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Figure 1: CookAR provides real-time object affordance augmentations in head-mounted AR to support cooking interactions.
(A) a low vision participant uses CookAR to locate and grab a spoon; (B) the view in CookAR where kitchen tool affordances
(grabbable vs. hazardous areas) are recognized and augmented by solid-colored overlays, with green overlays for grabbable
areas such as handles and red for hazardous areas such as a knife blade or the hot part of a tea kettle.

ABSTRACT
Cooking is a central activity of daily living, supporting indepen-
dence as well as mental and physical health. However, prior work
has highlighted key barriers for people with low vision (LV) to
cook, particularly around safely interacting with tools, such as
sharp knives or hot pans. Drawing on recent advancements in com-
puter vision (CV), we present CookAR, a head-mounted AR system
with real-time object affordance augmentations to support safe and
efficient interactions with kitchen tools. To design and implement
CookAR, we collected and annotated the first egocentric dataset
of kitchen tool affordances, fine-tuned an affordance segmentation
model, and developed an AR system with a stereo camera to gen-
erate visual augmentations. To validate CookAR, we conducted a
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technical evaluation of our fine-tuned model as well as a qualita-
tive lab study with 10 LV participants for suitable augmentation
design. Our technical evaluation demonstrates that our model out-
performs the baseline on our tool affordance dataset, while our user
study indicates a preference for affordance augmentations over the
traditional whole object augmentations.
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1 INTRODUCTION
Cooking is an essential activity of daily living, supporting indepen-
dence [54, 56, 70] as well as both mental and physical health [3, 31,
53, 70]. However, cooking also involves significant visual tasks that
can be challenging or dangerous for blind and low vision (BLV) peo-
ple, especially when interacting with kitchen tools, such as sharp
knives or hot pans [3, 31, 38, 39, 74].

Unlike those who are completely blind, people with low vision
(LV)—vision loss that cannot be corrected using glasses or contact
lenses [10]—often rely on their residual vision in daily activities and
use different low vision tools to enhance visual information [68, 69].
With recent advancements in AI-powered augmented reality (AR),
researchers have explored new possibilities for supporting LV indi-
viduals by automatically recognizing their environment and pro-
viding appropriate visual augmentations, including stair naviga-
tion [78], visual search [82], and sports [37]. While promising, these
previous AR systems focus primarily on understanding effective
augmentation designs [78], often oversimplifying the computer
vision (CV) recognition in their development, thus neglecting the
effects of technological limitations (e.g., CV inaccuracies and sys-
tem delays) on user experience. Moreover, though there has been
substantial formative work in BLV cooking within the HCI litera-
ture [38, 39, 74], no previous AR system has been built to address
LV cooking specifically.

We introduce CookAR, a wearable stereo AR prototype that rec-
ognizes and augments cooking tool affordances in real-time to sup-
port LV meal preparation. In contrast to prior AR research that
highlights objects as a whole [16, 82], we distinguish and augment
the object affordance specifically (i.e., component parts that afford
interactions), such as the safe-to-handle “grabbable” areas and the
dangerous-to-touch “hazardous” areas (Figure 1). To enable accu-
rate affordance recognition, we constructed a custom egocentric
image dataset for kitchen tool affordances by selecting and label-
ing images from the Epic Kitchens dataset [11] and fine-tuned an
affordance segmentation model. We then combined the ZED Mini1

stereo camera and an Oculus Quest 22 headset to achieve a video
passthrough AR system with CV and stereo depth estimation ca-
pabilities to precisely overlay affordance augmentations on the 3D
environment in near real-time.

To evaluate CookAR, we conducted a technical evaluation of
our fine-tuned model as well as a three-part qualitative lab study
with 10 LV participants. For the model assessment, we found that
our fine-tuned affordance segmentation model (mAP of 46.3%) out-
performed the base RTMDet [46] model (mAP of 12.3%) in tool
affordance recognition and segmentation. For the three-part user
study, LV participants were first asked to locate and pick up cook-
ing tools across three conditions: (1) with their typical method in
daily life such as wearing corrective lenses (i.e., real-world base-
line); (2) with CookAR displaying whole object augmentations (i.e.,
1https://store.stereolabs.com/products/zed-mini
2https://www.meta.com/quest/products/quest-2/

augmentation baseline); and (3) with CookAR displaying affor-
dance augmentations. They then completed a free-form cooking
task with CookAR (Part 2) and brainstormed desired augmenta-
tion designs using design probes (Part 3). Findings indicate that
participants prefer affordance augmentations over whole object
augmentations in a kitchen as they enable faster understanding of
an object’s spatial arrangement and safe interaction parts. Most par-
ticipants preferred affordance augmentations consisting of green
solid overlay on grabbable areas and red outlines on hazardous
areas. Moreover, participants identified five additional tool affor-
dances with desired augmentations, including entry (e.g., cup rim),
exit (e.g., carafe spout), containment (e.g., cup base), intersection (e.g.,
knife blade on butter), and activation (e.g., carafe buttons) areas—all
which should be outlined in a contrasting color (e.g., black or white).

In summary, our research contributions include: (1) CookAR, a
fully-functional AI-powered wearable AR prototype that augments
kitchen tool affordances for low vision users to enable safe and
efficient tool interactions; (2) an egocentric affordance dataset for
kitchen tools and an accompanying fine-tuned affordance segmen-
tation model. To enable others to build off our work, this dataset
and model are open-sourced at: https://github.com/makeabilitylab/
CookAR; and (3) user study results with 10 LV participants that re-
veal user experiences with CookAR, preferences for augmentation
designs, and five newly desired affordance areas.

2 RELATEDWORK
Our work builds on prior formative studies on low-vision cooking,
wearable AR for accessibility, and affordance segmentation.

2.1 Challenges in Low Vision Cooking
People with low vision (LV) face challenges in everyday activities,
such as cooking [3, 38, 39, 73, 74], shopping [68], navigation [68, 80],
and sports [37, 62]. Among these, cooking is an essential task for
an independent and healthy life [70]. However, this task also poses
major accessibility barriers and safety concerns to BLV individuals,
including interactingwith sharp knives and hot pans [32, 33]. Conse-
quently, they tend to eat more pre-processed food or frequently dine
at restaurants, which can negatively impact their health [31, 55].

To better understand how BLV people engage in cooking tasks,
prior work has conducted both interview and observational studies
[38, 40, 73, 74]. For example, Jones et al. [31] surveyed 101 BLV par-
ticipants in the U.K. about their shopping and cooking experiences,
revealing that vision loss made cooking difficult and that the level
of difficulty was correlated to the severity of visual impairments.
Li et al. [38] analyzed 122 YouTube videos of BLV people preparing
meals and interviewed 12 BLV participants about their cooking
experiences. They identified several cooking-related challenges,
such as utilizing cooking tools and tracking object dynamics in the
kitchen. A follow-up contextual inquiry study [39] examined how
BLV people recognize cookware and utensils and measure ingredi-
ents. This study highlighted essential cooking-related information
to convey, such as position, safety, and orientation of objects.

Specifically for LV people, Wang et al. [73] conducted a con-
textual inquiry study, observing and comparing the cooking ex-
periences between six LV participants and four blind participants.
They found that while blind participants relied on touch, LV people
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used their vision extensively while cooking. However, compared to
blind people, LV people felt less confident, less safe, and more tired
and stressed due to their reliance on impaired vision. Moreover,
LV individuals were less satisfied with existing cooking tools com-
pared to blind people, highlighting the need for technology that
considers their unique needs. The same study also identified key
challenges LV people face, such as distinguishing objects with low
contrast and safely interacting with dangerous kitchen tools. Wang
et al. [74] further interviewed six LV rehabilitation professionals to
understand current training strategies and tools for cooking. They
emphasized that existing solutions are insufficient to overcome all
cooking challenges LV people experience. Our research fills this
gap by creating an AR system that supports LV people in safely
and efficiently using cooking tools through visual augmentations.

2.2 Using Wearable AR to Enhance Accessibility
In accessibility and HCI, wearable AR has been used to support peo-
ple with diverse disabilities. For example, AR glasses can caption
and visualize speech and sounds for deaf or hard of hearing (DHH)
people [15, 27–29, 52, 59, 61, 65], support hands-free interactions
with screen displays for people with upper body motor impair-
ments [47, 48, 51], offer speech support for people with aphasia [76],
and provide social cue therapy for children with autism [75].

Within the low-vision aid context, head-worn AR devices can
selectively enhance users’ vision by interpreting their environment
and tasks [1, 77]. For instance, prior research has developed AR
systems that can capture real-time video feeds and apply image
processing techniques [12, 49, 82] to enhance visual information,
such as edge enhancement [26, 35, 50], scene recoloring based on
distance [14, 24, 72], and pixel remapping for visual field loss [21,
42, 44, 60]. However, while these solutions are beneficial for simple
tasks like reading [12, 25, 66], they still lack semantic understanding
of the scene and cannot effectively support more complex activities
involving object interactions like cooking [74].

More recently, researchers have combined AR and CV to create
scene-aware visual augmentations to assist LV people with more
intricate activities like visual search [82], stair navigation [78],
wayfinding [79], obstacle maneuvering [16], button pressing [36],
and sports [37]. Nonetheless, no prior systems have addressed the
unique challenges of cooking involving dynamic tool interactions.
Moreover, prior AR research for low vision primarily focuses on
designing and evaluating visual augmentations. Therefore, they
tend to oversimplify CV recognition in system development, such as
by using QR codes [78, 82] or existing spatial mapping APIs [16, 79]
to anchor augmentations to the real world. This approach neglects
the technical challenges of building a real-time AI-powered AR
system and the potential impacts of technological limitations (e.g.,
CV errors, system latency) on user experience.

Our research advances the field by introducing CookAR, a wear-
able AR system that recognizes and augments kitchen tool affor-
dances in near real-time, enhancing safe and efficient interactions
during cooking.

2.3 Affordance Segmentation
In contrast to most prior studies that augment objects as whole [16,
37, 82], our research focuses on recognizing and augmenting tool

affordances. Affordance is traditionally defined as “the opportunities
for actions that objects offer, relative to the user’s ability to perceive
and act on them” [18–20]. Highlighting object affordances can effec-
tively guide human attention and actions [17, 63, 71]. Despite the
prominence of affordance segmentation in robotics [2, 7, 8, 57, 58]
and computer vision [9, 43, 45], automatic affordance augmentation
has received comparatively less attention and applications in the
field of HCI. Notably, there is a lack of an egocentric affordance
dataset specifically created for the needs of LV individuals. To ad-
dress this gap, we first created a new dataset focused on kitchen
tool affordances by selecting and annotating image frames from
the egocentric Epic Kitchens video dataset [11] and fine-tuned an
instance segmentation model. We then built an AR system that can
segment and enhance tool affordance information.

3 SYSTEM IMPLEMENTATION
To support safe and efficient LV hand-object interactions with
kitchen tools, we designed and built CookAR, a wearable stereo AR
prototype that recognizes and augments cooking tool affordances in
near real-time. Unlike traditional enhancements that target objects
as a whole, our prototype highlights their affordances (i.e., func-
tional parts), facilitating identification and interactionswith areas to
grasp or avoid. To create a fully-functional wearable AR system, we
needed to address both the computer vision problem of accurately
recognizing object affordances in real-time and the HCI problem of
designing and rendering suitable affordance augmentations. In this
section, we describe our approach for each step, including (1) collect-
ing and annotating a dataset focused on the affordances of kitchen
tools; (2) fine-tuning an instance segmentation and recognition
model on our dataset to detect these affordances; and (3) building a
head-mounted AR systemwith a stereo camera to render visual aug-
mentations on the recognized tool affordances. The labeled dataset
and fine-tuned model weight are one contribution of our work and
are open-sourced at: https://github.com/makeabilitylab/CookAR.

3.1 Data Collection and Annotation
To train a CV model for affordance segmentation, we first needed
a labeled dataset. However, to our knowledge, there is no prior
cooking tool dataset with annotations to enable affordance segmen-
tation. Below, we describe our multi-step process to collect and
annotate object affordances in egocentric cooking images.

Data Collection. To build our kitchen tool affordance image
dataset, we used an egocentric video repository called Epic Kitchens
[11], which consists of 100 hours of video footage of sighted people
cooking in their homes. We selected this dataset since it not only
involves a wide range of cooking scenarios with various kitchen
tools but also captures video feeds from a first-person perspective,
which aligns with the egocentric nature of head-worn AR devices.

Because the Epic Kitchens dataset is large, we first needed to
filter for frames of interest. We used YOLOv8 [30] trained on theMS
COCO dataset [40] to detect and collect frames featuring cooking-
related objects, such as spoons, knives, forks, cups, scissors, sinks,
and dining tables. To minimize repetition, we skipped 20 frames af-
ter finding at least one of those objects. We then manually reviewed
the selected frames to empirically remove similar, excessively blurry,
or irrelevant images, resulting in 4,928 key frames.

https://github.com/makeabilitylab/CookAR
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Figure 2: Example Roboflow annotations for each object class in our dataset (18 classes total).

Data Annotation & Augmentation. We then labeled these
frames using Roboflow3, an online tool for annotating, training, and
optimizing CV models. Roboflow also supports labeling automation
using the Segment Anything model (SAM) [34], allowing us to easily
select and segment interactive parts of objects (e.g., knife blade vs.
knife handle) and add corresponding class labels.

Drawing on prior research [38, 39, 74], the research team iden-
tified 18 distinct classes of kitchen tools commonly used by BLV
individuals: Knife Blade, Knife Handle, Spoon Bowl, Spoon Handle,
Fork Tines, Fork Handle, Scissor Blade, Scissor Handle, Ladle Bowl,
Ladle Handle, Spatula Head, Spatula Handle, Pan Base, Pan Handle,
Cup Base, Cup Handle, Carafe Base, and Carafe Handle (Figure 2).
When labeling, we adhered to the following heuristic: (1) the ob-
ject should visually resemble the class it is labeled as; and (2) the
object should serve functions similar to those of the label class. For
instance, a large wooden spoon can be tricky to label, as it can
resemble a spoon, ladle, or spatula, and have versatile use such as
stirring a pan (like a spoon), scooping contents from a pot (like a
ladle), or lifting eggs (like a spatula) across different images in the
dataset. We labeled these ambiguous objects based on their shape
and use in a given frame. Six research team members performed
the annotations, each labeling a subset of images and having their
work reviewed by another researcher to reduce errors and bias.

3https://roboflow.com

After annotating, we used various image augmentation tech-
niques available on Roboflow to enhance the dataset for better
generalizability across real-world scenarios, including: cropping
with 0% minimum zoom and 40% maximum zoom, rotation between
-15° and +15°, brightness between -15% and +15%, blur up to 2.5px,
and noise up to 0.1% of pixels. We then adjusted the images to
fit a 640x480 resolution (i.e., the MS COCO average image resolu-
tion [40]) to accommodate our chosen base model’s preferences
and facilitate their use in future research. This resulted in a final
dataset of 10,152 images.

3.2 Model Fine-Tuning
To provide real-time object affordance information to LV users,
we fine-tuned the RTMDet model [46], specifically its RTMDet-Ins-
l variant, on our kitchen tool affordance dataset. This model is
the current state-of-the-art in real-time instance segmentation4,
offering robust accuracy and 300+ FPS on an NVIDIA 3090 GPU.
RTMDet features large kernel depthwise convolution and batch
normalization layers, pre-trained on MS COCO [40].

We opted to fine-tune RTMDet instead of training it from scratch,
as this allowed us to better leverage our smaller, class-specific
dataset. To achieve this, we leveraged the fine-tuning pipeline pro-
vided by theMMDetection library [6], a PyTorch-based open-source

4https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco
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Figure 3: System overview of CookAR showing how data flows from the ZED Mini Stereo camera to an external camera for
affordance segmentation, then sent back to ZED for rendering on the Quest 2 headset.

toolkit for object detection and segmentation, which supports vari-
ous models including RTMDet. We initialized the base RTMDet-Ins-
l model with pre-trained weights, froze its backbone, and adjusted
the model configuration file for our label classes before training
it on our kitchen tool affordance dataset. This customized model,
dubbed RTMDet-Ins-l-Cook, was trained over 150 epochs with a
batch size of 4 on a single CUDA-enabled NVIDIA 4080 GPU. Be-
cause RTMDet-Ins-l-Cook underwent fine-tuning on a dataset with
affordance annotations, it can mimic an affordance segmentation
model’s capabilities while retaining RTMDet’s real-time perfor-
mance. We provide a technical evaluation of our model in Section
4. We also open-sourced our fine-tuning steps and code, giving
researchers the tools to expand our dataset and fine-tune their own
models: https://github.com/makeabilitylab/mmdet-fine-tuning.

3.3 The CookAR Prototype
With our RTMDet-Ins-l-Cook model, we built CookAR, a wearable
AR prototype that can recognize and visually augment the affor-
dances of kitchen tools in near real-time. To implement CookAR,
we addressed three key technical and HCI challenges, including:
(1) how to spatially highlight object affordances in 3D space; (2)
how to develop a real-time system pipeline to provide affordance
feedback with minimal latency; and (3) how to best visually indicate
affordances to LV users to support but not overwhelm their existing
visual perceptions. See video figure for a demonstration.

To generate visual augmentations that align with the object parts
in 3D space (e.g., a knife grip, a cup handle), we built a custom stereo
video see-through AR system by combining the ZED Mini stereo
camera with an Oculus Quest 2 VR headset. While off-the-shelf
AR headsets such as the Microsoft HoloLens 2 may eliminate the
need for a bulky video passthrough system, they do not yet support
long range real-time depth sensing. We visualize the affordance
representations as colored polygon overlays. Though the colors are
settable, we currently use green (hexcode #3BE8B0) to indicate a

graspable area and red (#FC626A) to indicate a risky area (Figure 1).
As described in our user study section, we also further explored
and brainstormed other affordances and augmentation designs.

Because our real-time CV model is computationally expensive,
CookAR is tethered to a laptop with a NVIDIA 4080 mobile GPU.
The CookAR system first captures image frames using the ZED
Mini stereo camera and streams them to an external server via the

Transmission Control Protocol (TCP) for affordance segmentation by
our RTMDet-Ins-l-Cook model (confidence threshold of 0.4). Then,
the server converts the resulting JSON with affordance masks and
labels into a Protocol Buffers message5 for efficient streaming. This
message is then sent back for processing by the ZED Mini API [67],
which deserializes the message back into a JSON and creates a ZED-
compatible texture (or colored overlay) for each affordance mask.
Finally, the ZEDMini performs stereo depth estimation and overlays
the textures onto the left and right image frames for binocular vision
in the Quest 2 headset. To enable participants to move freely during
the study session, we connected the CookAR system to a computer
using long (16 feet) cables.

In our latency analysis, we ran CookAR for five minutes and
computed the average latency of each component: video streaming
from ZED to the server took 16.76ms; affordance recognition took
15.95ms; result streaming back to ZED took 10.43ms; and depth
estimation and augmentation rendering took 3.39ms. All other
components had negligible impact on runtime. The overall latency
is on average 46.82ms per frame (∼21.36 FPS), resulting in a near
real-time system. See Figure 3 for a system flow diagram.

4 TECHNICAL EVALUATION
Wefirst conducted a technical evaluation of our RTMDet-Ins-l-Cook
model, comparing its performance against the base RTMDet-Ins-l
model on our kitchen tool affordance dataset. Findings indicate that
our model is significantly more accurate in recognizing and seg-
menting affordances of cooking tools than the unmodified model.

4.1 Methods
To assess the performance of the base and fine-tuned models on
our kitchen tool affordance dataset, we used MMDetection’s [6]
model testing pipeline, which performs evaluations using the test
subset of a given dataset. With Roboflow, we generated a test set of
596 images with an 82-12-6 train-validation-test split and ensured
that our model was not exposed to images in the test subset.

For instance segmentation tasks, accuracy is conventionally mea-
sured using three key metrics: segmentation mean average preci-
sion (mAP), AP at a 50% Intersection over Union (IOU) threshold
(AP@50), and AP at a 75% IOU threshold (AP@75) [22]. IoU, cen-
tral to these metrics, quantitatively evaluates the overlap between

5https://protobuf.dev

https://github.com/makeabilitylab/mmdet-fine-tuning
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Figure 4: Example inferencing results on images from the test subset of our dataset. These images demonstrate how the
RTMDet-Ins-l-Cook identifies and segments graspable, safe areas—even in the presence of hands or other partial occlusions.

Model Name mAP AP@50 AP@75

RTMDet-Ins-l (on COCO) 0.437 0.660 0.470

RTMDet-Ins-l (on our dataset) 0.123 0.199 0.310
RTMDet-Ins-l-Cook (on our dataset) 0.463 0.749 0.486

Table 1: Affordance segmentation results. Our fine-tuned af-
fordance segmentation model, RTMDet-Ins-l-Cook, achieves
superior performance across all metrics on our kitchen tool
affordance dataset, outperforming the state-of-the-art base-
line RTMDet-Ins-l model. For reference, we also include
RTMDet-Ins-l results on the COCO dataset.

predicted segmentation masks and the actual ground truth, serving
as a direct measure of accuracy in spatial alignment. We explain
each metric in detail below:
• mAP offers a comprehensive assessment of a model’s precision
across various detection thresholds by averaging precision at
multiple recall levels for each class. It also aggregates results
across a range of Intersection over Union (IoU) thresholds, from
0.5 to 0.95 in steps of 0.05, providing a holistic view of model
performance across different degrees of overlap between the
predicted masks and the ground truth;

• AP@50 uses a precision of segmentation at the IoU threshold of
50%, a more lenient measure that considers a prediction correct
if the overlap with ground truth is at least half;

• AP@75 evaluates precision at a stricter IoU threshold of 75%, de-
manding higher accuracy in the overlap between the predicted
segmentation and ground truth.
We applied these metrics to compare our model’s performance

against the baseline, aiming to capture the nuances of improvement
across different levels of strictness in segmentation accuracy.

4.2 Results
Our findings (Table 1) indicate that the base RTMDet-Ins-l model
performs poorly on our affordance dataset despite its competency
on the COCO dataset [40] with a 43.7% segmentation mAP. More-
over, our fine-tuned RTMDet-Ins-l-Cook model excelled in iden-
tifying and segmenting cooking tool components, demonstrating
a significantly higher segmentation mAP of 46.3%, compared to
the base model’s 12.3%. This improvement was also evident in our
model’s performance at different IoU thresholds, with AP@50 and
AP@75 reaching 74.9% and 48.6%, significantly outperforming the

base model’s 19.9% and 13.2%. In Figure 4, we show several example
inference results of RTMDet-Ins-l-Cook on test images. Our model
demonstrates impressive robustness, identifying and segmenting
graspable, safe areas even when hands or other partial occlusions
are present in the images. Overall, these findings highlight the
enhanced accuracy of our RTMDet-Ins-l-Cook model.

5 USER STUDY
As a complement to our technical evaluation, we conducted a three-
part qualitative lab study with 10 low vision (LV) participants. Our
goals were threefold: first, to evaluate how LV participants might
benefit from real-time object affordance augmentations when com-
pleting cooking tasks; second, to solicit their reactions to a fully-
functional but early-stage prototype (e.g., how do they react to
augmentation errors); finally, to co-brainstorm visual overlay de-
signs via design probes. Participants provided feedback throughout
the study and answered open-ended questions regarding their ex-
periences, which were recorded and transcribed for later analysis.

5.1 Participants
To achieve a diverse participant pool, we recruited 10 LV partici-
pants from two cities (Madison, WI and Seattle, WA) via mailing
lists and snowball sampling. Participants were screened using a
demographic questionnaire, which gathered information on age,
gender, vision condition, and prior experience with AR and AI tech-
nologies. The average age was 62.2 years (SD=19.6), with a gender
distribution of 70% female and 30% male. Participants had a broad
range of low vision conditions with visual acuity ranging from
20/40 to 20/400 and visual field loss at different areas—see Table 2.
Most participants reported little to no experience with AR and AI,
except for P1 who had used both technologies.

5.2 Apparatus
The study was conducted in a well-lit lab environment. Participants
sat in front of a large table, where we placed nine different kitchen
tools—knife, spoon, fork, scissors, ladle, spatula, pan/pot, cup, and
carafe. We used a dark green table cloth to simulate a visually
challenging environment with low contrast. We also prepared a
yellow wooden cutting board, a bowl, a piece of cheese, and a stick
of butter for the participants to use in the study, although CookAR
can only recognize and augment the nine aforementioned kitchen
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P# Gender Age Left Eye Acuity Right Eye Acuity Description of Visual Field

P1 Male 30 No Light Perception 20/400 Coloboma dominates the right superior portion of my right eye.
P2 Female 83 20/200 20/100 Deteriorating eyesight from dry macular degeneration. Lost

central vision on left eye. Central vision on the right eye is still
there but not good. Have peripheral vision on both.

P3 Female 62 20/125 20/100 Low vision. Some holes in it, like black spots. Scar tissue.
P4 Male 65 20/20 20/60 Can see from 2/3’s of left eye, some far right peripheral vision

from right eye.
P5 Female 70 20/200 20/100 Macular degeneration and side effects of chemotherapy. Blurry

vision and need font enlargement to read. Visual field intact.
P6 Male 50 20/40 No Light Perception Blind in right eye. Need glasses for left. Visual field intact.
P7 Female 81 20/200 20/60 Diminished vision due to macular degeneration. Visual field intact.
P8 Female 80 20/50 20/50 Have dry macular degeneration with loss of some vision in the

center of my left eye.
P9 Female 30 Light Perception 20/80 Can make out faces w/right eye. Left eye blind. Visual field intact.
P10 Female 71 20/60 20/100 I have Glaucoma. My field of vision is 5% eyesight. 5% in my left

and 5% in the right remaining.

Table 2: Individual study participant information, including their gender, age, left and right eye acuity, and a self-reported
description of their vision.

tools at the current stage. Lastly, we recorded the experiment using
a laptop and a smartphone on a tripod.

5.3 Procedure
The single-session 90-minute study consisted of three phases. In
Part 1, we asked participants to grab cooking utensils with CookAR
and two baselines. In Part 2, participants completed a full cooking
task where they made macaroni and cheese while using CookAR
with affordance augmentations. Finally, in Part 3, participants brain-
stormed tool affordances and desired augmentation designs while
examining and critiquing design probes. Prior to the study tasks,
participants completed a tutorial to become familiar with CookAR.
In total, participants interacted with our AR device for ∼30 minutes
across the study: a 5-minute tutorial, 10 minutes of object grab-
bing, and 15 minutes of free-form cooking. We provide more details
below. The full study protocol is in the Appendix.

Tutorial. Participants first completed a tutorial task, where they
interacted with a cooking pot using CookAR. Participants wore and
adjusted the Oculus Quest 2 headset and freely explored CookAR
and its affordance augmentations. Once they achieved a comfortable
fit and an understanding of CookAR, the study proceeded.

Part 1: Tool Grabbing Task. In Part 1, participants were asked
to locate and pick up cooking tools under three conditions: (1) real-
world baseline (i.e., without CookAR), (2) augmentation baseline
(i.e., whole object augmentations) [16, 82], and (3) CookAR (i.e.,
affordance augmentations) (See Figure 5). We counterbalanced the
condition order via Latin Square. In each condition, participants
conducted five trials of picking-up tool tasks. We randomly chose a
cooking tool per trial from the nine kitchen tools on the experiment
table (See Section 5.2). Participants were asked to keep their eyes
closed until the researcher named an object to reduce the effect of
memory on task performance. Moreover, the researcher rearranged
the placement and angle of the cooking tools between each con-
dition. After each condition, we asked participants three 7-point
Likert questions about effectiveness, comfort, and distraction, as

well as open-ended questions regarding their experience with each
augmentation condition. After all 15 trials, we asked participants to
compare the pros and cons of the three conditions, suggest improve-
ments for CookAR, and identify potential applications of CookAR
outside of kitchen contexts.

Part 2: Full Cooking Task. In Part 2, we asked participants to
cook a macaroni and cheese dish using CookAR with affordance
augmentations. We provided participants with step-by-step instruc-
tions for consistency and to ensure participants interacted with all
nine objects CookAR can recognize: (1) grab a cup of water and
pour it into a carafe, (2) pour water into a pot using a carafe, (3) cut
a piece of butter using a knife, (4) cut a piece of cheese using a pair
of scissors, (5) put the macaroni, butter, and cheese into a pot, (6)
stir with a spoon, (7) stir with a spatula, (8) place the finished mac-
aroni and cheese in a bowl using a ladle, and (9) pick up a fork and
enjoy. For the safety of our participants, we supplied a knife with a
dull edge and avoided the use of heat. As participants completed
this task, they were encouraged to think aloud, articulating how the
affordance augmentations supported or hindered their activities,
how CookAR impacted their overall cooking experience, and any
suggestions they had for augmentation designs. After completing
the free-form cooking task, we asked participants to reflect on these
same topics through open-ended questions.

Part 3: Brainstorming and Co-Design. In Part 3, we asked par-
ticipants to brainstorm future designs and applications of CookAR.
Drawing on prior work in low vision augmentation [16, 36, 78, 82],
we created and presented design probes of various augmentation
designs (Figure 6) and asked participants for feedback. The design
probes included: (1) outlines to reduce visual clutter in comparison
to solid-colored overlays, (2) solely displaying either the grabbable
or the hazardous augmentation, (3) highlighting the more specific
hazardous part such as the sharp edge of a knife blade rather than
the whole blade, (4) employing arrows to widen the area covered
by the augmentations, and (5) introducing a visual warning system
when the user’s hand gets too close to a risky area. After presenting
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Figure 5: The CookAR prototype with whole object augmentations (left) and affordance augmentations (right). The whole
object augmentations are green instance segmentation masks, while the affordance augmentations are green (grabbable) and
red (hazard) affordance segmentation masks.

Figure 6: Design probes used in Part 3 of the study to spark design ideas.

our own designs, we invited participants to propose other ideas
for both simple objects like knives as well as more complex objects
with additional interactive parts beyond grabbable and hazardous
areas, like a carafe, which has many openings and buttons with
different purposes. Lastly, we asked participants to identify other
scenarios where affordance augmentations might be beneficial.

5.4 Analysis
We recorded participants’ quotes using Zoom. Transcriptions were
first done by the video conferencing software, then the research
team manually revised the transcripts. We collected 346 distinct
quotes across our 10 LV participants, which we analyzed using
reflexive thematic analysis [4, 5]. The first author, who facilitated
every user study session, created an initial codebook by reviewing
the revised study transcripts. The research team then collaboratively
iterated on the codebook while checking for bias and coverage.
With a final codebook consisting of 23 codes, the first author coded

participants’ quotes, after which the team discussed the resulting
themes. For Likert score analysis, we used a Wilcoxon signed-rank
test since the data does not follow a normal distribution.

6 RESULTS
In our three-part qualitative study, participants completed tool-
grasping tasks, a free-form cooking task, and a brainstorming ses-
sion with design probes. Overall, participants found the real-time
affordance augmentations helpful when interacting with various
cooking tools. They also suggested desired augmentation designs
and key affordance parts. We expand on these findings below.

6.1 Affordance vs. Whole Object Augmentations
All but one participant (P6) preferred affordance augmentations
over whole object augmentations for supporting kitchen tool inter-
actions. They noted a trade-off between the augmentations’ utility
and distraction, with the former generally outweighing the latter:
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“Seeing one color was less distracting than seeing two colors. But you’d
have to know which end of the tool is the handle and which is the work-
ing end” (P2). We report participants’ feedback on the effectiveness
and distraction of the augmentations below.

Effectiveness. In examining Likert scores on perceived effec-
tiveness, we found no significant difference between whole object
augmentations and affordance augmentations (𝑊 =36.5; 𝑝 =0.32).
However, participants on average gave higher ratings to affordance
augmentations (𝑚𝑒𝑎𝑛𝑎 =5.3; 𝑆𝐷𝑎 =1.6) over whole object augmen-
tations (𝑚𝑒𝑎𝑛𝑤 = 4.6; 𝑆𝐷𝑤 = 1.4). Affordance augmentations are
advantageous in quickly understanding the overall scene (P1, P10),
along with the placement and orientation of individual objects: “It
helps to have two colors. I could see that more readily and quickly
to understand how to use the object and how it is placed... your sys-
tem is helpful because where the tool starts and ends and where the
handle starts and ends is more clear” (P5). In addition, affordance
augmentations become particularly useful when handling objects
that have hazardous (9 out of 10 participants) (e.g., sharp, hot ) or
small (8/10) (e.g., door handles, buttons on appliances) parts, or have
insufficient color contrast (7/10) (e.g., all silver or black cooking
tools): “You’ve gotta show parts you can and shouldn’t grab. Green
tells me that’s a safe place to go with my hand. Anything not green, I
shouldn’t grab... It can help me avoid dangerous parts or perhaps even
find small things like remote controllers” (P4). Furthermore, four par-
ticipants expressed that for objects with more complex interaction
components than “just grab and don’t grab” (P7), like a carafe with
its handle, base, buttons, lid, and spout, they would accept the use
of more than two colors, although “more than four colors can be
quite distracting” (P7). We discuss additional augmentation designs
in Section 6.3.

Distraction & Comfort. While most participants qualitatively
expressed that the whole object augmentations are less distracting
than the affordance augmentations (6/10), the comfort and dis-
traction Likert scores were not significantly different (𝑊 = 52.5;
𝑝 =0.88 and𝑊 =46; 𝑝 =0.78 respectively). The difference in aver-
age rating was also negligible, although participants on average
found whole object augmentations to be slightly more comfortable
(𝑚𝑒𝑎𝑛𝑤 =5.1; 𝑆𝐷𝑤 =1.3 vs.𝑚𝑒𝑎𝑛𝑎 =5.0; 𝑆𝐷𝑎 =1.2) and less distract-
ing (𝑚𝑒𝑎𝑛𝑤 = 2.3; 𝑆𝐷𝑤 = 0.9 vs.𝑚𝑒𝑎𝑛𝑎 = 2.5; 𝑆𝐷𝑎 = 1.1). P6, who
preferred whole object augmentations, said “I think the more colors
you have, the more distracting it becomes. So I prefer just the whole
object in green than having 2 or 3 different colors. An outline would be
better. I would definitely stay away from multicolored and just stick
with one color. I can figure out its different parts.” Additionally, three
participants shared that the whole object augmentations could be
more useful depending on the scenarios. For tasks such as locating
or avoiding objects, where interaction is not the goal, whole object
augmentations are more preferable, since they are less distracting:
“If I am looking for the remote controller, if it could make the remote
stand more out in green or something. I don’t need its parts” (P3).

In summary, we found that if a person intends to interact with
an object, affordance augmentations are more helpful than whole
object augmentations. Conversely, in cases where interaction is
not the objective, whole object augmentations may be preferred as
they are less distracting. Despite the positive qualitative feedback
on CookAR, the Likert scores for the real-world baseline (without

CookAR) were higher than those for both the whole object augmen-
tations (effectiveness:𝑊 = 94; 𝑝 < .001, comfort:𝑊 = 95; 𝑝 < .001,
𝑊 =10; distraction: 𝑝 < .001) and affordance augmentations (effec-
tiveness:𝑊 =77.5; 𝑝 < .05, comfort:𝑊 =52.5; 𝑝 < .001, distraction:
𝑊 = 10; 𝑝 < .001). This may be due to current limitations of AI-
powered AR systems such as accuracy and latency. We discuss this
further in Section 7.2.

6.2 Free-form Cooking with CookAR
All participants were able to complete all free-form cooking steps
within three to five minutes. However, due to technical limitations
in accurately segmenting affordances, deploying heavy CV mod-
els, and rendering spatially accurate overlays in real-time on AR
headsets, participants experienced recognition errors and latency
with CookAR. All participants observed “flickering” and inaccurate
augmentations. Participants also pointed out that “the colors took
some time to catch up” (P3) as they quickly rotated their head.

Nonetheless, all but P6 saw potential in CookAR to assist with
kitchen tool interactions and beyond: “I like the contrasting color. I
just wish it more closely matched the object’s actual location. I think
this highlighting scene is a great start. If the system is perfect, the dual
color highlight system would be great and most useful. The system
would be perfect if I am in a kitchen or just trying to grab really
anything” (P1). P1, P5, P9, and P10 were particularly excited as they
were able to better visually perceive object information: “This is
fun! I can also use my eyes more to see shape and how [a tool] can be
used. I want to try your system again once you make it better” (P9).
Participants also identified the following additional use cases for a
CookAR-like system: cleaning (P3, P6, P7, P9), woodworking (P4,
P5, P9), walking outdoors (P2, P6, P9), driving (P4, P6, P7), visiting
a foreign kitchen (P2, P5), restaurants (P3, P9), gardening (P5, P10),
watching sports (P7, P10), playing board games (P7, P10), going
down stairs (P7, P9), identifying pill bottles (P7), and interacting
with appliances with multiple buttons like a toaster (P1).

6.3 Desired Augmentation Designs
We report participants’ preferences on augmentation designs for
grabbable and hazardous areas based on the design probes.

Combining solid and outline augmentations. As opposed
to solid-colored overlays, nine participants preferred a mix of solid
and outline augmentations because solid colors are more salient,
whereas outlines are less distracting: “Solid colors are helpful because
they grab my attention... outlines are helpful because I can still see
the part I’m trying to use with less distraction” (P5). Among those
nine participants, all but P7 preferred solid-colored overlays for the
grabbable area and outlines for the hazardous area because “the
grabbable area is the most important” (P3, P4, P5, P8, P9), “all you
need to know is its shape” (P4, P9), and “other parts should be outlined
since you may want to do more with it, and solid color just makes
it harder to use it” (P4, P8, P9). However, P7 preferred the outline
for the grabbable area since it is less distracting and still shows the
shape of the handle.

For the risky area to outline, P8 preferred highlighting solely the
exact hazard (e.g., the sharp edge of the knife blade), as opposed
to the entire dangerous part of an object (e.g., the whole knife
blade), because she needs to know the relatively safer area for
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interaction. For example, as she described, “I might grab the top of
the blade when I’m dicing or chopping. This tells you exactly where
you shouldn’t touch.” In contrast, all other participants wanted the
outline augmentation because it is less distracting, yet still defines
the overall shape of the hazardous area (P4, P5, P7, P9, P10) and
what it is used for (P4, P7, P9). For example, P9 said, “I prefer to
see the outlines on the [whole] blade, just so that way, you know
which type of blade you’re grabbing. Cause a bread knife would look
different from your knife. Some are thinner, some are fatter. People
can be quite picky about their knife choices.”

Lastly, P1, P4, and P10 expressed concerns that overlaying per-
fectly aligned solid-colored affordance augmentations can be tech-
nically challenging. They suggested a colored circle may be enough,
since they only need “a hint to see a glimmer of the object” and
determine how the objects are oriented (P1).

Enhancing color contrast. Using colors to distinguish object
affordances was well-received, as participants often color code
their own cooking tools: “So I always try to get things color coded...
especially if things are in drawers, it takes a lot of cognition for me to
tell you what’s what. If it’s colored, it’s so much easier. This system is
huge cause it’s doing color coding for me” (P1).

Every participant favored using green for safe-to-grab and red
for dangerous areas, as “green signals ‘yes’ while ‘red’ signals no”
(P4). However, P4, P7, and P9 struggled to clearly see our choice of
red and requested a brighter shade of red, with P4 even suggesting
white. Moreover, participants noted that the color contrast between
the tool and the background is more important than the specific
colors used, since many kitchen objects are white, silver, or black
with low contrast. For example, when cooking mac and cheese in
the study, most (8/10) participants found it challenging to cut butter
and understand where the yellow butter starts and ends because it
was on a yellow wooden cutting board. To address this, P3, P4, P5,
and P10 suggested the system should automatically select colors
that contrast against the background: “The background you have it
against will make a big difference, right? So on a darker background, I
should be getting light colors” (P4). P7 jokingly said, “I mean, a green
stick of butter could be weird, but it would at least let me cut better.”

Auditory feedback. Instead of visual augmentations, all partic-
ipants preferred auditory feedback for warning in urgent scenarios
(e.g., when the user’s hands get too close to a knife blade), as a
visual warning could be easily missed by low vision users (P3, P5,
P7, P9) and also makes the overall visual field busier (P4, P10). P3,
P5, and P6 suggested short yet noticeable audio such as “beep beep,”
while P7 and P10 preferred explicit verbal warning (e.g., “stop”)
since small noises can also be generated by other devices, such as
a microwave or a fridge. P4 and P9 further suggested the system
should employ different auditory signals for different hazards.

Action-aware augmentations. As opposed to constantly aug-
menting all affordances, half of the participants suggested gener-
ating augmentations based on users’ current tasks or behaviors to
reduce potential distraction. For example, with a knife, both the
handle and blade can be augmented to start, then when a person
grabs it, the handle augmentations could be turned off (P7); or,
as a person gets close to a carafe with a cup of water, the rim of
the carafe could be highlighted (P4). Moreover, seven out of 10
participants also suggested using voice commands to control the

augmentations, such as turning on and off an augmentation or
adjusting the augmentation design (e.g., colors or forms).

6.4 Additional Tool Affordances
In addition to the grabbable and hazardous affordances focused
on by our CookAR system, participants collectively suggested five
other important affordances for kitchen tools: (1) entry area, (2)
exit area, (3) containment area, (4) intersection area, and (5) acti-
vation area. We elaborate on these seven affordances along with
participants’ preferred augmentation designs.

Grabbable area. A grabbable area is the part designed for safe
handling or manipulation. This can include handles, grips, or any
part intended for direct hand contact. For grabbable part of an
object, participants preferred green solid-colored augmentations.

Hazardous area. A hazard area is the part that poses potential
risks or dangers to the user. This could include sharp edges, hot
surfaces, or any part that can cause injury if touched or mishandled.
For hazardous part of an object, participants preferred red outline
augmentations.

Entry area. An entry area is the part designed for initiating
access, such as pouring. This could be the rim of a cup or a pot,
the opening of a carafe, or any designated point that allows entry
into an object’s containment space. All participants consistently
noted that this area should be augmented by an outline rather than
a solid color, as the latter obstructs relevant actions like pouring
or scooping: “The color blobs hide the item that you’re trying to
put things into virtually completely. And so I can’t really tell if I am
pouring something in correctly” (P4).

Exit area. An exit area is defined as the point through which
contents are meant to be released. This could be the spouts, holes,
or any defined pathway that guides content out of the object’s
containment space, and it can be the same as the entry area for
some objects, such as bowls and cups. Several participants (4/10)
suggested that the carafe’s spout, similar to the entry area, should
be outlined: “Highlighting the spout would be helpful if you had to
pour, because if I poured in the wrong place, I wouldn’t know until
something spills. I think I can pour more effectively if you highlighted
this by aligning it with the edge of a cup or something. An outline
would be great so I can see the water flowing out” (P7).

Containment area. A containment area has some depth and is
meant to hold content within, such as food and liquid. This could
be the interior of a cup or pot, the base of a spoon or ladle, or any
defined space within the object that is meant to keep something
in. The current solid-colored overlays in CookAR interfere with
visibility of the containment space. Instead, all participants wanted
CookAR to augment only the entry and exit areas using outlines,
leaving the containment space without any augmentation.

Additionally, eight participants expressed that they need assis-
tance with understanding the depth of the containment space and
the amount of content it already holds. As P8 expressed, “A lot of
people with low vision cannot see inside and know how much water
they can pour. So somehow showing the water level and size of the
teapot [is helpful]. Mine is a lot bigger, it makes 12 cups or something,
and it’s all black, so it’s even harder to see what’s inside.” While P9
has a strategy to overcome this challenge by using her finger to
feel the liquid level, she cannot use it when the water is hot. She
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thus suggested the system rendering “a blue disk” to indicate the
water level. In terms of augmenting the depth of the containment
area, participants suggested using a virtual line from the rim to
the bottom of the pot (P3, P4, P5, P9, P10), a measuring tape with
ticks (P4, P5, P9, P10), or a line with changing colors (e.g., a green
line that turns red as water fills up), (P4, P5). P10 further suggested
an auditory cue (e.g., a ‘ding’ sound) to indicate action milestones,
such as when water reaches quarter of a cup.

Intersection area. An intersection area is where parts of two
or more objects meet. This could be where a knife blade touches
the butter for cutting or where a cup touches a pot for pouring.
Interactions that require precise alignment between two objects
are particularly challenging to our LV participants. Half of the
participants suggested generating augmentations to highlight the
intersections or relationships between two interacting objects, for
example, the location where a knife cuts the butter (P5) or the
alignment between a ladle and a bowl when pouring (P9). As P9
mentioned, “Using a ladle has always been a problem for me. Pouring
the ladle into things is usually the hardest part, because you never
know if the ladle is in the right spot or too wide out of the way. Maybe,
if you have the ladle on top of a bowl, [CookAR should render] a
[virtual] shadow that gets casted onto the bowl.”

Activation area. An activation area is designed for initiating,
activating, or turning on an object’s function or features. This could
be buttons, switches, touch-sensitive surfaces, or any interactive
components that trigger the operation of an object. Participants
identified activation areas on many household appliances, such as
buttons and dials on stove tops, microwaves, or coffee pots. They
are used for various purposes including starting a machine, opening
a lid, and adjusting settings. For example, P8 said: “I just bought
a vacuum with multiple buttons. You would want different colors
for the handles and buttons” Seven participants preferred outline
augmentations for the activation area. Additionally, P10 further
suggested a clock-like augmentation in addition to an outline for
turnable dials: “On a stove, I don’t know what is medium heat. As
I turn the knobs on a stove, the system could show me ‘2 o’clock,’ ‘3
o’clock,’ and so on. ‘6 o’ clock’ is probably a medium heat. ‘9 o’clock’
is probably a high heat.”

7 DISCUSSION
CookAR explores the use of real-time affordance augmentations
to enhance kitchen tool interactions for LV people and advances
the state-of-the-art in AI-powered AR systems. Results from our
user study indicates a preference for affordance augmentations over
whole object augmentations during tool interactions. Additionally,
participants favored augmentation designs that incorporate both
solid-colored and outlined overlays with contrasting colors. We
discuss design implications for affordance augmentations as well
as current limitations and future opportunities of AI-powered AR
systems for low vision.

7.1 Design Implications for Affordances
Throughout the study, LV participants proposed a range of affor-
dances for kitchen tools and indicated preferred augmentation
designs. We summarize and expand on these suggestions.

When to use affordance augmentations? Our study findings
suggest that visual augmentations should maximize utility and
minimize visual clutter and confusion. As such, it is critical to render
augmentations tailored to users’ intent and reduce distraction. For
example, affordance augmentations that involve multiple pieces and
colors are more preferred to support direct hand-object interactions,
while whole object augmentations are more suitable in general
visual perception tasks such as avoiding obstacles and locating an
object. Beyond a kitchen, affordance augmentations could also be
applied to other scenarios, as our participants suggested, such as
gardening, playing board games, and interacting with appliances
(reaffirming Lang et al. [36]).

Where to apply affordance augmentations? Affordances can
refer to any object parts that indicate diverse actions or interaction
opportunities. However, LV people face distinct interaction chal-
lenges, resulting in unique affordance opportunities. In our qualita-
tive study, we identified seven essential affordances of kitchen tools
that encapsulate important yet challenging interaction tasks for
LV users. They include: (1) grabbable area, affording touching and
handling action; (2) hazardous area, affording risks and avoidance;
(3) entry, affording a target to aim at or pour in; (4) exit, afford-
ing pouring out and usually requiring accurate alignment with
the entry of another object (e.g., food transferring or pouring); (5)
containment area, affording holding content in and preferring aug-
mentations on the content amount (e.g., ingredient measurement);
(6) intersection area, affording touching or interaction between two
objects; and (7) activation area, affording control features on an
object. This affordance taxonomy summarizes the critical areas on
objects as well as the hand-object (e.g., grabbable vs. hazardous
areas) and object-object (e.g., entry-exit alignment, intersection
between objects) relationships during interactions.

How to augment affordances?Different augmentations should
be designed for different affordances according to the interaction
tasks they indicate. In our study, participants preferred solid-colored
overlays for grabbable areas to enable fast perception and action,
measuring augmentations (e.g., line with ticks) for containment area
to indicate content amount, and outlines for other affordances to
avoid distraction and occlusion. In terms of colors, augmentations
should adopt colors with high contrast against the environment. We
also suggest leveraging cultural and semantic meanings of colors,
such as green for safe-to-grab areas and red for risky areas. However,
while preferred by the LV participants in our study, the green-red
combination should be used cautiously given the prominence of
red-green color vision deficiency.

How to control affordance augmentations? Due to the di-
verse visual abilities and preferences of LV users [81], future sys-
tems should support extensive personalization capabilities such as
voice-based control for customization and automatic adaptations.
For instance, users should be able to adjust different aspects of an
augmentation, such as switching it on or off, choosing between
solid-colored and outlined overlays, changing the outline thickness,
and selecting suitable colors. Additionally, these systems should
intelligently adapt by recognizing user actions or tasks to only
highlight necessary object parts and signal warnings. They should
also automatically alter the augmentation colors to generate high
contrast against the background.
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Figure 7: Envisioned augmentations based on participants’ desired designs, including (1) highlighting not just the grabbable and
hazard areas of a knife (using a color pairing that is not green and red for increased contrast) but also the contact location with
the target object (e.g., a bell pepper); (2) illuminating the exit and entry areas of a ladle and cup along with their containment
areas and indicating the depth and filled-up level of the containment area; (3) showing the activation areas (i.e., buttons) on a
carafe along with the exit location of the spout; (4) showing the intersection of a butter knife with butter as well as measurement
highlights overlaid on a stick of butter (e.g., tablespoons).

Example designs. Reflecting on these key design insights for
affordance augmentations, we created some initial design mockups
shown in Figure 7. Starting with solid-colored overlays for grab-
bable areas, measuring lines for containment areas, and outlines
for all other areas, CookAR should allow customization, such as
toggling overlays, adjusting outline thickness, and changing colors.
Future work should explore these and other designs empirically.

7.2 Challenges in AI-powered AR Development
This paper presents several key technical contributions across CV
and HCI by constructing the first egocentric kitchen tool affor-
dance dataset, fine-tuning an affordance segmentation model on
our dataset, and developing a fully-functional stereo AR system
that generates real-time affordance augmentations. However, our
study also revealed the impact of technology limitations on user
experiences. For example, while finding CookAR promising, par-
ticipants gave significantly higher Likert scores for the real-world
baseline condition (i.e., without CookAR). Below, we reflect on key
technical challenges stemming from both fields.

AI models for real-world use. Although our fine-tuned model
outperforms the base model, its mAP is still too low to successfully
support dynamic activities like cooking in real-world contexts. For
instance, its AP@75 is 48.6%, meaning in the worst case, about half
of all predictions fail to achieve greater than 75% overlap with the
ground truth affordance masks, resulting in misalignment between
augmentations and the original objects. The recognition results
could become worse during real-world use on AR glasses due to
natural human behaviors like users’ constant head motions. For
example, LV users tend to get much closer to view objects than
sighted users [64]. This issue highlights the evaluation gap between
HCI and AI: a model that performs well under AI metrics (e.g., mAP,
AP@50, AP@75) may be suitable for in-lab user studies but less
so in naturalistic settings. We suggest that when developing AI
models, researchers should consider the potential real-world use
cases, human needs, and integration to different hardware platforms
(e.g., wearable AR) to enable use in practice.

Affordance models and datasets. As opposed to object recog-
nition models and datasets that attract significant attention in

AI [13, 23, 40, 41], research on affordance models and datasets
remains nascent. To address this issue, we collected and labeled an
affordance image dataset for kitchen tools and fine-tuned an object
detection model on the affordance dataset to balance accuracy and
speed. However, due to the relatively small scale of the dataset and
the RTMDet model not being designed for affordance, our system
encountered affordance-specific issues. For example, our model
often struggled to distinguish different handles, as many handles
across various cooking tools look similar. While not affecting the
mask generation (allowing users to still see the correct augmenta-
tions), it interfered with the object tracking model supported by
the ZED Mini API, leading to flickering and unstable augmentation
rendering. This is also noticeable in the video supplement.

To enhance system robustness and affordance recognition capa-
bilities, future AI research should consider the following key areas:
(1) Developing larger and more diverse affordance datasets. These
datasets should capture a wider variety of object interactions and
functionalities, allowing the model to learn from a richer set of
scenarios; (2) Designing models for affordance detection, such as
incorporating training objectives that refine object part relationship
understanding for better affordance prediction; and (3) Improving
object tracking algorithms to ensure more stable augmentation ren-
dering, especially in dynamic environments where precise object
localization is crucial.

System latency. Latency is always a concern for AR systems, es-
pecially since off-the-shelf AR devices usually do not have sufficient
computational power (e.g., GPU) to support real-time CV. To enable
affordance segmentation, our system streams video data between
the AR headset and an external server. However, system latency
prevented the overlays from keeping pace with the participants’
head motions, negatively impacting their trust in CookAR’s intelli-
gence and perceived system usability. To address system latency,
we need advancements in both software (e.g., real-time AI models)
and hardware (e.g., AR devices with powerful GPUs), which will
also increase the overall usability of AI-powered AR systems in
dynamic real-world activities.
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7.3 Limitations & Future Directions
We outline four primary limitations in this work. First, as an initial
prototype, we conducted a qualitative user study with a relatively
small number of participants to explore usability and solicit reac-
tions to AR-based affordance augmentations. Future work should
conduct larger scale studies with more participants and diverse vi-
sual conditions. Second, we re-emphasize the aforementioned tech-
nical challenges and limitations. Third, the current CookAR system
provides only one basic affordance augmentation—solid-colored
overlays. Building upon the design insights in our study, future
work should incorporate more augmentation options (e.g., outlines)
and enable more flexible adjustments (e.g., colors, thickness of the
outlines) to provide LV users more personalized experience. Fi-
nally, current CookAR system focuses on leveraging CV methods
to detect affordances. While some suggested affordances, such as
entrance, exit, and activation areas, can be achieved by dataset
extension and model fine-tuning, others may not. For example, de-
tecting heated areas may require a thermal sensor and identifying
intersection areas can benefit from a LiDAR sensor. Future research
should consider additional sensors beyond RGB cameras.

8 CONCLUSION
In this paper, we introduce CookAR, a wearable AR system that
overlays affordance augmentations in real-time to support safe
and efficient kitchen tool interactions for people with low vision.
To build CookAR, we assembled an egocentric kitchen tool affor-
dance dataset, fine-tuned an RTMDet-Ins-l model on our dataset
(i.e., RTMDet-Ins-l-Cook), and created an AR system with a stereo
depth camera to generate real-time affordance augmentations in
3D space. We evaluated CookAR in a three-part lab study with 10
LV participants. Findings indicate participants’ preferences for af-
fordance augmentations over whole object augmentations for tool
interactions, as well as revealing seven types of tool affordances
and corresponding augmentation designs preferred by LV users.
Our work highlights the promise of affordance augmentations in
supporting hand-object interactions for LV people and advances
state-of-the-art AI-powered AR technology as low vision aids.
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A PART 1 PROTOCOL
In Part 1, participants compared real-world baseline (i.e., using
their typical method in daily life), augmentation baseline (i.e.,whole
object augmentations), and CookAR (i.e., affordance augmentations)
in a tool-grabbing task. We asked participants Likert questions and
open-ended questions after each condition. After Part 1, we asked
additional qualitative questions.

A.1 7-Point Likert Scale Questionnaire
1. How effective is the system you just used? Why?
2. How comfortable are you with seeing these visualizations?

Why?
3. How distracting are these visualizations? Why?

A.2 Post-Condition Open-Ended Questions
1. Please describe your overall experience with the visual aug-

mentations.
2. What did you like about this system?
3. What did you dislike about this system?
4. (If any) Ask participants about any interactions we observed

to be unconventional (e.g., grabbing a knife by the blade)
5. How can this system be improved?
6. In what other scenarios do you think this system would be

useful?
7. Do you have any additional comments about this system

that we failed to capture?

A.3 Post-Part Open-Ended Questions
1. Can you compare your experience completing this study

task with and without our research prototypes?
2. Which condition do you prefer to use? Why?
3. How can this system be improved? Are there any design

recommendations you’d like to make?
4. In which scenarios do you think this systemwould be useful?
5. Do you have any additional comments about this study or

the systems?

B PART 2 PROTOCOL
In Part 2, participants completed a full cooking task using CookAR.
They then answered open-ended questions about their experience.

1. Please describe your overall experience cooking with this
system.

2. What did you like about this system?
3. What did you dislike about this system?
4. What are some improvements you want to make to the sys-

tem?
5. Are there any design recommendations you would like to

make?
6. In which scenarios do you think this systemwould be useful?
7. Any additional comments about this study or this system?
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C PART 3 PROTOCOL
In Part 3, participants brainstormed future designs and applications
of CookAR. We asked open-ended questions to guide them.

1. Can you think of your own design that would improve the
usability of our prototype?

2. In what other scenarios besides cooking do you think this
kind of a system can be applicable?

3. Any additional comments about the system and the entire
user study?
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