PrototypAR: Prototyping and Simulating Complex Systems with Paper Craft and Augmented Reality

Seokbin Kang¹, Leyla Norooz², Elizabeth Bonsignore², Virginia Byrne³, Tamara Clegg¹, Jon E. Froehlich⁴
Computer Science¹, College of Information Studies², College of Education³, University of Maryland
Allen School of Computer Science and Engineering⁴, University of Washington
{sbkang, leylan, ebonsign, virginia, tclegg}@umd.edu | jonf@cs.uw.edu

ABSTRACT
In this paper, we introduce PrototypAR, an Augmented Reality (AR) system that allows children to rapidly build complex systems using paper-based crafts and test them in a digital environment. PrototypAR combines low-fidelity prototyping to facilitate iterative design, real-time AR feedback to scaffold learning, and a virtual simulation environment to support personalized experiments. Informed by three participatory design sessions, we developed three PrototypAR applications: build-a-bike, build-a-camera, and build-an-an-aquarium—each of which highlights different aspects of our system. To evaluate PrototypAR, we conducted four single-session qualitative evaluations with 21 children working in teams. Our findings show how children build and explore complex systems models, how they use AR scaffolds, and challenges they face when conducting experiments with their own prototypes.

Author Keywords
Tangible interaction; Augmented reality; Learning; Children

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g., HCI):

INTRODUCTION
Complex systems such as combustion engines and the human body are made up of interrelated components that interact to form a holistic, interdependent system [2,23]. Despite their pervasiveness in everyday life, complex systems are challenging to learn and to teach [13,38]. Prior work has shown that students struggle to understand how individual parts of a system affect the system’s operation as a whole [50,59,72], narrowly focus on visible aspects like a system’s structure [33], and have limited access to real examples that could affirm or contradict their understanding [3,13,38].

To address these challenges, prior work has explored the use of interactive computer-based simulations where children can build or manipulate aspects of a system and study differences in simulated results [15,18,38,57]. This approach allows learners to interact with otherwise inaccessible complex systems [33,38], helps reveal and modify their misunderstandings [38], and improves their grasp of how a system functions as a whole [69]. While promising, existing systems are rarely designed for young children (K-5), use traditional mouse-and-keyboard interfaces that limit how models are constructed, and do not scaffold learners through the full design process—from modeling to experimentation.

In this paper, we introduce PrototypAR, an AR-based “smart desk” that allows children to prototype complex systems using familiar paper crafts, to learn about and correct mistakes via real-time AR-based feedback, and to test their creations in a digital simulation environment (Figure 1). PrototypAR’s tangible modeling approach is intended to facilitate rapidly prototyping ideas [46] and to promote collaborative and playful experiences [61]. As a child builds a paper prototype, PrototypAR actively analyzes their work using computer vision to provide in-situ scaffolds via AR visualizations. The AR scaffolds provide design feedback [21,70] and bridge connections to existing knowledge to help children solve problems that otherwise might be too difficult [29]. At any point in the design process, the child can choose

Figure 1. Using PrototypAR, an AR “smart desk” system, two children create paper-based models of a camera system that are displayed virtually on the screen. The children create a lens by cutting blue paper and filling a bar for the focal length, iterate on their models based on the AR scaffolding (in this case, to improve the shape of the lens), and experiment with their models in a digital simulation environment (e.g., taking a picture).

To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

CONF 22, Jan 1 - Dec 31 2022, Authorberg.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-xxxx-yyyy-zzzz/zz.$zz.00.
to test their model in a virtual simulation environment. Because the testing environment is digital, there is broad flexibility in how a design can be simulated and used for scientific inquiry (e.g., testing hypotheses).

As initial work, our research questions are exploratory: What is the interplay between physical prototyping, AR feedback, and virtual simulations? What are the key benefits and challenges of a “smart desk” approach for learning? What aspects of PrototypAR seem to support design practices and complex systems learning? To begin addressing these questions, we designed and developed PrototypAR through three participatory design sessions with 10 children. The sessions enhanced our understanding of how children approach design and experimentation in a mixed-reality environment. We also gained design ideas for AR-mediated scaffolds, including increased support for iterative design and experimentation. Across the sessions, we developed three PrototypAR applications for exploring scientific phenomena and engineering concepts: build-a-bike, build-a-camera, and build-an-aquarium.

To evaluate PrototypAR, we conducted four single-session studies with 21 children who designed and tested the build-a-bike and build-a-camera applications. Through a qualitative analysis of video recordings, questionnaires, and focus group interviews, we found that PrototypAR allowed children to progressively build complex systems models and explore a breadth of designs. Using the AR design feedback and simulations, children were able to repeatedly evaluate their prototypes and examine how different designs influence a system’s function. However, children struggled with designing experiments and interpreting results, which led to partial understanding or misconceptions.

In summary, our contributions include: (i) a novel AR-based prototyping system for children that supports paper-based modeling and simulation of complex systems; (ii) findings from participatory design studies and user studies that illustrate how children can engage in iterative modeling and personalized experiments as well as identify opportunities and challenges; and (iii) reflections on a tangible modeling approach for children’s complex systems learning.

RELATED WORK
PrototypAR is informed by learning and design theories, educational technology for complex systems learning, and HCI approaches to interactive prototyping tools.

Theoretical Underpinnings
Children often see complex systems at a macro, "black box" level of visible inputs and outputs, so that knowledge of internal components and mechanisms remains inscrutable (e.g., [33]). Our work focuses on helping children learn about complex systems through design and experimentation, and is informed by three theoretical constructs.

First, to raise children’s awareness of the interrelated elements that comprise complex systems, PrototypAR operationalizes the Structure-Behavior-Function (SBF) framework [23,33], which breaks complex systems into three parts: structure, elementary components and their relationships; behavior, the how structure elements work individually and together; and function, the purpose of the system as a whole or its components. With this three-pronged approach, the SBF framework can systematically attune children’s attention to fundamental aspects of complex structures and help them unpack and visualize the typically obscure connections between design and mechanics. For example, a child may initially see a camera as an opaque black box with a viewfinder and magic picture-taking button, but with SBF, the lens emerges as a key component of the camera system’s design, possessing a cylindrical structure, a behavior that focuses light rays at a focal point, and a function to adjust zoom-level and create clear images.

Second, PrototypAR enacts the SBF framework within a constructivist learning environment. Constructionism is a learning theory that emphasizes how learning happens "felicitously" when learners make and tinker with physical artifacts [31]. With PrototypAR, learners apply the SBF framework by designing and constructing component elements of larger systems, experimenting with their designs, exploring solutions, and receiving and sharing feedback.

Finally, to aid design tasks and children’s understandings of complex systems, we use software-realized scaffolding [54], which offers pedagogical assistance via software tools. Scaffolding, for example, can involve prompts, coaching, and suggested task breakdowns, which help enable learners accomplish work that may otherwise be too advanced. Ideally, as a child develops their skillset, scaffolds should be designed to seamlessly fade away [12,25]. We provide computer-mediated scaffolds that facilitate craft modeling, iterative design, and conceptual understanding.

Educational Technology for Complex Systems Learning
Prior educational technology aimed at complex system learning can be broken down into three approaches: (i) interactive simulation such as SimSketch [6] and NetLogo [67] that allows for testing learners’ own ideas about complex systems; (ii) participatory simulation like Hubnet [71] and Beesim [51] in which learners perform the roles of elements in complex systems. and (iii) conceptual representation such as SBFAuthor [22] and SBF Hypermedia [43] that facilitate organizing and representing knowledge about complex systems. While we build on these systems, our work differs in the use of paper craft for modeling, the integration of computer vision and AR to provide real-time scaffolding, and the focus on elementary-age learners.

To enable representing and testing ideas, existing systems offer modeling interfaces that generally follow one of three paradigms: a (1) direct manipulation interface where users drag-and-drop pre-defined primitives of a simulation [14,15,75,77]; a (2) sketch-based interface where users can draw entities to construct a system [6,73,74]; or a (3) programming interface where users specify behaviors of various types of entities [5,57,58]. While each paradigm has
its advantages—for example, sketch-based interfaces can promote self-expression in modeling [6]—they also introduce challenges for novices in that each necessitates learning of application-specific modeling interfaces, limits opportunities for collaboration, and requires learners to have programming skills. Our work takes a tangible approach that uses craft materials—which are already familiar to children—to build models. We envision the tangible interface will facilitate representation of children’s ideas and understandings [46] and promote collaborative learning.

Our approach for supporting tangible interfaces is not new. Physical manipulatives combined with digital feedback—such as Flow Blocks [79] or TimeBlocks [29]—have been considered particularly effective for children’s learning. For example, research on the Flow Blocks system suggests its potential to scaffold children’s ability in understanding an abstract concept of causal effects. TimeBlocks demonstrated that illuminated interactive blocks can facilitate children’s communications about an abstract concept of time. PrototypAR is distinct from prior work in that it supports free-form modeling—rather than manipulating pre-existing tangible artifacts—and provides situated scaffolds via AR—to bridge knowledge gaps and help manage modeling tasks.

Interactive Prototyping Tools

HCI research has long focused on new prototyping tools to support creative design [1], personal fabrication [64], and user interface design [40]. A key design tenet of these systems is to support tight, lightweight loops between creating and testing [28]. For example, BOXES [36] emphasizes the rapid creation of functioning prototypes using lo-fi materials such as cardboard and aluminum foil and immediate testing to support iterative design. The second key tenet is providing contextual guidance and support [44]. For example, Marner et al. [45] suggests projecting visual guidance onto the surfaces of an on-going foam prototype to help produce a specific model. In Rainbow, we explore how the iterative creation and testing of paper models could contribute to complex systems learning and examine how children react and use AR-mediated guidance.

DESIGN PROCESS

To design PrototypAR, we used an iterative, human-centered design process that included participatory design activities with children and adult designers. Before describing our participatory design process, we first highlight four overarching design goals for PrototypAR, which were informed by prior work [37,56,76] and our own experience designing and evaluating children’s learning tools.

- **Support engineering design.** We aim to support the engineering design concept and practice of generating, testing, and refining designs, which is foundational in STEM education [17,48].
- **Embed computer-mediated scaffolding.** Scaffolds should assess children’s current understandings and adapt to their needs [47].
- **Facilitate inquiry.** To facilitate inquiry [8,16,55], we aim to automate the steps (e.g., designing experiments and collecting results, and making interpretations).

Participatory Design with Children

We co-designed PrototypAR using a participatory design method called Cooperative Inquiry [24]—design partnering in which adults and children work together to brainstorm, and test design ideas. Because the concept of PrototypAR is difficult to explain without a concrete representation, we used the technology immersion technique [35]. We had participants use an early prototype and elicit feedback and design ideas. In partnership with an on-going design group, we conducted three CI sessions with 10 children (ages 8-11) and six adult design partners. Our key questions included: (i) How do children approach paper-based modeling in an AR environment? (ii) What do children find difficult to use or understand with PrototypAR? (iii) What types of scaffolds do children need for modeling and experimentation?

Session 1: Children’s Interaction with PrototypAR

To gain a preliminary understanding of how children interact with PrototypAR, we invited children to use an initial prototype of the build-a-bike application and share their ideas. After a brief introduction to PrototypAR (15-minutes), children and adult co-design partners spent 40 minutes using the system and offering their feedback in the form of “likes, dislikes, and design ideas” captured on post-it notes. A researcher synthesized high-level findings in situ and discussed them with the children and the adult partners.

Overall, we found that children were able to use PrototypAR to prototype models and conduct experiments. Based on observations and comments, children seemed to like the use of paper craft for modeling (e.g., “making our own shapes”), the responsive simulations (e.g., “the gears mirror the paper size”), and the personalized experiments (e.g., “we can race our gears”). After making prototypes, children tested them in the virtual simulation environment and observed how different designs affect the bike’s performance. One group simulated three different prototypes and reported, “The yellow [rear gear] is so small and it still won.” Though children appreciated the usefulness of AR design feedback (e.g., a child stated “Yes it was helpful ...[a] tell you where to move it”), some complained about the design feedback constraining their creative design (e.g., “It was picky”).

Session 2: Children’s Design Ideas

In the second session, we asked children for ideas to improve the PrototypAR interface by building lo-fi prototypes. We used a Bags-of-Stuff [19] technique in which children use craft supplies (e.g., fabrics, cardboard, markers) to communicate design ideas. Children presented their lo-fi prototypes and an adult partner synthesized the high-level themes therein. The following themes emerged (Figure 2): (i) highlight design errors early and at multiple stages of the design process; (ii) give users more control over design feedback (e.g., when and at what level of detail); (iii) enable user control of “invisible” or abstract properties of a complex system (e.g., exposure time for a camera shutter); (iv) enrich
the prototyping experience with multimedia and multiple modalities (e.g., speech interface, sound, 3D VR goggles).

Figure 2. The lo-fi prototypes emerged in the second PD session. The ideas included (a) integrating testing function into the design environment (b) allowing for user control to the HELP design feedback and (c) enabling design of invisible attributes.

Session 3: Challenges and Scaffolds for Learning
Finally, to identify what aspects children found difficult with complex modeling tasks and to elicit ideas for scaffolding, we conducted a session using the more complex build-a-camera application. Before the session, we incorporated design ideas from previous sessions into the PrototypAR, including: adding a hint button to allow child users to control how and when they receive feedback and additions to the prototyping interface to enable modification of component behaviors (e.g., focal length of a lens). In this session, only one of the three groups succeeded in creating a complete prototype; the others were overwhelmed by the large number of design options involved in modeling the camera system. Because of their struggles, both children and adults suggested ideas to better scaffold learners, including: (i) focus users’ work on one design element at a time; (ii) prompt users to switch between making and testing; (iii) suggest different options to encourage divergent design; (iv) assist users in setting up comparisons between prototypes in the simulation environment.

THE PROTOTYPAR SYSTEM
PrototypAR operates in two modes: AR design mode and experiment mode. In the AR design mode, the user can prototype a complex system using lo-fi materials. PrototypAR actively tracks the work surface and offers adaptive scaffolding to suggest needed actions or provide corrective advice. At any time, the user can switch to experiment mode to make observations about how their prototypes function and why through virtual simulations.

PrototypAR Design
PrototypAR is comprised of: (i) a lo-fi prototyping interface to support light creation of complex systems models; (ii) AR scaffolds to assist design tasks and learning; and (iii) a virtual simulation to enable experimentation with prototypes.

Lo-fi Prototyping Interface
The prototyping interface allows children to model complex systems using paper craft. To promote understanding through design, PrototypAR supports SBF modeling where the user models the structural elements and their behaviors that contribute to a complex system’s overall function.

Designing structure. In PrototypAR, the representation of structural elements includes an object’s type, shape, size, position, and relationship to other elements. The user designs a structural element by selecting a colored paper, cutting it into a shape, and arranging it on the augmented canvas. When beginning a design, PrototypAR augments the work surface with a structural outline of the target system (Figure 3). For example, in the build-a-bike application, a bicycle sketch is shown with key structural elements missing like the gears, pedals, and chain. The outline—which is visible on the AR display—serves as a visuo-spatial cue to aid the child in thinking about the shape and size of each component (e.g., the gear should fit within the wheel) and location (e.g., the gear should be at the wheel’s center). To help the child think about and distinguish different structural elements, we map the paper’s color to a particular object type (e.g., the back gear is yellow while the front gear is gear).

Designing behavior. Because behaviors are more abstract and dynamic than structures, they are often more difficult to understand [32] and likely to be omitted in students’ designs [34]. In PrototypAR, behaviors are designed explicitly via printed behavioral labels, which are placed next to their corresponding structure. Each label has a behavior name and a data field, which can be filled in with marker to specify a behavioral variable (Figure 4). There are two label types: numerical and categorical. Numerical fields are specified by filling in a horizontal progress bar while categories are selected by filling out a check box. To help the user learn about and specify behaviors, the AR system augments labels with definitions and instructions.

AR Scaffolds for Prototyping
PrototypAR provides three types of AR scaffolds, which were informed by prior research [9,54] and our participatory design sessions: (i) supportive scaffolds to provide domain knowledge related to system models; (ii) procedural scaffolds to guide learners through the PrototypAR interface; (iii) and strategic scaffolds to facilitate the design process.

Figure 3. (a) The work surface is augmented with a design skeleton to help structural design; and (b) a final bicycle design with gears, pedals, and a chain.

Figure 4. The behavioral labels are augmented with instructions to describe (a) a numerical value (e.g., “how far is the focal point?”) or (d) a categorical value (e.g., “what color does it capture?”), (b, e) After the user fill in the label, (c, f) the system augments the label with a value.
Supportive scaffolds. To help resolve misunderstandings and aid progress towards design completion [37], supportive scaffolds give children immediate feedback and hints on potential design problems. The scaffolds are dynamically generated based on real-time recognition of the user’s paper prototype and pop up next to the target of interest using animation, images, and basic text. In total, PrototypAR provides six supportive scaffolds, including feedbacks for shape, position, and existence of an object. Three examples are shown in Figure 5.

Strategic scaffolds. To make design tasks more manageable for young children, PrototypAR provides two types of strategic scaffolds (Figure 6b–c): first, PrototypAR highlights and limits the workspace to a particular area (e.g., “let’s work on this part”). Craft materials outside of the highlighted work area are ignored. Second, PrototypAR helps facilitate new design ideas by suggesting new structure attributes (e.g., gear size) or behaviors (e.g., pedal speed). This scaffold is intended to let children focus on changing only one independent variable at a time to aid creating a set of prototypes useful for comparative experiments.

Procedural scaffolds. Procedural scaffolds help children use PrototypAR’s prototyping interface as well as guide them through the iterative process of design and testing. For the first, the scaffolds remind children of paper colors for structure elements or illustrate how to design behavior labels (Figure 4) as needed. For the second, the system prompts testing a prototype when it is new, or asks for resuming design tasks after completing an experiment (Figure 6a).

Virtual Simulations
At any point in the design process—from a partial prototype to a complete one—the user can test a digitized version of their work via virtual simulations. Simulations serve two purposes: first, to support the rapid testing of a design to enhance understanding and discover potential flaws; second, to provide an experimental testbed to directly compare and analyze performance across prototype designs.

Towards these goals, we developed simulation support in both the AR design and the experiment modes. In the design mode, users can simulate individual components in situ via AR. This enables rapid testing of behavior, even at early stages of design. For example, the user can examine how the lens focus light rays at the focal point by watching an overlaid AR simulation. Users can then rapidly try different lens focal lengths in their workspace and observe the effect, which aids learning.

In the experiment mode, PrototypAR provides a simulation environment where users can test the function of multiple designs, make observations, and analyze results. While we custom built simulations for each application, our general approach is the same. Once the user enters the experiment mode, they are shown a review panel that displays images of their prototypes along with key design attributes (Figure 7a). The user can then select prototypes to test and begin the simulation. To facilitate controlled experimentation and reduce complexity, the review panel suggests clusters of prototypes that only differ in one design attribute (e.g., rear gear size). After completing a simulation, an analysis panel organizes results by shared independent variables so the user can easily analyze and compare results (Figure 7b).

Rainbow Implementation
PrototypAR is comprised of four sub-systems: (i) the object recognition and model building sub-system builds digital models from the paper prototypes; (ii) the model assessment engine evaluates the state of the digitized model; (iii) the design manager provides guidance and feedback to the user in the AR design mode; and (iv) the experiment manager handles the simulation environment in the experiment mode.

Object Recognition and Model Building Sub-System
The object recognizer analyzes the user’s craft workspace and attempts to classify paper elements as structures or behaviors. Because the user’s hand can occlude the top-down camera and affect recognition results, PrototypAR’s recognizer waits until there is no movement in the video stream for three seconds before executing the recognition pipeline (motion is calculated by examining differences in consecutive image frames [62]). The three second
threshold was obtained from informal experiments and refined through the participatory studies.

Recall that each structure element is pre-assigned a unique paper color. To recognize structures, we cluster the hue and saturation channels of the image into K+1 clusters, where K is equal to the total number of expected structures. We use Gaussian Mixture Models (GMMs) to train the K color models and cluster input pixels—a real-time method robust to camera noise [52,68]. To obtain shape information, we use the 8-way flood fill algorithm [30,49] with the pixels in each color cluster to find the image blobs. Finally, the recognizer examines the connectivity between classified structures by examining spatial distances between objects. In all, the recognizer generates computational models of structure elements that includes object type, contour shape, position on the canvas, and connectivity to other objects.

For the behavior labels, we developed a behavior recognizer, which uses character recognition to determine the label type and an input variable recognizer that uses two approaches for recognizing the numeric and categorical data. To recognize the label type, we use the Tesseract OCR [63]. To improve robustness, we apply Tesseract to multiple frames and select the result that best matches a pre-existing list of behavior strings using Levenshtein distance [41]. Once the label type is determined, PrototypAR examines the behavior variable. For numeric variables, PrototypAR uses blob detection to determine how much of the progress bar is filled in—the estimated fill portion is linearly mapped to a discrete value along a predefined range. For the categorical variables, PrototypAR divides the variable box into four quadrants and identifies the most saturated quadrant, which corresponds to a predefined behavior mode.

Model Assessment Engine
To assess the user’s prototype, PrototypAR evaluates the constructed computational model. The model assessment engine works by comparing the model to a pre-built baseline model. For structure, we evaluate the shape, position, connectivity, and missing or redundant structure elements. While some assessment algorithms are trivial—for example, checking for the existence of a structure element in the user’s prototype—others are more complex. For example, to evaluate shape, we compare contours between the user’s model and a baseline model using geometric distance. To ensure a robust comparison, the baseline model is scaled and transformed to minimize distance. If the distance is larger than a predefined threshold (determined via participatory design sessions), the assessment algorithm generates an incorrect structure shape result. For behavior, we evaluate missing behaviors and null behavior variables, which require trivial comparisons with the baseline model.

Design Manager
The design manager uses the assessment results to provide real-time scaffolding feedback. When problems are found, the manager creates and visualizes supportive scaffolds. While static scaffolds render fixed visual content (e.g., icons, text), dynamic scaffolds generate animations according to the user’s model, often to show the user how to perform some action—for example, how to cut out a specific shape. To provide procedural scaffolds, the design manager monitors user interaction and records ongoing snapshots of a prototype and its corresponding digital model. For example, if a digital model looks sufficiently new and has not yet been tested, PrototypAR may suggest testing in the virtual simulation. For strategic scaffolds, the system dynamically dims and highlights part of the workspace to focus the user’s attention. Finally, the design manager handles the in situ simulations of individual parts in the AR design mode.

Experiment Manager
The fourth and final sub-system, the experiment manager, controls the virtual simulations, including the review panel, the simulation environment itself, and the analysis panel. While the simulation environment and analysis panel need to be custom built for each application, the review panel provides a reusable architecture. Here, PrototypAR clusters similar prototypes together and helps organize experiments for prototypes that only differ in one independent variable. More specifically, given a pair of prototypes P_m and P_n, we calculate their experimental distance D as following:

$$D(P_m, P_n) = \sum_{a \in A} d_{exp}(a, P_m, P_n)$$

Where A is a set of all design attributes. If $D(P_m, P_n) = 1$, we place both P_m and P_n in a cluster. The prototypes in a cluster can only differ by a single design attribute. After creating clusters through examining pairs, we merge clusters satisfying our conditions. Using this cluster information, the manager suggests a set of prototypes in the same cluster for experiment or comparative analysis.

Software Implementation
Rainbow is implemented using Unity3D for creating the AR environment, OpenCVSharp [80] for computer vision, and Parallel Extensions in .NET FX for data parallelism. For our studies, we used laptops with a Core™ i5-7300HQ processor and a GeForce® GTX 1050 graphics card. We logged performance during our studies: the average processing time for the object recognition and model building stage was 69ms, 350ms for model assessment, 399ms for the design manager, and 42ms for the experiment manager.

Demo Applications
To demonstrate and evaluate PrototypAR, we developed three example applications: build-a-bike, build-a-camera, and build-an-aquarium—each allows children to design, build, and experiment with different types of complex systems from mechanics to optics to ecology.

Build-a-bike Application
In the build-a-bike application, children learn about bike gearing systems by modeling front gears, rear gears, pedals, and chains. This application explores gear ratio and chain drive system concepts. To build a bike, children first craft two gears, connect them via chains, and place a pedal at the
center of the front gear. For behaviors, AR visualizations show the causal process of the pedal rotating through the rear gear rotating. For virtual experiments, the system simulates performances of gear designs in a bicycle race—depending on the gear ratio, one turn of the pedal can make the rear wheel turn less or more than one full cycle. Children can race up to three of their designs simultaneously.

Build-a-Camera Application

In the build-a-camera application, children learn about camera optic systems by modeling lens, shutters, and sensors. This application emphasizes concepts of light focus and optical image sensing. To build a camera, children craft individual parts and then configure focal length, shutter speed, and sensor type via behavioral labels. AR visualizations show how light beams move through the parts and generate a picture (Figure 9). For virtual experiments, children can take pictures of various scenes using their camera designs—e.g., a city at night, a rainbow, and a safari. For the dark city picture, for example, children’s camera design with a fast shutter speed results in an almost black picture. Setting a slower shutter, children can see the city in a resulting picture, which allows them to learn the slower shutter speed makes a picture brighter.

Build-an-aquarium Application

In the build-an-aquarium application, children learn about aquatic ecology systems by modeling fish, sea plants, bacteria, and an air pump (inspired by [23]). This application emphasizes concepts of ecological balance and the nitrification process. To build an aquarium, children craft and distribute individual models over the canvas. For behaviors, AR visualizations show the causal process of air-pumps supplying oxygen, fish consuming oxygen, bacteria converting ammonia to nitrate, and plants consuming nitrate. For virtual experiments, the system simulates production and consumption of the chemicals showing the current levels.

USER STUDY

To examine how children interact with and use PrototypAR and to uncover opportunities and challenges for learning, we conducted four single-session evaluations with 21 children (ages 6-11; M=8.5; SD=1.6) at two local facilities. Based on our findings from the participatory design sessions, we recruited participants for each session based on age: (i) 10 younger children (ages 6-9) used the build-a-bike application in two sessions; and (ii) 11 older children (ages 9-11) used build-a-camera in the other two sessions. We leave the build-an-aquarium application for future work.

Method

All sessions followed the same general procedure but differed in length for administrative reasons: two sessions lasted 60 minutes and the others lasted 90 minutes. Sessions began with a pre-activity questionnaire (5 minutes). Children were introduced to PrototypAR (5 or 10 minutes) and then used the system for 35 or 50 minutes. Finally, sessions concluded with a focus-group interview and post-activity questionnaire (15 or 25 minutes). Children worked in groups of two except one child who worked alone (i.e., 11 groups total). Each group had an adult facilitator who helped with PrototypAR and led the interviews.
After the introduction, children were given two tasks: first, to build at least one paper-based prototype that functioned properly in the simulator; and second, to complete a design challenge such as designing bike gears with certain performance or a camera to take pictures with a specified quality. The facilitators, if necessary, provided domain knowledge (e.g., the meaning of gear ratio), prompted reflective discussions (e.g., “What do you think about the result?”), and helped with resolving difficulties (e.g., reading scaffolding texts for children).

Data and Analysis
We collected pre- and post-activity questionnaires, photos and videos, focus group interviews, facilitator field notes, and system logs including interaction events and, crucially, prototype images—the latter enabled us to examine what each prototype looked like and how they changed over time. The questionnaires examined users’ general experience with respect to engagement and usability using child-friendly Likert scale questions (based on [26]). The focus group interviews asked open-ended questions to understand modeling and experiment experiences, children’s learning, utility of the scaffolds, and design preferences.

To analyze the video data, we followed a peer-debriefing process [7,42]. We first formulated an initial coding scheme, which included the themes of engineering design process, how children interact with AR scaffolds, learning through construction and experimentation, and the role of peer support [53]. Researcher A coded a sample group’s data and met with two researchers who were in the sessions to review the initial results and update the codebook by resolving disagreements, clarifying details, and generating new codes. Researcher A then coded another random group’s data and met with another researcher to review the results. After repeating this with another sample group’s data, Researcher A coded the rest of the data. Finally, researchers synthesized findings including related quantitative data (e.g., how many times children tested their models).

Findings
We describe patterns of design and iteration, interaction with system scaffolds, learning opportunities and challenges, collaboration, and engagement. For the Likert scale questions, a rating of ‘5’ indicates ‘best.’

Design and iteration. We analyzed how children designed and evaluated prototypes with PrototypAR. System logs revealed that children approached design largely in two stages—first, a bottom-up step to build a complete model and then an exploration step to examine various forms of the complex system (Figure 12). We observed that, in early design stages, children focused on adding missing entities (e.g., adding a chain), moving parts into the right places (e.g., placing a gear at the center of the wheel), and refining shapes (e.g., cutting a rectangular lens into an elliptical shape). Groups progressively built parts until they had an initial model with properly sized, shaped, and placed components.

Once children built a complete design, they shifted their attention to explore a breadth of designs. Children replaced design entities (e.g., replacing a front gear with a larger one or increasing a shutter speed) iteratively, often reusing existing paper pieces to quickly replicate a previous design. The system logs showed that groups created 7.8 distinct prototypes on average. The distinct prototypes exhibited different simulation results in the virtual experiment, which clarified how individual components function (e.g., two camera models with fast or slow shutter speeds resulted in dark and bright pictures respectively). On the post-activity questionnaire, “I could see differences between prototypes in the virtual simulation”, all children except two selected ‘4’ or ‘5’ (M=4.6; SD=0.6). We also observed that children enjoyed building “extreme” designs, and this helped them explore and understand the design space. For example, in the build-a-bike application, 3 of 5 groups created both giant and tiny gears. One child stated, “It’s going to be funny! It’s going to be funny!” making a giant gear.

Figure 12. A group progressively built a complete bike model (above). Then, they created divergent prototypes for their experiments (below)

In both stages of design, we noted that the AR visualization and in-situ experiment feedback prompted children to try new design ideas. First, children identified design issues by observing how changes in individual components affected the simulation. For example, a child realized the gears in his prototype were not rotating due to missing chains; he said, “We need to connect two gears...otherwise it wouldn't move.” This example demonstrates how PrototypAR’s just-in-time feedback prompted children to realize that their system was missing a component (i.e., chains) and was therefore incomplete. In addition, the interactive simulation results prompted children to reflect on their prototype designs as a whole. For example, in the build-a-bike experiment, one child suggested increasing a front gear after watching a bike with a larger rear gear lose a race saying, “I think the front [gear] has to be big. [rear gear] has to be

Figure 11. Children engaged in iterative process of (a) making paper models, (b) evaluating the model through AR visualizations, and (c) experimenting with prototypes in the virtual simulation.
small”. Similarly, in the build-a-camera experiment, one child suggested changing a shutter speed after seeing a dark picture taken by a camera prototype saying, “let’s try a full [shutter speed]”. On the post-activity questionnaire “I think the Test (virtual experiment) was helpful”, children appreciated the usefulness of the virtual experiment; 15 of 21 selected ‘4’ or ‘5’ (M=4.0; SD=1.2). In the interview, a child confirmed it stating, “It helped a lot, if [there was] no test button, we couldn’t know how good the camera is.”

Interactions with scaffolds. Children used and reacted to the three scaffold types differently. For supportive scaffolds, which provided design feedback, children used them to evaluate individual models but used them less often as they gained experience. In early design phases, we observed that children made use of supportive scaffolds almost whenever one was available. They chose to open a Hint, read the feedback dialog, watched animations of design suggestions, and discussed the ideas therein. When asked if the scaffold was helpful on the post-activity questionnaire, 18 of 21 participants selected ‘4’ or ‘5’ (M=4.5; SD=0.8). A child stated, “It helped you make the bike.” However, we found from video data that children did not fully follow the design suggestions; rather, they used their own ideas or interests for designs. For example, two groups created and tested rectangular gears while the scaffold suggested a circular shape. In the later phases of design, children became less likely to use Hint scaffolds. From the system logs, we found that 76% of Hint usage, on average (SD=14%), occurred in the first half of the design process.

In terms of strategic scaffolding, the scaffold that illuminated and constrained the current work area (e.g., highlighting the area around the lens in the build-a-camera application) seemed to help children divide and conquer the complexity of a design. For example, from the system logs, we found that all groups successively created at least three different designs for a specific part when the workspace was limited. After iterating on a part, children repeatedly switched the workspace to the other part until they had a full-fledged prototype. In contrast, children did not always seem to follow the strategic scaffold that actively prompted them to explore specific design attributes (e.g., a dialog suggests increasing or decreasing a front gear size). From system logs, we found that children had already started modifying these attributes before receiving the suggestion or simply did not follow PrototypAR suggestions even after reading them.

Collaboration. We analyzed how the tangible approach supported communicating ideas [66], sharing control [78], and concurrent interaction [20]. Though children were not assigned specific roles during the activity, from the video data, we observed a set of collaborative behaviors including splitting design tasks, discussing design ideas, and sharing observations. For example, Emma and Noah were working together on designing a shutter. Noah read design feedback about the shape and clarified it talking to Emma, “Just make it like a small square. It doesn’t have to be like same size”. Later, Emma wondered about the level of the shutter speed, asking “Should we make it full?” Noah nodded saying, “Full/full!” Finally, in the virtual experiment, Noah compared two pictures taken by different camera models and explained how the focal lengths influenced them stating, “this is zoomed-in and this is zoomed-out.”

However, we also observed that children had difficulties managing conflicts in their design ideas and manipulating a shared virtual interface. For example, when Ava and Liam were making a bike prototype, Liam suddenly cut an existing front wheel without discussion, and Ava got annoyed shouting, “What are you doing?!” In another example, Ethan and Jacob were selecting bike prototypes to simulate. When Ethan was selecting prototypes, Jacob suddenly stopped Ethan saying “I will do this,” complaining, “You did last time, can I do it this time?!” These conflicts led to unpleasant experiences, which were resolved by a facilitator.

Content learning. We examined how using PrototypAR contributed to children’s understanding of complex systems. These results should be considered preliminary given the small sample size. During the activity and the group interview, 10 of 11 groups reported that they learned about what objects exist in a complex system and how they behave. For example, a child whose group succeeded in creating a complete camera model after 11 iterations stated, “We learned three different parts of camera” The other child in the group added, “I learned how to make it [the lens] focus ...learned [the] shutter allows light to pass or not” Another child— who tested different focal lengths and observed the resulting phenomena in the AR visualizations— reported that he learned how a lens manages light stating, “Lens makes the light focus at one place”

While all the groups reported their findings about how system components influence the system’s function, we found that their understanding could be incorrect or partial. From verbal observations they made while tinkering with the simulations and in their responses to the interview question “what did you learn?”, children shared accurate conceptions of how individual parts contribute to a system’s function including: “Bigger rear gear does not make the bike faster” and “If we don’t put the shutter, it’s (picture) just all bright”. We found that two of 5 groups who used build-a-bike demonstrated misunderstandings such as “If green [front] and yellow [rear] gears are small, it makes the bike slower,” and 4 of 6 groups who used build-a-camera ended up with partial understandings about the system—e.g., a group could not grasp how the shutter works but demonstrated understandings about the lens and the sensor. We return to these misconceptions in the Discussion.

Experimentation challenges. Related to the above, we observed two primary challenges children had in conducting experiments with PrototypAR: designing experiments and analyzing observations. To understand the relationships between design attributes and a system’s function, it is critical to design and conduct comparative experiments— testing a set of prototypes that have different attributes for a
single independent variable. Though PrototypAR automatically suggests a selection of appropriate prototypes to compare, we found that children often selected designs that looked most different or even, seemingly, at random. This made it difficult for children to make accurate claims from reviewing the experiment results. For example, in the build-a-bike application, a group ran experiments with a big prototype having two big gears and prototypes having gears of different sizes, and concluded with the misconception, “If gears are same size, the bike goes faster.”

We also observed that children had difficulties analyzing the simulation results. Even in cases with well-designed experiments, children often could not explain why they got the results or drew inaccurate conclusions. For example, a group tested a camera with a fast shutter speed to take a picture of a dark scene that actually requires a slow shutter speed. When the simulation resulted in black photos, they could not reason why this happened and became disengaged after several tries. A child in the group commented in the later interview, “(it was) difficult to be color (as) you wanted.” The group even thought it was a system malfunction, asking a facilitator to fix the problem.

Engagement. The majority of participants reported having fun with PrototypAR; 16 of 21 children responded ‘4’ or ‘5’ (M=3.8; SD=1.6) to the post-activity question, “I had fun using PrototypAR”. In group interviews, children liked using craft materials (e.g., “Using different materials and colors”), making a creative or extreme design (e.g., a “huge gear”), AR visualizations (e.g., “Cool effect on white paper”), and virtual simulation for testing (e.g., “To see what pictures would look like”). However, four participants had a negative experience. One participant commented that the visual differences between real objects and virtual objects made it less interesting: “we got to have this gigantic, but we have this tiny one [in a virtual one]”. We also found that repeatedly making the same system (e.g., “Making a lot of bikes”) and constraining design (e.g., “It wasn’t so exciting, I had to follow lots of rules”) made the process seem tedious.

DISCUSSIONS AND CONCLUSION

Our paper introduces PrototypAR, an AR system to support complex systems learning through iterative craft modeling, AR-based scaffolding, and virtual experiments. We studied two PrototypAR applications using a single-session study design. While this is appropriate for our exploratory goal of studying user interaction, investigating opportunities and challenges, and drawing design implications, the study is insufficient for examining learning or long-term engagement. Our findings show that a mixed reality approach—accompanying with scaffolding—can allow children to engage with modeling and experimentation of complex systems. This suggests that complex systems learning is approachable for young children given appropriate learner-centered tools and environments, extending Danish at el.’s findings [15].

Learner-centered approach. With PrototypAR, we envisioned a learner-centered environment [27] where children can address their unique interests and deepen understanding. Specifically, we posited that children can learn about different aspects of complex systems by constructing the structure of a system model, observing AR simulations of component behaviors, and comparing the functions of their different designs in the virtual experiment. Indeed, the groups were able to learn different aspects of a complex system from the same activity. For example, in the build-a-camera application, one group reported learning about how the focal length affects the zoom-level of a picture while another learned about the shutter affects the brightness of a picture. Children enjoyed having this level of control in their design and experimentation process (e.g., chose to iterate on a specific part based on their interest rather than from suggestions by strategic scaffolds). This tendency resulted in positive outcomes such as engagement with design iterations and unexpected findings (e.g., a child was surprised to see bigger chains did not affect the bike speed).

But, it also limits opportunities to examine all the parts of a complex system and develop understanding about how the system works as a whole, which often led to partial understandings. Future work should consider scaffolds that can support iterative expansion of children’s component-level focus while highlighting comprehensive interrelationships and functions of these components.

Tinkering vs. structured scaffolding. Constructionist learning environments that support playful exploration can afford children serendipitous opportunities for “ah-ha” moments, yield options for experimental comparison [65], are more aligned to authentic science inquiry as practiced by professionals [10], and may promote intellectual risk taking, a key for science learning [4]. Likewise, our findings suggest that free-form prototyping promoted children’s engagement and encouraged personal, interest-driven experimentation. However, their prototypes did not always lead to systems-level understanding or accurate mental models. Their enjoyment with testing the extreme bounds of a design (“huge gears!”) hinted at a nascent awareness of design constraints, but lacked a systematic approach, such as controlling for variables. Moreover, the children’s eagerness to create silly, random designs often precluded them from taking up the system’s scaffolded suggestions, which led to misconceptions. These findings affirm the need to balance learners’ free-form play with structured guidance for inquiry [11]. Future designs should consider how scaffolds can respond and adapt to children’s own ideas, in minimalistic but directed ways that guide their efforts to design and execute systematic modes of inquiry. Because children often ignore or feel constrained by lock-step scaffolds that limit their design freedom, future work should also consider interactive design features that prompt learners to reflect upon their ideas and modify them iteratively rather than randomly.

Tangible interface. Our findings suggest that PrototypAR’s tangible prototyping interface lowers entry barriers to
modeling complex systems and helps children understand visual and spatial aspects of complex systems. However, our current system does not yet support more complex models that may involve layered, occluding structures, large numbers of interacting components, or ways to represent abstract processes [34,38]. To address these limitations, future work should explore hybrid approaches of combining physical and virtual interfaces, extending the current 2D design space to 3D, and adding auxiliary input modalities (e.g., voice or embodied interaction).

AR design environment. While prior work has explored AR modeling systems for adults or high school students [39,60], our work demonstrates the benefits of AR for elementary-level children to access domain knowledge via supportive scaffolds, deal with design complexity in guidance of strategic scaffolds, and draw design ideas from reflections on AR visualization of models. However, our current AR approach limits immersion. The user interface is distributed across the physical desk and the screen, which can negatively impact usability. For example, we observed that some children tried to select virtual menus on the screen by tapping the canvas. Future work should explore other AR techniques (e.g., projection display) to better integrate the physical and virtual.

SELECTION AND PARTICIPATION OF CHILDREN
We recruited children from two local facilities and an on-campus design group. We initially had a meeting with the facility managers to explain our research and distribute the informed consent describing research procedures and data acquisition to parents. The children participated in the study if their parents signed the consent.

REFERENCES

