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Abstract

Project Sidewalk is a web-based platform that enables crowd-
sourcing accessibility of sidewalks at city-scale by virtually
walking through city streets using Google Street View. The
tool has been used in 40 cities across the world, including the
US, Mexico, Chile, and Europe. In this paper, we describe
adaptation efforts to enable deployment in Chandigarh, In-
dia, including modifying annotation types, provided exam-
ples, and integrating VLM-based mission guidance, which
adapts instructions based on a street scene and metadata anal-
ysis. Our evaluation with 3 annotators indicates the utility of
AI-mission guidance with an average score of 4.66. Using
this adapted Project Sidewalk tool, we conduct a Points of In-
terest (POI)-centric accessibility analysis for three sectors in
Chandigarh with very different land uses—residential, com-
mercial and institutional covering about 40 km of sidewalks.
Across 40 km of roads audited in three sectors and around
230 POIs, we identified 1,644 of 2,913 locations where in-
frastructure improvements could enhance accessibility.

Introduction
The United Nations New Urban Agenda (Caprotti et al.
2017) positions equity and inclusion as key principles of
modern urban development and transportation. A key prob-
lem, however, is developing reliable, cost-effective tech-
niques to collect data on accessibility and make data-driven
improvements (Froehlich et al. 2022). Lack of accessibility
can take away the joy or even the entire feasibility of a trip
for all types of users. Therefore, it is critical to flag accessi-
bility issues for i) informing users where the most accessible
areas are, and ii) informing local governments about the re-
quired improvements in the public infrastructure.

Prior work in geolocated accessibility mapping has pri-
marily focused in the US and European contexts (Xu et al.
2021; Li et al. 2022). One of the prominent solutions, Project
Sidewalk (Saha et al. 2019) is a web-based platform for
mapping and assessing sidewalk accessibility using crowd-
sourcing and online street imagery. Since a 2016 pilot de-
ployment in Washington DC, Project Sidewalk has grown
to 44 cities across 10 countries—over 10k users have con-
tributed 1.4 million labels assessing 26k km of city streets.
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The tool lets people virtually “walk” through city streets us-
ing Google Street View and label accessibility issues such
as missing curb ramps, uneven surfaces, or obstacles. While
the gold standard for accessibility audits is manual inspec-
tions by experts hired to analyse issues, such methods to flag
accessibility issues are laborious and costly (Froehlich et al.
2022). However, porting project sidewalk to a new city like
Chandigarh which is very different from the US and Euro-
pean context is non-trivial due to the change in local con-
text and different expectations of accessibility in this context
across different types of roads - primary, secondary, tertiary
roads, etc. The appearance of sidewalks and related features
such as curbs, ramps, and surface materials changes signif-
icantly for India, which makes the direct use of existing la-
bels confusing for the users (see Figure 2).

In this work, we contextualize the Project Sidewalk user
experience with locally-enriched tags (Figure 3) and exam-
ples thus enabling the first deployment of Project Sidewalk
in India—in a city that is globally recognized for its plan-
ning, Chandigarh. Apart from this, to provide just-in-time
information about annotation strategy on a particular street,
we also design and integrate a visual language model (VLM)
powered mission guidance (Figure 1c). The mission guid-
ance helps the user understand the context around the road
that they are marking and reduces the cognitive overhead re-
quired to understand what needs to be marked. To evaluate
the VLM-based mission guidance, we evaluate the guidance
with three users across metrics for relevance, accuracy and
utility.

Given the large population and vast area of the country, an
effective prioritization framework is required for identifica-
tion of accessibility gaps and their remediation by the states.
Our work is an effort towards highlighting gaps which pro-
vide the maximum return on investment through increased
accessibility of places in a city. By focusing on accessibility
of places instead of all the infrastructure, we provide a first
level of prioritization for accessibility in a pilot deployment
over three sectors in Chandigarh. To this end, we focus our
study of accessibility in Chandigarh around a walkable one
km radius around points of interest in the city including key
amenities such as restaurants, transit stops, ATMs, hospitals,
schools, etc. (complete list in Table 1) across three different
land use sectors - Sector 12 (institutional), Sector 34 (com-
mercial) and Sector 45 (residential). We map a total of 230



(a) Sector-wise population
heatmap of Chandigarh

showing relative population
density across sectors.

(b) Input: OSM road type +
start/end Street View

panoramas

(c) VLM generates
segment-specific mission

guidance

(d) Human annotators label
using the adapted Project

Sidewalk

Figure 1: Systematic overview of our India-adapted Project Sidewalk workflow. (a) Population extrapolation from ward-to-sector bound-
aries for selecting sectors for analysis. (b) Each street segment in the sector is defined by its OSM road type and start/end Street View
panoramas. (c) A visual–language model (VLM) generates mission guidance from these inputs, helping annotators know what accessibility
barriers to expect. (d) Annotators label barriers in the adapted Project Sidewalk interface using Indian-specific labels.

points of interest (POIs) through open street map and use our
adaptations to the project sidewalk for annotating accessibil-
ity in the 40 kms of roads surrounding these POIs. Through
our detailed annotations of curbs, obstacles, surface prob-
lems, crosswalks, etc. we are able to provide a focused set
of accessibility gaps for local action. We also create aggre-
gate metrics to provide relative scores for different areas as
user insights. To summarize, our key contributions in the pa-
per include:

1. Adaptation of Project Sidewalk to the Indian context
through changes in the user interface and an AI-assisted
mission guidance per road segment. We evaluate the util-
ity of AI-assistance with three users scoring relevance,
accuracy and usefulness and found the mean utility to be
4.66.

2. Use of this adapted methodology to conduct a cross-
sectoral analysis for three sectors in Chandigarh across
all points of interest within an institutional, residential
and commercial land use. Our analysis is over 200 points
of interest in a 40 km region across the three sectors.
We observed a long negative tail in segment scores, indi-
cating many segments with substantial problems. Com-
mercial areas have the best overall access, while educa-
tion and public-service lag. We also found that functional
accessibility, e.g., health center accessibility in health-
institution center has been given attention but other fa-
cilities like transit stops, food joints, etc. are not as ac-
cessible in the region.

Related work
We provide background on the importance of geolocated ac-
cessibility maps and situate our work within prior Project
Sidewalk deployments and literature in POI accessibility.

The need for geolocated accessibility maps The Clean
Air Asia study (Clean Air Asia 2011) reviewed pedestrian
infrastructure in six Indian cities through walkability sur-
veys, interviews, and policy reviews . It found that sidewalks
were often missing or poorly maintained, especially near
public transport hubs and schools. A recent study in Kochi

used the Continuous Pedestrian Movement (CPM) approach
analysis points of disruption in continuous flow of walking
from unsafe conditions, obstacles or crossings and showed
that existing evaluation methods overlook delays and con-
flicts in pedestrian movement, especially for vulnerable
users (Sangeeth and Roy 2025). A Supreme Court Commit-
tee (2023) audit of Delhi’s 1,400 km of Public Works De-
partment (PWD) roads found that 84% of footpaths failed
to meet IRC standards, and only 25% were usable (The
New Indian Express 2024). In Bengaluru, walkability data
from 2023 (OpenCity Urban Data Portal 2023) showed that
pedestrians made up 32% of all road deaths. Many walk-
ability surveys (Krambeck 2006; Dasari and Gupta 2023;
Bharucha 2017) focus on footpath width, cleanliness, or
shade, but accessibility for persons with disabilities such as
the presence and quality of curb ramps and pedestrian lights
is rarely assessed in detail. Thus, while these studies show-
case the criticality of the problem, an in-depth localized ac-
tionable information is required for implementation by the
urban local bodies, which is currently missing.

Adaptation efforts Adaptation of accessibility mapping
tools such as Project Sidewalk to new geographies requires
contextual adjustments in both interface design and labeling
strategy. Prior adaptations in cities across the United States,
Mexico, and the Netherlands demonstrated that while the
underlying platform for virtual sidewalk auditing remains
robust, cross-country deployments demand localization of
examples, severity ratings, and surface-type taxonomies to
match local infrastructure characteristics and cultural con-
texts (Saha et al. 2019; Froehlich et al. 2020). For instance,
the Mexico City adaptation required retraining annotators
using street-level imagery reflecting informal sidewalks and
heterogeneous curb designs (Froehlich et al. 2020).

Specifically, the use of LLMs is also becoming prevalent
in annotation use cases. They are commonly used as auto la-
belers (LLM assigns labels directly), as assistants that give
guidance or hints to human annotators, and as part of label
aggregation where LLM outputs are combined with crowd
labels to improve quality (Tan and contributors 2024; Li
2024). The closest work uses LLM based annotation guid-



ance for NLP tasks while taking inter-annotator agreement
from 0.593 to 0.84 (Bibal et al. 2025). Since our task still re-
quires the human annotator to parse through 3D space using
street views and create annotations, measurement of label
agreement directly is harder. However, we use a likert scale
for users to annotate the perceived utility of guidance in dif-
ferent scenarios.

Studying place accessibility Recent studies increasingly
employ POI-centric audits to evaluate walkable access to
essential urban services such as schools, hospitals, and
transit stops. Using circular or network-based walkabil-
ity buffers—typically 400 m to 1 km—they estimate how
physical conditions and sidewalk continuity shape pedes-
trian access (Wang, Chen, and Liu 2018; Xu et al. 2021;
OpenCity 2023). These spatially explicit approaches reveal
micro-scale inequities that aggregate citywide indicators of-
ten overlook. Building on this framework, we assess acces-
sibility within 1 km walkable buffers around representative
POIs in Chandigarh, linking sidewalk-level annotations to
sector-level accessibility metrics. We also ensure that there
is sufficient GSV coverage around the POIs before selecting
the sector.

The context difference
The location
Chandigarh is one of the earliest planned cities in India.
The city was originally planned for about five lakh people
and covered an area of around 70 square kilometers, which
has now expanded to about 113 sq km (Chandigarh Ad-
ministration 2019a). Its layout follows a sector-based grid,
with sectors numbered from 1 to 56, and was meant to be
a self-contained city surrounded by a rural belt to control
future growth. The residential sectors were planned as self-
sufficient neighborhoods, each with schools, shops, com-
munity centers, and parks. This clear and organized plan-
ning makes Chandigarh an ideal case for studying accessi-
bility and walkability. The road network of Chandigarh is
designed in a grid-iron pattern and is based on seven types of
roads, called the 7 Vs (Les Sept Voies) (Patle 2021; Chandi-
garh Administration 2019b). These roads create a clear hi-
erarchy for both vehicles and pedestrians from fast traffic
carrying roads in V1 to pedestrian paths and cycling tracks
in V7 running through carefully planned green areas. Our
observation has been that reachability of POIs depends on a
mixture of these road types and therefore, accessibility focus
is required across road types.

The law
In India, the legal framework mandates provisions for ac-
cessibility through the Rights of Persons with Disability Act
(RPwD) 2016 (Math et al. 2019). Accessibility in the phys-
ical environment has a trickle down effect for all citizens
including those with disabilities. The Harmonised Guide-
lines for Barrier-Free Built Environment (Ministry of Hous-
ing and Urban Affairs (MoHUA) 2016; National Institute of
Urban Affairs (NIUA) 2021) combine legacy manuals into
one practical guide for universal design. These guidelines
give clear standards for planners and local bodies to create

spaces that are accessible to persons with disabilities, the
elderly, and others with limited mobility, promoting more
inclusive cities across India.

Sector Selection
Chandigarh’s Master Plan zones sectors as residential, com-
mercial, institutional, or mixed. The city has three phases-
Phase I (1-30), Phase II (31-46), Phase III (48-56, 61, 63)-
plus nearby areas like Khuda Alisher, Manimajra, and Ra-
jindra Park. Almost 39 sectors in Phases I–II are residential;
key institutional hubs include Sectors 1, 12, 14, 17 (Capitol
Complex, PGI, Panjab University). Major commercial areas
cluster in Sectors 26, 34, 43 (City Centre and Sub-City Cen-
tres). Phase III is mainly residential with mixed-use corri-
dors along Vikas Marg.

To select representative sectors for our study, we used
both land-use classification and population distribution. We
began with ward-wise population data and mapped it to the
sector level by assuming that population is uniformly dis-
tributed within each ward. The sector with the highest res-
idential population was found to be Sector 45, which falls
in Phase II. This result aligns with the Master Plan, which
identifies Phase II as a high-density zone planned to accom-
modate a larger residential population.

For the institutional category, we compared three ma-
jor institutional sectors: Sector 12 (hospital area), Sector 1
(court complex), and Sector 14 (university campus). Among
these, the hospital sector (Sector 12) was selected as the rep-
resentative institutional area, since the institution Postgradu-
ate Institute of Medical Education and Research (PGIMER)
attracts large numbers from resident as well as traveling pop-
ulation. The sector spans approximately 277 acres (1.12 sq
km) and contains multiple hospital buildings for different
medicine specializations.

We used Foursquare Places data (Foursquare Labs Inc.
2024) to identify commercial areas. From its 1,000+ POI
categories, we selected those common in India—restaurants,
retail shops, gyms, cafés, malls, beauty salons, repair ser-
vices, and entertainment spaces and counted them in Sectors
26, 34, and 43. The totals were 162 (Sector 26), 171 (Sector
34), and 164 (Sector 43). Since Sector 34 had the most com-
mercial POIs, we chose it as the representative commercial
sector. These three sectors—45 (residential), 34 (commer-
cial), and 12 (institutional) cover about 40 km of sidewalks
(after POI filtering; see next section). This set lets us com-
pare pedestrian accessibility across land-use types around
POIs using the Project Sidewalk tool.

Points of Interest selection
For extracting Points of Interest (POIs) over all sectors, we
divided each sector into small spatial segments and sampled
one point from each segment. For every sampled point, we
used the Google Places API to collect all POIs within a 400-
meter radius. This process initially gave us 23,136 POI en-
tries. Since nearby points often returned the same POIs, we
removed duplicates based on their latitude and longitude val-
ues. After cleaning, we obtained 10,128 unique POIs. From
the final dataset, we identified 98 distinct POI types across



Category Included POI types

Financial services bank, atm, finance, accounting
Education primary school, school, secondary school, university
Healthcare doctor, hospital, pharmacy, health, dentist, drugstore
Public service local government office, political
Transport parking, car rental, car repair
Food cafe, food, bar, bakery, restaurant, grocery or supermarket, meal takeaway
Religious place of worship, hindu temple
Utilities gas station
Commercial store, beauty salon, clothing store, electronics store, florist, furniture store,

general contractor, gym, hardware care, real estate agency, hardware store,
travel agency, storage, lawyer, lodging, moving company, home goods store

Social park, movie theatre

Table 1: POI categories and included types.

the selected sectors. We grouped them into 10 categories us-
ing OSM-style tags; the category definitions and example
subtypes are shown in Table 1.

To extract walking paths around each POI, we first ex-
plored the local street network using a road graph built with
OSMnx. Each POI served as a starting point, and paths were
traced in all directions up to 1 km using a depth-first search
(DFS) over the network edges. Next, we assessed Google
Street View (GSV) coverage around these paths to ensure
visual data availability for annotation. For every POI, we
built a 1 km buffer and divided it into small square cells
(about 60–80 m). The centroid of each cell was used to query
the nearest available GSV location. Cells with valid cover-
age were marked as accessible, and their geometries were
merged to form a coverage area. We created a GSV cover-
age map using the Street view API (Google 2025) We then
retained only the path segments where at least 75% of the ge-
ometry overlapped with Street View coverage. These filtered
paths formed the final set used for accessibility labeling and
analysis.

Adapting Project Sidewalk to India
Sidewalk accessibility in Indian cities differs not only in
quality but in form. Pedestrians frequently walk on shared
carriageways, informal shoulders, or discontinuous foot-
paths rather than standardized sidewalks; curb ramps are
rare, surface transitions are improvised, and vendor stalls,
drainage channels, and parked two-wheelers regularly oc-
cupy pedestrian space on sidewalks. These conditions make
several accessibility barriers highly visible in India that
may not be present in prior Project Sidewalk deployments,
while elements such as ADA-style curb ramps or consistent
pedestrian signals—which are central to the original inter-
face—appear infrequently or in heterogeneous forms.

These characteristics of the Indian context raised two key
adaptation needs:

• Label mismatch: Several default labels, tags, and exam-
ple images did not clearly apply to the types of pedestrian
barriers visible in Chandigarh’s street imagery.

• Ambiguity in what to annotate: New annotators strug-
gled to decide which labels were appropriate on streets

without formal sidewalks or where walking space was
visually ambiguous.

To address these issues, we introduced two corresponding
adaptations. First, we modified the interface by updating la-
bel names, tags, and example images to better reflect Indian
streetscape conditions—for instance, replacing the “Curb
Ramp” label with a broader “Curb Style” category that cap-
tures sloped, stepped, or improvised curb transitions. Sec-
ond, we integrated a visual language model (VLM)-assisted
mission guidance system with Project Sidewalk that pro-
vides brief, context-aware prompts at the start of each street
segment, helping annotators understand which accessibility
features are likely to appear and what to focus on.

These changes retain the core crowdsourcing workflow of
Project Sidewalk while making the tool more aligned with
the infrastructural and visual characteristics of Indian cities.

Interface Redesign
We describe each adaptation below, beginning with changes
to the user-facing interface, followed by the integration
of VLM-based guidance. To align the platform with the
types of pedestrian barriers commonly encountered in In-
dian streetscapes, we adapted the Project Sidewalk interface
through targeted changes to the labeling schema, tag vocab-
ulary, and example imagery. Our modifications focus on (i)
renaming or restructuring labels to better capture the range
of infrastructure conditions observed in the Indian context,
and (ii) localizing the tag set and visual examples shown to
annotators.

Curb ramps in India vary significantly in style, quality,
and construction—ranging from formal concrete ramps to
improvised slopes, stepped transitions, or partial modifica-
tions. The original label, which focused on the presence
or absence of a standardized ramp design, did not ade-
quately capture this diversity. Thus, the Curb Ramp label
was adapted to Curb Style which allows annotators to de-
scribe how the pedestrian path transitions to the road sur-
face, including sloped edges, stepped drops, broken curbs,
or drainage gaps. This reframing maintains the intent of
the original label—assessing whether curb transitions are
navigable—but does so in a way that accommodates the
variability observed in local infrastructure. As illustrated in



(a) Mapping of original U.S. labels to the adapted India label set,
showing retained, modified, added, and removed categories.

US: Low US: Medium US: High

India: Low India:
Medium

India: High

(b) Low/medium/high severity examples for curb transitions in the
U.S. (top) and India (bottom).

Figure 2: Adaptations to the Project Sidewalk interface for deployment in India. (a) Overview of label-set changes, showing which categories
were retained, removed, renamed, or newly introduced to reflect Indian pedestrian infrastructure. (b) Revised severity examples illustrating
how the original U.S. Curb Ramp label maps to the broader Indian Curb Style category, while preserving the three-level severity scale.

Figure 2, the replacement of the original Curb Ramp la-
bel with the India-specific Curb Style label is paired with
updated low/medium/high severity examples drawn from
Chandigarh, ensuring that the interface preserves the core
annotation workflow of Project Sidewalk while aligning vi-
sual guidance with the local streetscape conditions.

Other labels were retained but updated through additions
or removals of tags. For example, the Obstacle in Path la-
bel now includes India-specific obstructions such as street
vendors, drainage channels, parked two-wheelers, and tem-
porary construction debris, while tags less relevant to the
Indian setting (e.g., fire hydrants, mailboxes) were removed.
The Surface Problem label was expanded to include condi-
tions such as loose brick, mud, and unpaved shoulders. The
No Sidewalk label was also revised to distinguish between
streets with no available pedestrian space and those where
space exists but is unusable due to clutter or encroachment.
Table 2 summarizes these interface changes, showing which
tags were retained, added, or removed for each label.

All example images shown in hover tooltips were re-
placed with images from streets in Chandigarh to reduce
annotation ambiguity and make severity judgments more in-
tuitive. These updates preserve the overall structure of the
Project Sidewalk interface while ensuring that the taxonomy,
visual examples, and annotation expectations reflect condi-
tions commonly seen in Indian streetscapes.

VLM-Assisted Mission Guidance
To reduce the cognitive load on annotators and improve the
consistency of labeling in a new geographic context, we
introduce an AI-driven mission guidance feature that pro-
vides brief, context-aware instructions at the start of each
street segment. Annotators in India encounter highly vari-
able pedestrian environments—ranging from formal side-
walks to shared pedestrian–vehicle corridors—making it
difficult for new users to infer which labels are relevant with-
out additional support. The goal of the guidance is not to
automate labeling, but to supply just-in-time cues that help
annotators decide what to look for before beginning a task.

We used Gemini’s gemini-2.5-flash model to gen-
erate guidance, which is triggered under three conditions:

(a) Crosswalk:
Paint Fading

(b) Curb Style:
Low Severity

(c) No Sidewalk:
Bike Lane

(d) Missing Curb
Ramp (Crosswalk)

(e) Missing Curb
Ramp

(Intersection)

(f) Obstacle: Cart

(g) Obstacle: Tree (h) Surface
Problem: Gravel

(i) Surface
Problem: Mud

Figure 3: Representative examples of adapted label categories and
respective tags in the Indian context. Images were sampled from
annotated segments in Chandigarh and illustrate the diversity of
visual conditions that motivated the interface redesign.

(1) when a mission begins, (2) when the annotator moves
to a new street segment, and (3) when the user selects the
Jump option to relocate to a different part of the city. Each
guidance message is produced from two inputs: the Open-
StreetMap (OSM) road type for the current segment (e.g.,
residential, secondary, tertiary) and the first and last Google
Street View (GSV) panoramas associated with that segment.
These panoramas are automatically retrieved, encoded, and
passed to the model alongside a structured prompt that in-
structs the VLM to generate practical, India-aware annota-
tion advice.

The use of road type is intentional: in Indian cities,
residential roads often lack dedicated sidewalks, whereas
primary and arterial roads are more likely to have raised
walking space, curb infrastructure, or marked crossings.



Label Retained Tags New Tags Removed Tags

Curb Ramp (US) — — Narrow, steep, points into traffic, not
enough landing space, missing tac-
tile warning, pooled water

Curb Style (India) — not level with street, pooled water,
not visible, debris

—

Missing Curb Ramp unclear if needed, alternate route
present, no alternate route

— —

Obstacle in Path tree, pole, vegetation, parked cycle,
construction, sign, stairs

parked car, carts, drainage, electric
box

narrow, parked bike, garbage, fire
hydrant, mailbox, recycle bin

Surface Problem bumpy, cracks, grass, narrow, un-
even/slanted, height difference, cob-
blestone, sand/gravel, broken

sand/gravel/mud brick, utility panel, debris, rail

No Sidewalk ends abruptly, street has no side-
walk, pedestrian lane marking, grav-
el/dirt road

too dirty/cluttered shared pedestrian/car space, street
has a sidewalk

Crosswalk paint fading, broken surface, uneven
surface, bumpy, very long crossing,
brick/cobblestone

— rail/tram track

Pedestrian Signal hard to reach buttons, one button,
two buttons, tactile audible buttons

— —

Table 2: Label and tag adaptations made to Project Sidewalk for deployment in Chandigarh, India. Curb Ramp is removed and replaced with
Curb Style to support the heterogeneous curb transitions found in Indian streetscapes. Retained tags are shown in the second column, newly
added India-specific tags in the third, and tags removed from the U.S. version in gray.

The guidance therefore adapts accordingly—for example,
prompting annotators on residential streets to look for ob-
stacles and surface problems on the road surface itself,
while prompting curb-related or crosswalk-related checks
on higher-order roads. Similarly, supplying both start and
end panoramas reduces misinterpretation caused by abrupt
changes in sidewalk presence, which are common within
short distances in India.

The output is a short, natural language instruction dis-
played in a popup and in a persistent status panel above the
minimap as shown in Figure 1c. It does not create labels, but
instead orients annotators toward the most relevant label cat-
egories for that segment, based on the India-adapted labeling
interface described in the previous section.

Table 3 shows sample guidance messages alongside the
corresponding input panoramas used to generate them. To
assess the quality of these messages, we evaluate each one
along three dimensions: Relevance (how well the guidance
reflects what is visible in the images), Usefulness (the extent
to which the message provides actionable information for
annotation), and Accuracy (whether the guidance is factually
correct given the street context). Each dimension is rated on
a 5-point Likert scale.

Accessibility Metrics

We adapt the approach of the AccessScore metric from prior
work on sidewalk accessibility mapping (Li et al. 2022) but
simplify it for our context. Our goal is to quantify how acces-
sible a sidewalk segment is based on the presence and sever-
ity of labeled features such as curb ramps, surface problems,
obstructions, and crossings. We calculate Access Scores at
three levels: street segment, POI, and POI-across-sector.

Accessibility Scoring
Each labeled segment is represented by an accessibility fea-
ture vector xa segment. To account for severity, we assign
each label a weight, forming a weight vector wa with values
between 0.2 and 1.0, converted from severity ratings 1–3
(0.2 for severity 1, 0.6 for severity 2, and 1.0 for severity
3). For example, a surface problem with severity 3 (non-
passable) receives a weight of 1.0. Higher weights indicate
more severe conditions and thus lower accessibility. Positive
features (such as curb ramps and marked crossings) increase
the score, while negative ones (such as surface problems)
reduce it.

Segment-level accessibility score (SegScore) The
segment-level accessibility score is computed as the
normalized dot product of the feature and significance
vectors:

ASsegment =
1

1 + e−ws·xa

POI-Level accessibility score (POISecScore) Beyond
single segments, we compute POI-level accessibility to see
how access varies around key destinations. For each POI,
we take all sidewalk segments within a 1 km radius in the
same sector and compute a length-weighted average of their
segment scores.

ASPOI =

∑n
i=1 ASi × Li∑n

i=1 Li

where ASi is the accessibility score of segment, Li is its
length, and n is the total number of segments around the
POI

POIs-across-sector accessibility score (POIScore) To
estimate across-sector accessibility, we combine the POI-
level scores. We weight each category by its number of POIs



Panorama Road Type VLM Guidance Message

Tertiary

Since this is a tertiary road, expect a constructed sidewalk on at least one side.
Focus on the paved sidewalk (right side) for broken pavers, uneven tiles, or
tree-root damage and mark surface problems where the bricks are lifted or
missing. Watch for obstacles like the utility pole and construction barricades
blocking the walkway. Only check for curb ramps or missing curb ramps at
visible crosswalks or intersections further along the segment.

Secondary

This is a secondary road, so expect a proper sidewalk along the edges rather
than using the road as the pedestrian path. Scan both sides for a constructed
walkway vs. grass verge to decide if “No Sidewalk” applies. Prioritize checking
for missing curb ramps at crosswalks, intersections, and where the paved path
meets the road, and note any obstacles like poles or signage blocking the
walking space.

Residential

This is a narrow residential street, so treat the road itself as the pedestrian path.
Focus on obstacles like parked scooters, plants, and uneven road edges, and
note any surface problems where the pavement is broken or gravel replaces
asphalt. Only check for curb ramps at visible crosswalks or intersections, but
otherwise prioritize obstacle and surface labeling over curb-related tags.

Table 3: Examples of VLM-generated guidance messages paired with roadway contexts. Each message instructs annotators on what to focus
on based on the road type visible in the panorama.

and take the weighted average to obtain the across-sector
POI accessibility score:

ASacrosssector,poi =

∑n
j=1 ASPOIj ×Npoij∑m

j=1 Npoij

where ASPOIj is the accessibility score of POI j and Npoij
is the count of POIs of that type across all the sectors.

Analysis

We evaluate two components of our system: (1) the effec-
tiveness of VLM-generated mission guidance for support-
ing human annotation, and (2) the accessibility outcomes
produced through our POI-centric analysis of Chandigarh.
Together, these evaluations assess both the human–AI inter-
action layer and the urban accessibility insights enabled by
the tool.

VLM-Assisted Mission Guidance Analysis To evaluate
the quality of AI-generated guidance we rated 50 street seg-
ments with three annotators (R1–R3) on Likert (1–5) for
relevance, accuracy, and usefulness. We report means and
variation to show overall quality, Spearman to see if raters
ranked segments the same way, and quadratic-weighted κ to
check reliable agreement on the Likert scale (crediting near
misses). We computed basic stats (mean, SD, min, max) for
each criterion. As shown in Table 4 ratings were strong over-
all: relevance was highest with little disagreement, and accu-
racy and usefulness were also high but showed slightly more
variation, implying a few guidance messages were less pre-
cise or helpful.

Criterion Mean SD Min Max N

Relevance 4.97 0.26 2 5 150
Accuracy 4.40 0.71 2 5 150
Usefulness 4.61 0.70 1 5 150

Table 4: Descriptive statistics of human ratings for VLM-generated
guidance.

We assessed rating consistency using pairwise Spearman
correlations (ρ) among the three annotators. As shown in
Table 5, Relevance was almost uniformly high (R1 and R3
were identical, ρ = 1.0). For Accuracy, R3 aligned mod-
erately with the others (ρ = 0.38-0.44), while R1 and R2
showed weaker alignment. For Usefulness, only R2 and R3
showed a moderate match (ρ = 0.45), suggesting similar
judgments, whereas R1’s ratings differed slightly.

We assessed exact agreement with quadratic-weighted
Cohen’s κ, which rewards near-matches on the 1–5 Likert
scale. As shown in Table 5, for Relevance R1–R3 had perfect
agreement ((κ = 1.0), while pairs with R2 were near chance
(likely due to near-constant ratings). For Accuracy, agree-
ment was moderate for R2–R3 (κ = 0.49), fair for R1–R3 (κ
= 0.38), and weak for R1 R2. For Usefulness, R2–R3 showed
substantial agreement (κ = 0.67), whereas R1’s agreement
with others was lower. Overall, κ indicates R2 and R3 were
most consistent, especially on usefulness, while R1 varied
more. Overall, annotators rated the VLM guidance as highly
relevant, mostly accurate, and generally useful. There was
some variation on accuracy and usefulness, so the guidance
can be made more precise. Raters mostly agreed with each
other, suggesting the guidance was easy to understand and
helpful for labeling.

POI analysis At each panorama, we marked ‘no sidewalk’
only when that spot’s sidewalk was disrupted, broken, or
missing—this is a local label and does not mean the whole
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Figure 4: Sector POI Accessibility (POISecScore) and across-sector POI accessibility (POIScore). (a) Heatmap of sectors (rows) vs. POI
categories (columns), (b) Category-wise summary of POI scores aggregated across sectors.

Figure 5: From left to right: SegScore heatmaps for sectors 12, 34, and 45 show the places of interest and the segscores for road segments. It
highlights major road segments where accessibility improvements are required.

Crit. Pair Spearman ρ p Weighted κ

Relevance R1–R2 n/a n/a 0.00
Relevance R1–R3 1.000 <10−6 1.00
Relevance R2–R3 n/a n/a 0.00
Accuracy R1–R2 -0.209 0.146 -0.113
Accuracy R1–R3 0.384 0.0059 0.378
Accuracy R2–R3 0.444 0.0012 0.487
Usefulness R1–R2 -0.149 0.300 0.031
Usefulness R1–R3 0.019 0.895 0.183
Usefulness R2–R3 0.445 0.0012 0.665

Table 5: Pairwise Spearman correlation and quadratic-weighted
Cohen’s κ for human ratings of VLM-generated guidance. “n/a”
indicates non-computable correlations due to constant ratings.

path lacks a sidewalk. Raw scores had a long negative tail, so
we clipped negative outliers at 95th percentile, standardized
(mean 0, var 1), and applied a sigmoid. We then computed
segment scores (SegScore); maps are in Figure 5, where 0
is least accessible and 1 is most accessible. Blue pins show
POIs from 10 categories; numbered circles are POI clusters.

Figure 4a shows Sector POI Accessibility (normalized
computed using the POISecScore equation. It plots sectors
(rows) against POI categories (columns), with color is POI
score (0–1) and in-cell text indicates total road length (km)
for that category in the sector. Gray cells indicate categories

not available in a given sector (no data). Brighter colors de-
note more accessible conditions. Figure 4b summarizes the
category-wise POI scores across sectors.

Sector 45 shows the highest scores for residential, reli-
gious, social, and commercial POIs; other categories need
attention. In Sector 12 (institutional), accessibility is best
around healthcare, but other categories especially utilities
are weak and need work. Sector 34 (commercial) shows
moderate access for commercial POIs, with more improve-
ment needed in other categories. Across sectors, education
and transport score the lowest and should be prioritized.

Discussion and Future work

We adapted Project Sidewalk for Chandigarh, India by con-
textualized labels, example images, and a VLM-based mis-
sion guidance. A three-user test rated the guidance 4.66/5,
indicating practical usefulness. Using the adapted tool, we
audited about 40 km of streets across three sectors and
around 230 POIs, and found 1,644 locations where fixes
could improve access. In our results, commercial areas show
better access overall, while education and public-service ar-
eas are weaker; in the institutional sector, healthcare is rela-
tively accessible but everyday places like transport stops and
food outlets are not. This marks the start of a journey for ac-
cessibility mapping in multiple Indian cities.
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