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Figure 1: The BusStopCV human+AI data collection workflow: a real-time YOLOv8 CV model automatically detects bus stop 
features such as shelters and benches in streetscape imagery (left). Users can verify detections via lightweight click interactions 
(middle) or manually label features not detected by the model (right). Verified bounding boxes turn from dashed to solid lines. 
See demonstration video in supplementary materials. 

ABSTRACT 
Public transportation provides vital connectivity to people with dis-
abilities, facilitating access to work, education, and health services. 
While modern navigation applications provide a suite of informa-
tion about transit options—including real-time updates about bus 
or train arrivals—they lack data about the accessibility of the tran-
sit stops themselves. Bus stop features such as seatings, shelters, 
and landing areas are critical, but few cities provide this informa-
tion. In this demo paper, we introduce BusStopCV, a Human+AI 
web prototype for scalably collecting data on bus stop features 
using real-time computer vision and human labeling. We describe 
BusStopCV’s design, custom training with the YOLOv8 model, and 
an evaluation of 100 randomly selected bus stops in Seattle, WA. 
Our findings demonstrate the potential of BusStopCV and highlight 
opportunities for future work. 
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1 INTRODUCTION 
Public transportation systems provide many benefits, such as mit-
igating traffic congestion [9], reducing pollution [9], enhancing 
economic growth [6], and improving health and well-being [16]; 
however, significant barriers continue to limit how people with dis-
abilities use public transportation [26]. While a city’s entire transit 
system requires careful assessment—from getting on a train or bus 
to finding accessible and safe seating—the transit stop itself is often 
overlooked, perceived as a mere waiting point instead of an integral 
part of mobility [1]. 

Modern navigation tools such as Google Maps [8] and Apple 
Maps [4] offer real-time bus information but fall short in providing 
data on essential bus stop accessibility features like seating avail-
ability, shelter provisioning, conditions of the landing area, and 
sidewalk connectivity [5]. Some cities publish open data about bus 
stop features; however, this practice is bespoke and limited by data 
collection costs and a lack of data standards [5]. In this demo paper, 
we introduce a new human+AI approach [3] to semi-automatically 
gather data on bus stops using real-time computer vision (CV) and 
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Figure 2: The BusStopCV interface showing automatic detections in dotted bounding boxes, user-confirmed automatic detections 
in solid bonding boxes, and a manually applied label (trash can) as a circular target. 

manual verification/labeling (Figure 1). Our method seeks to stream-
line data collection, foster standardization, and promote greater 
accessibility for all public transportation users. 

Our work builds on recent efforts in automatic streetscape anal-
ysis using deep learning [2, 7, 14, 15, 17, 25] as well as prior hu-
man+AI streetscape labeling tools for urban accessibility [12, 13]—all 
which demonstrate the potential of emerging CV models in semi-
automatically identifying accessibility features in street scenes. In 
contrast to this growing literature, which uses offline computer 
vision for analysis, we introduce a novel tool, BusStopCV, that auto-
matically identifies bus stop features in real-time using a custom-
trained YOLOv8 model running in the browser. Human labelers 
can then verify and correct automatic detections and add manual 
labels. By running a real-time CV model directly in the browser, 
BusStopCV operates analogously to emerging real-time CV systems 
in augmented reality (e.g., on wearable headsets); however, with 
BusStopCV, the pixel data is streamed from precaptured streetview 
panoramas rather than a live camera. 

Most related to our approach is the manual labeling tool, Bus Stop 
CSI [10, 11], which showed how minimally trained crowd workers 
could label bus stop landmarks with 87% accuracy in interactive 
streetview imagery. While promising, Bus Stop CSI focused on 
identifying navigational landmarks for blind and low-vision pedes-
trians and did not include AI-assisted labeling. We draw upon Bus 
Stop CSI and related tools (e.g., Project Sidewalk [20]) for a similar 
streetview labeling interface with the addition of real-time AI. As 
an initial prototype, we focused on four bus stop features: shelters, 
seating, signage, and trash cans, which were informed by transit 
accessibility literature [5, 18, 21] and our own formative interviews 
with 29 people. We will include landing area size, shade availability, 
sidewalk connectivity, and beyond in our future work. 

To evaluate BusStopCV, we conducted two studies: first, a tech-
nical performance evaluation of the custom-trained YOLOv8 model 
across 661 bus stop images, demonstrating a F1 Score of ~0.9 for 
shelters, seating, signage, and trash cans, respectively. Second, a 
pilot study with one user who used the tool to label 100 bus stop 
locations randomly sampled in Seattle, WA. Here, BusStopCV was 
able to automatically identify 87.5% of shelters, 90.7% of seating, 
85.23% of signage, and 82.86% of trash cans. The user only needed to 
correct 12 false positives (0.13 per bus stop) and 28 false negatives 
(0.31 per bus stop). 

In summary, our contributions include: (1) A novel human+AI 
tool that uses real-time computer vision in the browser to facilitate 
labeling bus stop features in streetscape imagery; and (2) Initial stud-
ies demonstrating the potential of our approach (e.g., high accuracy 
and responsiveness) while highlighting key areas for improvement. 
The BusStopCV tool is open source and available on Github1 . 

2 THE BUSSTOPCV PROTOTYPE 
The overarching goal of our work is to develop a scalable crowd-
sourcing system that allows non-experts to quickly and accurately 
label bus stop accessibility features. The collected geo-located data 
can then be used to populate city databases (e.g., [24]), be integrated 
into modern mapping tools (e.g., so users can query the existence of 
bench availability or shelters), and support future transit planning 
and inclusive infrastructural development. 

To design BusStopCV, we first reviewed literature on bus stop 
features [5, 18, 21] and synthesized key attributes contributing to 
accessibility including: (1) urban wayfinding and navigation: the 
presence and type of signage, connectivity to accessible sidewalks; 
(2) safety: lighting, high visibility; (3) street furniture: newspaper 

1BusStopCV online repository: https://github.com/ProjectSidewalk/BusStopCV 
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Shelter Seating Signage Trash Can 

Method Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score 

BusStopCV 92.11% 87.5% 0.897 88.64% 90.7% 0.897 97.4% 85.23% 0.909 93.55% 82.86% 0.879 
YOLOv8n 0 0 N/A 100% 20.51 0.34 0 0 N/A 0 0 N/A 
YOLOv8l 0 0 N/A 100% 25.64 0.408 0 0 N/A 0 0 N/A 

Table 1: The technical performance results of the custom-trained YOLOv8 BusStopCV model on bus stop feature task on 
precision, recall, and F1 score. 

boxes, poles, and trash cans, which can provide navigational land-
marks [10] but can also impede travel if not appropriately posi-
tioned (4) comfort: seating, shelter, tree shade; (5) landing areas: 
accessible landing areas with accessible travel paths to the sidewalk. 

To gain further insights on the needs and opportunities for tran-
sit accessibility tools, we performed formative interviews with 23 
professionals, including metropolitan planners, occupational thera-
pists, travel trainers, community service providers, realtors, ADA 
compliance professionals, and people who identified as having a 
disability. Additionally, six people with disabilities (PWD), who use 
public transportation to travel to or look for work, participated in 
a focus group about end product utility. All participants confirmed 
that currently available tools and data (e.g. Google Maps) were inad-
equate for incorporating accessibility into transportation planning 
or for trip-planning purposes. Our analysis identified the desire 
for up-to-date transit accessibility data and a general acceptance of 
using AI models for collecting data. Participants identified desired 
features for future development, such as accessible design of desti-
nation entrances and safe drop-off spaces for ramp deployment. 

Informed by these experiences and prior work in streetscape 
labeling tools [10, 12, 20, 25], we iteratively designed BusStopCV, 
starting with sketches and Figma mockups before implementing the 
tool in JavaScript (frontend) and Java (backend). Unlike previous 
streetscape labeling tools, we centered the human+AI workflow 
around an AI-first approach—leveraging recent advances in CV to 
automatically identify and highlight bus stop accessibility features 
in real-time. Human input is then utilized for manual verification 
and correction (Figure 1). As initial work, we incorporate four label 
types—shelter, seating, signage, trash can—with plans to expand. 

To use BusStopCV, users are "virtually transported" to bus stop 
locations in an immersive GSV-based labeling UI (Figure 2). As 
users explore the environment in GSV, our real-time CV processes 
the image and automatically labels bus stop features (Figure 2) with 
a bounding box and confirmation widget. Users can confirm (✓) or 
deny (×) each detection, and add their own labels at any point to 
correct false negatives. As the user pans, labels appear to "stick" 
to the underlying labeled feature, and the CV model is rerun on 
the current field of view to potentially add new automatic labels. 
Once all automatic labels have been verified and false negatives 
corrected (e.g., by adding manual labels), BusStopCV produces a 
geo-located list of bus stop locations and access features, which can 
be used in transit analytics and route planning tools. 

2.1 The BusStopCV Model 
To construct our CV subsystem, we first custom-trained a YOLOv8 
model by randomly selecting 200 Seattle bus stops drawn from the 

King County GIS (KCGIS) Open Data repository [24]. We ensured 
that all bus stops were marked active, geographically distributed, 
and included a variety of bus stop types with various shelters, 
seating, and signage. We (virtually) visited each location in GSV 
and took screenshots from varying distances and angles to ensure 
a diverse training sample. In total, we collected 661 images from 
92% of the selected bus stop locations (one image per panorama). 
The remaining 8% of the bus stops were either completely occluded, 
did not have a bus stop, or failed to load the GSV panorama. 

To label the training images, we used the image annotation tool 
Roboflow [19]. We traced the outline of the four label classes in 
each image and exported the data to YOLOv8 format. In total, our 
labeled dataset contained 1,707 annotations across the four label 
types: 433 shelters, 383 seats, 536 signs, and 355 trash cans. 

Using this dataset, we trained a YOLOv8 model from scratch 
(no pretraining) with the Ultralytics [22] platform. For the settings, 
we used an image batch size of 16, a learning rate of 0.01, three 
warmup epochs, and defaults for other hyperparameters [23]. We 
employed the Stochastic Gradient Descent optimizer and 150 epochs 
to optimize the model’s performance. 

To train the model, we performed a random 70/20/10 split on the 
661 images for training, validation, and testing. We compared our 
model to two pre-trained baseline models (YOLOv8n & YOLOv8l) 
using three standard CV metrics: Recall, Precision, and F1 score. As 
Table 1 shows, our model achieved impressive F1 scores of nearly 
0.9 for all label classes while the baseline models were unable to 
detect any shelters, signage, or trash cans. 

After validating model performance, we integrated the custom-
trained YOLOv8 model into BusStopCV using the Open Neural 
Network Exchange (ONNX) runtime standard. Importantly, we 
aimed to implement a real-time CV engine such that the human and 
AI could work seamlessly together. Whenever the GSV pano loads 
or the user pans, we send a downsampled (640x640) image of the 
user’s current streetscape view to the model, which then returns a 
list of identified features, bounding boxes, and confidence intervals. 
We used an IoU threshold of 0.7 and a confidence threshold of 
0.4. During informal experiments, we found a processing time of 
250-500ms. The size of the model was 12.2 MB. 

2.2 Pilot Study 
To examine the full BusStopCV workflow with CV detections and 
human verification/labeling, we conducted a pilot study with a 
single participant drawn from our research team who had not used 
the tool before. For the study dataset, we randomly selected 100 
additional bus stops in Seattle, WA— 32 had at least one shelter, 
according to official KCGIS data [24]. 
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Figure 3: Representative examples of the 40 mistakes made by the YOLOv8 model during the BusStopCV pilot test: 12 false 
positive and 28 false negatives. 

To begin the study, the participant was instructed to verify and/or 
manually label all bus stop features—shelters, seating, signage, and 
trash cans—at each bus stop. If a bus stop was not immediately 
visible when the GSV scene loaded, participants were told to ignore 
errant automatic detections from the model and explore the area 
until the bus stop was found. If multiple bus stops were visible, we 
asked that only the closest bus stop be labeled. Finally, we asked 
that each feature be labeled only once (e.g., the user need not label 
the same bus stop feature from multiple GSV panoramas). 

Once a bus stop was fully labeled, the participant clicked the 
"next stop" button (Figure 2). All labeling was conducted in a single 
study session on a 13-inch MacBook Pro with a 2.3GHz Quad-
Core Intel Core i7 (2560x1600 resolution) and an Intel Iris Plus 
1536MB graphics card running macOS Ventura 13.4 and Chrome 
v114.0.5735.198 (x86_64) in a maximized window state. The pilot 
study lasted roughly one hour and 15 minutes (approximately 1.2 
bus stops/minute). 

Study Results. In total, the participant successfully labeled 89 
out of 100 initial locations, providing a total of 218 inputs (2.45 per 
bus stop): 178 positive verifications (true positives), 12 negative 
verifications (false positives), and 28 manual labels (false negatives). 
For the 11 locations that were unlabeled, either the bus stop was not 
visible because of occlusion (e.g. a stationary bus), it could not be 
found or the GSV panoramas failed to load. For 86 of the 89 labeled 
bus stops, the participant was able to label all features from a single 
GSV panorama; for the other three, the participant needed to move 

Label Type N (TP + FN) TP FN FP Avg. Conf. (TP) Avg. Conf. (FP) 

Shelter 40 35 5 3 95.2% 69.3% 
Seating 43 39 4 5 73.8% 51.0% 
Signage 88 75 13 2 83.4% 64.5% 

Trash Can 35 29 6 2 91.6% 81.0% 

Table 2: Pilot study results for BusStopCV’s custom-trained 
YOLOv8 model showing number of correct labels (N), True 
Positive (TP), False Positive (FP), False Negative (FN), and 
Average Confidence. All FPs and FNs were correctly rectified 
by the user. 

around with GSV navigation to label from alternative views (e.g., 
to avoid occlusion). 

In terms of performance, BusStopCV automatically identified 
~80% of all features with a remarkably low false positive and false 
negative rate. Across the 89 labeled stops, the user only needed to 
correct 12 false positives (0.13 per bus stop) and 28 false negatives 
(0.31 per bus stop) with seating having the highest false positive 
(FP) rate (10.4%) and trash can the highest false negative (FN) rate 
(16.2%). To further examine FP and FN performance, we conducted 
a qualitative assessment of all 40 errors—a representative subset is 
shown in Figure 3). Common sources of error include poor lighting 
(e.g., shadows), occlusion (e.g., a vehicle blocking the bus stop), 
complex backgrounds, and inter-class similarity. 

Because BusStopCV’s YOLOv8 model runs in real-time, we were 
also interested in examining UI responsiveness and perceived lag. 
We found an average inference time—the time it took to process 
a GSV view and return a list of detections as bounding boxes—of 
528ms. The participant stated that the inference delay "was notice-
able but just fast enough to be tolerable." 

3 DISCUSSION AND CONCLUSION 
In this paper, we introduced a new human+AI workflow and tool 
for rapidly and accurately labeling accessibility bus stop features 
in streetscape imagery. Unlike prior streetscape labeling tools [10, 
11, 20], BusStopCV adopts an AI-first labeling approach, which 
minimizes human visual search and labeling time. Through our 
technical performance evaluation, we showed how our custom-
trained YOLOv8 model significantly improves bus stop feature 
detection and our pilot study demonstrated the effectiveness and 
potential of the BusStopCV tool. Below, we reflect on limitations 
and opportunities for future work. 

Limited label types. Currently, BusStopCV is configured to 
detect four features: shelters, seating, signage, and trash cans. How-
ever, we recognize and acknowledge that other elements such as 
lighting, the presence of a landing area, and sidewalk connectiv-
ity [5, 18, 21] are integral to an accessible bus stop. 

CV Implementation Paradigms. When designing BusStopCV, 
we discussed two primary CV implementations: a pre-processed ap-
proach where our CV model would analyze all bus stop streetscape 
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images a priori and a real-time CV approach. The former reduces 
computation on the frontend and increases responsiveness—as the 
bounding boxes would be pre-computed and each bus stop would 
be analyzed once and only once regardless of user panning. How-
ever, the latter is more flexible, enabling our approach to work on 
any newly visited bus stop location. Future work should examine 
these tradeoffs, including frontend hardware requirements (2020 
MacBook Pro used in pilot study) and Internet bandwidth. 

Enhancing Model Ability. The current version of BusStopCV 
lacks the ability to maintain label recognition as the user navigates 
through different views or steps forward in GSV. This means that 
the system does not identify the same bus stop features when the 
viewing angle or position changes. Enhancing the model’s ability 
to ‘understand’ and ‘remember’ label information from contiguous 
panoramas can provide a more seamless user experience. 

3.1 Conclusion 
As early work, this study opens up more questions than it answers. 
Does our human+AI workflow present the best solution for labeling 
urban accessibility features and how can it be improved? Given 
the current constraints on feature selection, how can we expand to 
incorporate a wider array of features, and accommodate a broad 
range of bus stop designs? One potential solution lies in integrating 
BusStopCV into a wider ecosystem of tools, such as Project Side-
walk [20], allowing for a more comprehensive analysis of urban 
spaces. Additionally, how might we best facilitate the recognition 
of features and their relationships to one another in a way that 
impacts a diverse range of users (e.g., individuals with vision or 
mobility disabilities)? Despite the challenges and unanswered ques-
tions, we remain hopeful that our tool can help urban planners, 
policymakers, and advocacy groups foster a more inclusive and 
equitable urban future. Given the expansive availability of GSV 
data, this tool has significant potential to fill the gap in missing bus 
stop accessibility data. 
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