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Figure 1: Example interactions with EARLL. EARLL recognizes everyday object interactions such as reading a book and provides 
foreign vocabulary corresponding to that object. Optionally, the system also vocalizes the translation to support pronunciation. 

ABSTRACT 
Learning a new language is an exciting and important yet often 
challenging goal. To support foreign language acquisition, we in-
troduce EARLL, an embodied and context-aware language learning 
application for AR glasses. EARLL leverages real-time computer 
vision and depth sensing to continuously segment and localize ob-
jects in users’ surroundings, check for hand-object manipulations, 
and then subtly trigger foreign vocabulary prompts relevant to that 
object. In this demo paper, we present our initial EARLL prototype 
and highlight current challenges and future opportunities with 
always-available, wearable, embodied AR language learning. 

CCS CONCEPTS 
• Human-centered computing → Mixed / augmented reality; 
Gestural input; • Applied computing → Education. 
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1 INTRODUCTION 
Learning a new language is an important yet often challenging 
life endeavor [22]. Today, many people rely on computer- and 
mobile-assisted language learning applications like Duolingo and 
Rosetta Stone [4, 25]. While these platforms enable learning from 
anywhere, there has been a growing interest in embodied [2, 17], 
context-aware [1, 7, 8, 14, 15], and augmented reality (AR)-based [3, 
6, 9, 21, 24] approaches to bring language learning into real-world 
contexts. For example, MicroMandarin by Edge et al. is a mobile app 
that provides city-specific content to facilitate language microlearn-
ing [7]. Most closely related to our work, previous studies have 
used wearable AR and computer vision (CV) to display foreign vo-
cabulary near objects in users’ surroundings [3, 6, 9, 21, 24]. While 
promising, these studies have not examined embodied techniques 
like how a users’ own physical interactions in the world—such as 
grabbing a cup, holding a book, or eating food—can assist learning. 
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Research in learning sciences highlights the importance of tan-
gible manipulatives and physical interactions in learning [12, 19], 
with some studies specifically noting its positive impact on learning 
foreign vocabulary [2, 17]. Informed by prior work, we designed 
and built EARLL to use interactions with everyday objects, such as 
grabbing, as cues for teaching foreign vocabulary (Figure 1). EARLL 
is an embodied and context-aware language learning application 
for wearable AR that leverages recent advances in AR, CV, and 
depth sensing that continuously segments and localizes objects in 
a user’s vicinity, checks for grabbing gestures, and prompts foreign 
vocabulary when appropriate. Our vision is to support language 
learning subtly through everyday object interactions. 

In this demonstration paper, we showcase an initial EARLL proto-
type then highlight its current challenges and future opportunities. 
The accompanying video demo highlights EARLL working in both 
a kitchen and office scenario. Beyond just suggesting foreign vocab-
ulary, future iterations of EARLL may suggest context-dependent 
sentences (e.g., instead of simply “cup”, EARLL observes the user 
action and says “a person is drinking water from a cup” overlaid in 
AR in the foreign language). Leveraging user’s physical behavior 
alongside object contexts can be valuable for learning [2, 12, 17, 19], 
and we encourage researchers to explore this space further. As a 
UIST Demo submission, we will invite attendees to learn a few new 
words as they interact with everyday objects. 

2 SYSTEM IMPLEMENTATION 

Figure 2: System overview of EARLL showing how data flows 
from the HoloLens to a local server for CV, then sent back 
for rendering foreign words. 

We prototyped EARLL on a Microsoft HoloLens 2 headset with 
the Mixed Reality Toolkit (MRTK3)1 and Unity 2022.3.25f12 . We 
describe key components below (See Figure 2). 

Capturing Context. To segment and localize objects near users, 
we streamed synchronized RGB PhotoVideo camera (i.e., PV cam-
era) data and Articulated HAnd Tracking (i.e., AHAT sensor) depth 
data to a local server. To achieve this, we set the HoloLens to Re-
search Mode [23] for accessing raw sensor data and used the hl2ss 
library [5] for real-time streaming (640x480 @ 30 FPS). On the 
server, we first read and integrate the RGB data into the depth map. 
We then perform YOLOv8 [10] on each frame to recognize objects 
in 3D space. The depth of each object is later retrieved from the 
object’s instance segmentation mask. Objects identified as hands 
are used for grab detection. 

Grab and Hold Detection. Because we are interested in surfac-
ing language vocabulary only when a user has directly interacted 

1https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk3-
overview/
2https://unity.com 

with an object, we needed to create a robust and real-time user 
"grab-and-hold" detection algorithm using RGB + depth data alone. 
As this remains an open problem, we opted to employ a heuristic-
based approach. Using known hand and object locations, we apply 
a two-step elimination approach to check if the object is grabbed: 
(1) bounding box overlap; and (2) intersecting depths. We verify the 
latter by: (1) checking if the depth ranges (10th to 90th percentile 
to remove noise and outliers) of hand and object pixels overlap; 
and (2) ensuring their mean depths are within 5 cm of each other. 
Finally, we categorize an object as held if, within a sliding window 
of multiple frames, it is inferred as grabbed more than twice and 
for over one second, accounting for occasional missed grab events. 

Presenting Vocabulary. When objects are detected as held, 
EARLL displays their names in both L1 (native language) and L2 
(second language) for three seconds in world coordinates. These co-
ordinates are derived by projecting image coordinates from instance 
segmentation results. Object normals are calculated to ensure the 
words face the user. For translation, we leveraged the T5 model [20], 
more specifically its T5-small variant. EARLL also speaks the object 
name in L2 to aid user pronunciation, which can be configured. 
To achieve multi-language text-to-speech, we used a TTS solution 
native to Windows and HoloLens 23 . 

Scenarios. We tested EARLL in various scenarios, including 
holding a wine glass, eating a banana, and washing a cup in the 
kitchen, as well as moving a mouse, using a cell phone, and reading 
a book in an office. See Figure 1 and our video figure for more. 

3 DISCUSSION AND CONCLUSION 
Below, we discuss current challenges and future potential in lever-
aging object interactions as cues for language learning. 

Improved CV and System Latency. Although EARLL runs 
nearly in real-time, there is some perceived latency primarily due 
to slow grab-and-hold detection. Action recognition algorithms, 
including our heuristic approach, need to analyze multiple frames. 
In EARLL, we waited at least a second to mitigate and prevent false 
detections. Resolving latency would require more robust object 
detection and action recognition models. 

Context-Dependent Sentence Suggestions. Studies show that 
learning vocabulary in sentence-level contexts is more effective for 
knowledge transfer, listening comprehension, and long-term recall 
compared to word-for-word learning [11]. To facilitate sentence-
level learning, EARLL could use image-to-text models like BLIP-
2 [16] to produce descriptions of user interactions (e.g., instead of 
just “pencil”, EARLL could say “You are writing a note with a pencil”). 

Beyond Object Grab and Hold. EARLL should recognize ad-
ditional bodily gestures, including touch and pointing. Gestures 
referring to objects not directly related to the user, such as pointing, 
could allow users to receive even more vocabulary suggestions (e.g., 
“cat” far away) [13]. We can even provide sentence-level suggestions 
(e.g., pointing at a “cat” gives “a cat sleeping on a couch”). 

Gamification. By tracking object interactions, EARLL can pro-
vide personalized games that extend current gamification features [18]. 

Why Wearable AR? Unlike smartphones, an AR glasses al-
lows users to use both hands freely as it continuously scans the 
environment and provide subtle prompts for foreign vocabulary. 

3https://learn.microsoft.com/en-us/hololens/hololens2-language-support 
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