27] and autobiography [63], we
explicitly use the term “diary study” as the other methods tend to
span longer periods of time. The diary study enabled us to evaluate
the potential of an always-available, multimodal wearable VA sys-
tem in the real world. The lead researcher utilized GazePointAR v2
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Figure 8: Engineered prompt used in GazePointAR v2

in their day-to-day activities while documenting their interactions.
We report our process and findings.

6.1 Procedure
The researcher wore a Microsoft HoloLens 2 continuously running
GazePointAR v2. Because GazePointAR requires an Internet con-
nection, the HoloLens was connected to either a mobile hotspot
or public Wi-Fi networks. Over five days, GazePointAR v2 was
used four hours a day across various settings, including: indoor
locations like homes, offices, gyms, cafes, restaurants, shopping
centers, libraries, cinemas, grocery stores, and hospitals, as well
as outdoor areas such as sidewalks, parks, university campuses,
and public transit stations. To document their interactions, the lead
researcher used HoloLens’ internal video recording feature and
kept a pen and notebook for journaling insights and observations.

6.2 Findings
In total, the lead researcher asked 48 queries, of which GazePointAR
provided 20 satisfactory answers. Prompt engineering appeared to
enhance the performance of GazePointAR in several ways: (1) GPT
seems to recognize the importance of the user’s gaze target when
resolving ambiguous queries, giving it priority; (2) GPT seems to
consider objects similar to the gaze target when answering queries;
(3) the response is typically one sentence, and it includes a concise
justification for its answer selection. Even with queries it could
not answer, GazePointAR seemed to often accurately interpret
user inputs and intentions, suggesting its performance was not
inherently poor. For a full list of queries, see Appendix 4. Below,
we present key findings including overall reflection on having an
always-available context-aware VA, the types of queries asked,
GazePointAR’s response, and perceived limitations.

Overall experience. From simple tasks such as retrieving the
rating of a new coffee shop and comparing health benefits of food
items to more complicated tasks such as suggesting an allergy-
friendly menu item and finding lost keys, the lead researcher set out
to “stress test” GazePointAR v2 in the wild. They attempted to use
GazePointAR naturally as an everyday assistant—looking around
and posing queries as they arose. In his journal, the researcher
wrote: "conversing with GazePointAR felt like a friend was tagging
along, helping me."

Perhaps the most surprising use was when, at a store, they asked:
“This is a bit outside my price range... can you recommend a simi-
lar brand?” while looking at a piece of clothing. GazePointAR not
only grasped the broader context but also identified the gaze target
as clothing, determined its brand, and then recommended similar
brands. However, the lead researcher recounted several instances
where they felt self-conscious using GazePointAR, especially in
public settings, mentioning that speaking out loud while wearing a
bulky headset drew unwanted attention. This became more appar-
ent in settings where people are typically quiet, such as libraries,
hospitals, and movie theaters. Additionally, the lead researcher
noted that after extended use spanning more than fifteen minutes,
their eyes became tired from dwelling on referents.

Query Analysis.When analyzing the queries, we identified five
categories: (1) asking for more information about a referent, such
as its usage, price, and rating (21 queries); (2) asking for recom-
mendations, such as a drink at a cafe (11); (3) asking for directions
on how to proceed, such as navigating to a location or following
step-by-step instructions (9); (4) asking about personal information,
such as a schedule (4); and (5) asking about past actions, such as
“Did I take this vitamin today?” (3). When thinking about why they
used a pronoun, the lead researcher wrote “I’m just realizing that
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many objects and their features are difficult to describe in words... an
apple is an apple, but how do you describe how rotten it looks to a
machine? Or what about a clothing stain if I want to know how to
get rid of it? Also, sometimes, I don’t even know the words. When I
was in Chinatown, the restaurant name was only written in Chinese.
How else can I ask besides saying ‘is this the right place?’” In crafting
queries, the lead researcher employed various pronouns, with “this”
being the most common (21 occurrences), mirroring Study 1 partic-
ipants. Other pronouns include “it” (6), “that” (4), “here” (4), “there”
(1), “these” (1), and “s/he” (1). While the lead researcher felt that the
list of supported pronouns was exhaustive, 13 queries did not have
pronouns in our taxonomy, and instead had first- and second person
pronouns (12/13), or no pronoun at all (“What’s for sale today?”).
For multimodal input, the lead researcher found themselves relying
solely on gaze rather than pointing. When asked why, they said
that “gaze was easier and hands free”—similar reason as participants
in Study 1—and that “pointing in public spaces felt awkward.”

Interestingly, the lead researcher often used first-person pro-
nouns, “I” (33 occurrences), “me” (8) and “my” (7), as well as
the second-person pronoun “you” (10). They observed that Gaze-
PointAR’s human-like nature leads them to use full sentences in
their queries, which often included first- and second-person pro-
nouns. However, this often results in longer queries, which con-
tradicts findings from Study 1. To justify this inconsistency, the
lead researcher wrote, “with regular voice assistants, I feel like I’m
speaking commands, while to GazePointAR, I feel like I should have
conversations with it. So to Alexa, for example, I would say phrases
like ‘price of an [item]’, while to GazePointAR, I want to speak in
full sentences like ‘Can you tell me the price of this [item]?’”. As
a result, 31 queries had more than one pronoun. Finally, as part
of their long queries, the lead researcher seemed to instinctively
incorporate additional context. For example, when asking “I want
to eat something light before my commute... can you suggest me
a place?”, the lead researcher clarified their preference for a light
meal and implied that the time is probably early morning.

Query Answers. GazePointAR successfully addressed 20 of the
48 queries posed by the lead researcher (Figure 9). For example,
when asked “Can you recommend me something from here?”, Gaze-
PointAR read text information on a menu and recommended a
drink. Additionally, when asked “I love this cloth. Who designed
it?”, GazePointAR not only replied with the designer’s name but
also provided brief information about the designer. GazePointAR
even provided brief explanations, such as “the user looked at an
<object> when asking this question”, which improved understanding
of information GazePointAR captured. In contrast, for the 28 failed
queries (Figure 10), this was most commonly due to missing object
category in our object recognition model and howwe capture users’
gaze. For example, when asked “How can I use this equipment?” at
a gym, our object recognition model failed to recognize the differ-
ent exercise equipment. Additionally, when asked “I’m looking for
my keys... where did I leave it again?”, GazePointAR was unable to
figure out the lead researcher’s referent, as it does not store any
information over time. Analogously, GazePointAR still had trouble
with some combinations of pronouns, such as “Which is healthier,
this or that?”. To fully tackle these queries, GazePointAR needs
more data, such as gaze over time and improved ML results.

6.3 Study 2 Summary
In summary, the lead researcher appreciated GazePointAR for its
natural, companion-like qualities, but noted its limitations in real-
world settings due to insufficient information access. GazePointAR
struggled with time-dependent queries, primarily those containing
referents in the past (e.g., “That was a really cool car! Tell me more
about it.”), which require gaze history or multiple referents (e.g.,
“Which is the healthier option? This or this?”), which require shift
in gaze while speaking. Additionally, while the lead researcher
employed various pronouns instinctively, he also used many first-
and second-person pronouns, which led to lengthier, full-sentence
queries. Furthermore, the lead researcher relied solely on gaze
interaction, avoiding pointing due to the additional physical effort
and its impracticality in public. Lastly, extended dwelling caused
fatigue. To improve, the lead researcher suggested capturing and
storing gaze data over time, and using machine learning models
with more object categories.

7 DISCUSSION
By utilizing gaze, gesture, and conversation history along with an
LLM, GazePointAR advances the state-of-the-art in context-aware
VAs. Both the user study (Study 1) and the diary study (Study 2)
highlight key benefits, including more natural query formation,
always-available interaction, and human-like "assistant" qualities.
Below, we discuss current challenges and future opportunities for
context-aware VAs like GazePointAR.

Capturing gaze information over time. In both studies, some
queries were unanswerable due to how GazePointAR captures gaze
information—at a single moment immediately after the query has
been said. Future systems should instead track gaze continuously.
This would enable users to shift their gaze, promoting more natural
gaze behavior and reducing fatigue from explicit gaze. Continuous
gaze tracking would also let users look at multiple referents across
time, and the collected gaze pattern can assist an LLM in disam-
biguating queries with plural pronouns (e.g., “Which is cheapest
among these?”) or multiple pronouns (e.g., “Which is healthier, this
or that?”). Moreover, storing gaze information for later reference,
even for objects no longer in sight, would be beneficial. A key chal-
lenge is to find a suitable way to present temporal gaze data in a
processable format for the LLM. One solution may be to pre-process
raw gaze data into features such as fixations and saccades [20, 85],
and then represent them as text for an LLM to perform referent
prediction. Of course, introducing continuous gaze tracking on an
AR headset may also provoke privacy concerns for both users and
bystanders [40]—an additional area of future work.

Ensuring user autonomy in choosing an answer. Gaze-
PointAR currently chooses one best answer and reads it out to
the user. While this is efficient, balancing interaction speed with
user autonomy in choosing answers remains a challenge. Study 1
participants preferred a Google-like UI for exploring options, while
the lead researcher in Study 2 highlighted the awkwardness of
having to stand still and interact with mid-air gestures in public.
Moreover, the lead researcher was satisfied with GazePointAR’s
concise answers and explanations. A possible solution could be to
first offer the top answer verbally with a brief explanation and then
a Google-like UI as an option for further exploration. To further
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Figure 9: Example queries from the first-person diary study (Study 2) which GazePointAR answered accurately.

Figure 10: Example queries from the first-person diary study (Study 2) which GazePointAR answered inaccurately.

reduce cognitive load further, UI panels should be glanceable [55],
gaze-adaptive [52, 75], or show different detail levels [24, 52].

Enhancing explainability. Our study findings reinforce prior
research, emphasizing the growing necessity for explainable AI
(XAI) in designing everyday AI-driven experiences using wearable
AR [2, 3, 31, 90]. Our initial steps included prompting an LLM to
explain its responses. While this approach was quick and effective,
future context-aware VAs should also visually present the captured
images, user inputs, ML results, and predicted referents used to
derive an answer. Again, to limit cognitive overload and UI clutter,
we imagine first presenting a concise explanation followed by an
option to receive more information.

Supporting instinctive queries. Our study findings suggest
that while pronouns can facilitate human-VA interaction, they are
not always needed and may complicate query formation. For exam-
ple, in Part 1 of Study 1, some participants preferred explicit queries
such as “What can I make with Rao’s Marinara sauce?” over using
the pronoun “this”. The way individuals use pronouns in queries
seems to be based on instinct and preference, which affects query
ambiguity. To handle a wider range of queries, from those without
pronouns to those with many, and from unambiguous to ambigu-
ous, we integrated prompts into GazePointAR v2. This enables an
LLM to process the original query, not one altered by simple heuris-
tics, and supply ambiguous queries with relevant information. A
context-aware VA should support whatever query a user thinks of
first and our work shows promise in achieving this.

Enhancing machine learning capabilities. Other queries
were unanswerable because GazePointAR’s object recognition
model failed to identify referents. This became more apparent in
Study 2, as many real world objects are not included in YOLOv8’s
object categories, such as gym equipment, breeds of dogs, and types
of cars. Improvements in ML algorithms [5, 49, 88] and the use of
transformative tools like Google Lens’ reverse image search or
advanced multimodal LLMs such as GPT-4 [69] may help resolve
this issue. Moreover, because many queries asked in both studies
pertained to recommendations and personal data, context-aware
VAs may benefit from access to personal (e.g., calendar) and online
(e.g., ratings) information. Again, system designers must balance
this need with the potential risks to privacy.

Designing a more robust study. While Study 2 led to unique
insights not obtainable from a lab study, it only involved the lead
researcher using GazePointAR in-the-wild, which may lead to sub-
jective results. Future research should include more participants
using a context-aware VA outside the lab.

8 CONCLUSION
In this paper, we present GazePointAR, a context-aware multi-
modal VA for wearable AR capable of answering pronoun-driven
ambiguous queries. In our two studies, participants appreciated
GazePointAR for its naturalness and human-likeness, and ability to
refer to objects that are difficult to pronounce or describe. However,
participants also noted several limitations, including not collecting
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and storing gaze data over time, lack of autonomy and explainabil-
ity, the inability to support queries with multiple or past referents,
and missing object category in GazePointAR’s object recognition
model. Future context-aware VAs should support innate, instinc-
tive, and natural gaze and gesture input, as well as speech, enabling
users to ask any query spontaneously.
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A DEMOGRAPHIC QUESTIONNAIRE
The demographic questionnaire consisted of the following ques-
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1. Do you have any visual impairments (e.g., blind, low vision)?
2. Do you have any auditory impairments (e.g., deaf, hard-of-

hearing)?
3. Do you have a history of seizure?
4. Do you have a history of epilepsy?
5. Are you a native/bilingual/fluent English speaker?
6. How familiar are you with voice assistant technology such

as Apple Siri, Amazon Alexa, and Google Voice Assistant?
7. List any voice assistant systems you have used before and

what you used them for.
8. How often do you use voice assistant technology?
9. How familiar are you with augmented reality (AR) headsets

and glasses, such as the Microsoft Hololens?
10. List any AR headsets and glasses you have used before and

what you used them for.
11. How often do you use an augmented reality (AR) headset or

glasses?
12. How familiar are you with an artificial intelligence (AI) chat

systems, such as chatbots and ChatGPT?
13. List any AI chat systems you have used before and what you

used them for.
14. How often do you use an AI chat system?
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P# System Query

P1
Google Voice Assistant What can I make with Rao’s Marinara sauce?
Google Lens Image + “Recipe”
GazePointAR What can I make with this?

P2
Google Voice Assistant Find me a recipe that uses Rao’s homemade Marinara sauce.
Google Lens Image + “Recipe”
GazePointAR Find me a good recipe to make with this.

P3
Google Voice Assistant Recipes using Rao’s homemade Marinara sauce 24 ounces.
Google Lens Image + “Recipe using”
GazePointAR Find me recipes using this.

P4
Google Voice Assistant Find me a recipe using Rao’s Marinara sauce.
Google Lens Image + “Recipe”
GazePointAR Find me a recipe using this.

P5
Google Voice Assistant Recipe with Rao’s homemade Marinara sauce.
Google Lens Image + “Recipe using”
GazePointAR Find me a recipe with this.

P6
Google Voice Assistant Recipe using Rao’s homemade Marinara sauce.
Google Lens Image + “Recipe”
GazePointAR Find a recipe using this.

P7
Google Voice Assistant Find me a recipe including Rao’s homemade Marinara sauce.
Google Lens Image + “Recipe”
GazePointAR Find me a recipe using this ingredient.

P8
Google Voice Assistant Find me a recipe with Rao’s homemade Marinara.
Google Lens Image + “Recipe”
GazePointAR Tell me a recipe that use this.

P9
Google Voice Assistant Can you search for a recipe that is using Rao’s homemade Marinara?
Google Lens Image + “Recipe”
GazePointAR Can you give me the recipe that is using this?

P10
Google Voice Assistant Search for a recipe using Rao’s homemade Marinara sauce.
Google Lens Image + “Recipe”
GazePointAR Search for a recipe using this.

P11
Google Voice Assistant Can you find me a recipe that is using Rao’s homemade Marinara?
Google Lens Image + “Recipe using”
GazePointAR Find me the recipe with this.

P12
Google Voice Assistant Recipe using Rao’s Marinara sauce.
Google Lens Image + “Recipe”
GazePointAR Recipe using this.

Table 1: User-spoken Queries in Part 1 of the Study
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Task P# Query

Math Task

P1 Is this equation correct?
P2 Did I do this equation right?
P3 Is this correct?
P4 Is this equation correct?
P5 What’s the answer to this equation?
P6 Is this equation correct?
P7 Is this correct?
P8 Is this correct?
P9 Is this equation correct?
P10 Is this correct?
P11 Tell me if this is correct.
P12 Is this correct?

Price Difference Task

P1 How much do these cost?
P2 Which of these is more expensive, and by how much?
P3 Can you compare the price between these two?
P4 What’s the price difference between these two items?
P5 Find me the difference in costs between these two items.
P6 What’s the price difference between these?
P7 What is the difference in price between these?
P8 How much is the price difference between these?
P9 What’s the price difference between them?
P10 What’s the price difference between these?
P11 Tell me the price difference between them.
P12 What’s the price difference between these?

Celebrity Task

P1 Who is she?
P2 Can you tell me more information about her?
P3 Who is this person?
P4 Who is this person?
P5 Find me more information about this person.
P6 Tell me about her.
P7 Who is this?
P8 Find me more information about her.
P9 Who is she?
P10 Who is she?
P11 Tell me more about her.
P12 Who is this?

Table 2: User-spoken Queries in Part 2 of the Study
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P# Query Satisfactory?

P1 Tell me the price difference between this and that. No

P2 Did I solve this [complex calculus problem] correctly? No
How far away am I from my house? No

P3
Which trash bin does this [trash] go into? Yes
Can I put this [trash] in any of these [trash bins]? Yes
Can I put this [trash] in here [recyling trash bin]? No

P4
Can you explain that [diagram in a classroom]? No
What can I use to clean this [stain on a surface]? No
Can you translate what she [foreigner] is saying? No

P5

A child constantly asking “What’s this?” Yes
A blind person asking “What did s/he [speaker] point to?” No
Tell me the price difference between this and this. No
What is in the box sitting on top of that chair? No

P6

Tell me more about that building. No
Who made that [car]? No
What species is this [plant]? No
A blind person can ask “Who is that on TV?” Yes
Who wrote it [book]? Tell me more about the author. Yes
Who are those people? No
What’s happening over there? Yes
What is the object next to that [an object I know]? No

P7 How do you pronounce this [foreign or complex word]? Yes
How do you translate this [foreign or complex word]? Yes

P9 Who is s/he [person]? Yes
What is his/hers [musician] top hit? Yes

P10 Who is left of him/her? No
What do they sell? Yes

P11 What does this mean [foreign language]? Yes

P12

Can you tell me more about this [unknown objects]? Yes
Who was s/he [celebrity] again? No
Compare this to that thing from before [an object I saw a few seconds ago]. No
When did I do this [activity]? No

Table 3: User-spoken Queries in Part 3 of the Study
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Location Query Satisfactory?

Home

What do I need to do today? No
My plant seems to be dying. What can I do for it? Yes
I’m done with this. Where can I buy another one? Yes
What should I eat today? Yes
I want to grab coffee on the way... suggest me a cafe nearby. No
What’s the best settings on this [coffee] machine? No
Does this look spoiled? No
I ’m looking for my keys... where did I leave it again? No
Can you let me know when you find my keys? No
I stained this clothing... how can I remove it? No
Did I take this vitamin today? No
Did I turn off the stove? No

Work What’s my agenda for today? No
I want to eat something light before my commute... can you suggest me a place? No

Gym
How can I use this equipment? No
I ’m working on legs today... can you recommend a workout plan? Yes
What should I eat post workout? Yes

Cafe

How well rated is this coffee shop? Yes
Can you recommend me something from here? Yes
After I ’m done, where should I toss this? No
Is this decaf? No

Restaurant
Can you recommend something from here? Yes
I ’m allergic to that... can you recommend something else? Yes
I love this dish! How can I make this from home? No

Shopping Mall

What’s this store known for? Yes
Which of these stores should I visit? Yes
I love this cloth. Who designed it? Yes
It’s a bit outside my price range... can you recommend me a similar brand? Yes

Library I really love this book. Can you recommend another book by the same author? Yes
What’s one latest book you can recommend that I read? Yes

Movie Theater Is this a good movie? Yes
Tell me the history behind this scene No

Grocery Store What should I cook today? Yes
What’s for sale today? No
Which is the healthier option? This or this? Yes
Anything I ’m missing here? No

Hospital Pull up my appointment details. No
Do I have to be anywhere after this? No

Park
What [dog] breed is s/he? No
Can you tell me more about that plant? No
Can I buy this plant from somewhere? No

University Campus I ’m supposed to meet a friend from [location]. How do I get there? No
When was this building built? Yes

Public Transit Station I ’m trying to get to [location]. Is this the bus I should take? No
Where should I go from here? No

Sidewalk
That was a really cool car! Tell me more about it. No
When does that store close? Yes
Is this the right place [store I am trying to reach]? No

Table 4: User-spoken Queries in the First-Person Diary Study


	Abstract
	1 Introduction
	2 Related Work
	2.1 Pronoun Usage in Speech
	2.2 Multimodal Interaction

	3 GazePointAR Prototype 1
	3.1 Taxonomy of Pronoun Use and Resolution
	3.2 System Implementation

	4 Study 1: Three-Part Lab Evaluation of GazePointAR
	4.1 Participants
	4.2 Procedure
	4.3 Data and Analysis
	4.4 Findings
	4.5 Study 1 Summary

	5 GazePointAR Prototype 2
	6 Study 2: GazePointAR Deployment
	6.1 Procedure
	6.2 Findings
	6.3 Study 2 Summary

	7 Discussion
	8 Conclusion
	Acknowledgments
	References
	A Demographic Questionnaire
	B Queries

