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Abstract
Smartwatches have the potential to provide glanceable, 
always-available sound feedback to people who are deaf or 
hard of hearing (DHH). We present SoundWatch, a smartwatch-
based deep learning application to sense, classify, and pro-
vide feedback about sounds occurring in the environment. 
To design SoundWatch, we first examined four low-resource 
sound classification models across four device architec-
tures: watch-only, watch+phone, watch+phone+cloud, and 
watch+cloud. We found that the best model, VGG-lite, per-
formed similar to the state of the art for nonportable devices 
although requiring substantially less memory (~1/3rd) and 
that the watch+phone architecture provided the best balance 
among CPU, memory, network usage, and latency. Based on 
these results, we built and conducted a lab evaluation of our 
smartwatch app with eight DHH participants. We found sup-
port for our sound classification app but also uncovered con-
cerns with misclassifications, latency, and privacy.

1. INTRODUCTION
Smartwatches have the potential to provide glanceable and 
always-available sound feedback to people who are deaf 
or hard of hearing (DHH) across multiple contexts.3,5,17 A 
recent survey with 201 DHH participants3 showed that, com-
pared to smartphones and head-mounted displays (HMDs), 
a smartwatch is the most preferred device for nonspeech 
sound awareness due to privacy, social acceptability, and 
integrated support for both visual and haptic feedback.

Most prior work in wearable sound awareness, however, has 
focused on smartphones,1,20 HMDs,6,9 or custom wearable 
devices13 that provide limited information (e.g., loudness) 
through a single modality (e.g., vision). For smartwatches 
specifically, studies have examined formative design pro-
totypes for sound feedback,5,17 but these prototypes have 
not included automatic sound classification—our focus. 
Furthermore, although recent deep learning research 
(e.g., see Jain et al.11) has examined models to automatically 
classify sounds, these cloud- or laptop-based models have 
high memory and processing power requirements and are 
unsuitable for low-resource portable devices.

Building on the above research, we present two smartwatch- 
based studies and a custom smartwatch-based application, 
called SoundWatch (see Figure 1). To design SoundWatch, 
we first quantitatively examined four state-of-the-art low-
resource deep learning models for sound classification: 
MobileNet, Inception, ResNet-lite, and a quantized version 

of model used in HomeSound,11 which we call VGG-lite, 
across four device architectures: watch-only, watch+phone, 
watch+phone+cloud, and watch+cloud. These approaches 
were intentionally selected to examine trade-offs in compu-
tational and network requirements, power efficiency, data 
privacy, and latency. Although direct comparison to prior work 
is challenging, our experiments show that the best classifica-
tion model (VGG-lite) performed similar to the state of the 
art for nonportable devices although requiring substantially 
less memory (~1/3rd). We also observed a strict accuracy-
latency trade-off: the most accurate model was the slowest. 
Finally, we found that the two phone-based architectures 
(watch+phone and watch+phone+cloud) outperformed the 
watch-centric designs (watch-only and watch+cloud) in terms 
of CPU, memory, battery usage, and end-to-end latency.

Based on these quantitative experiments, we built 
SoundWatch and conducted a qualitative lab evaluation 
with eight DHH participants. SoundWatch incorporates the 
best- performing classification model from our system experi-
ments (VGG-lite) and, for the purposes of evaluation, can be 
switched between all four device architectures. During the 
90-min study session, participants used our prototype in 
three locations on a university campus (a home-like lounge, 
an office, and outdoors) and took part in a semistructured 
interview about their experiences, their views on accuracy-
latency trade-offs and privacy, and ideas and concerns for 
future wearable sound awareness technology. We found that 
all participants generally appreciated SoundWatch across 
all contexts, reaffirming past sound awareness work.3,5 
However, misclassifications were concerning, especially 
outdoors because of background noise. For accuracy-latency 
trade-offs, participants wanted minimum delay for urgent 
sounds (e.g., car honk and fire alarms)—to take any required 
action—but maximum accuracy for nonurgent sounds (e.g., 
speech and background noise) to not be unnecessarily dis-
turbed. Finally, participants selected watch+phone as the 
most preferred architecture due to privacy concerns with 
the cloud, versatility (no Internet connection required), and 
speed (watch+phone was faster than watch-only).

In summary, our work contributes (1) a comparison of 
deep learning models for sound classification on mobile 
devices; (2) a new smartwatch-based sound identification 
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In terms of feedback modalities, studies suggest combin-
ing visual and vibrational information for sound awareness5, 17;  
a smartwatch can provide both. Within the two modalities, 
prior work recommends using vibration to notify about 
sound occurrence and vision to show more information1, 10— 
which we also explore—although a recent study showed 
value in using complex vibration patterns to convey richer 
feedback (e.g., direction).5

We build on the above studies by examining the use of 
working smartwatch prototypes across contexts and reveal-
ing qualitative reactions and suggestions for system design.

2.2. Sound awareness technologies
Early research in sound awareness studied wrist-worn vibro-
tactile solutions, primarily to aid speech therapy by convey-
ing voice tone22 or frequency21; this work is complementary 
to our focus on nonspeech sound awareness. More recent 
work has examined stationary solutions for nonspeech 
sound awareness, such as on desktop displays.15 Though 
useful for specific applications, these solutions are not con-
ducive to multiple contexts. Toward portable solutions, Bragg 
et al.1 and Sicong et al.20 used smartphones to recognize 
and display sound identity (e.g., phone ringing and sirens). 
However, they evaluated their app in a single context (office1 
or a deaf school20) and focused on user interface rather than 
system performance—both are critical to user experience.

Besides smartphones, wearable solutions such as  
HMDs6,9 and wrist-worn devices13 have been examined. For 
example, Gorman6 and Kaneko et al.13 displayed the loca-
tion of sound sources on an HMD and a custom wrist-worn 
device, respectively. We explore smartwatches to provide 
sound identity, the most desired sound property by DHH 
users.1, 15 Although not specifically focused on smartwatches, 
Jain et al.11 examined smartwatches as complementary alert-
ing devices to smarthome displays that sensed and pro-
cessed sound information locally and broadcasted it to the 
watches; we examine a self-contained smartwatch solution.

In summary, although prior work has explored sound aware-
ness tools for DHH people, such as on portable devices,6,9,13  
this work has not yet built and evaluated a working smartwatch- 
based solution—a gap we address in our work.

system, called SoundWatch, with support for four device 
architectures; and (3) qualitative insights from in situ evalu-
ation with eight DHH users, such as reactions to our designs, 
architectures, and ideas for future implementations.

This paper is based on our earlier ASSETS paper.12 Since 
that paper was accepted in June 2020, much has changed. 
We released the SoundWatch codebase as open source 
(https://bit.ly/3bvgCLI) and our work helped guide subse-
quent literature (e.g., see Guo et al.7). The SoundWatch app 
is now available publicly on the Google Play Store (https://
bit.ly/3bpEPTF, 500+ downloads to date). Additionally, 
sound recognition is integrated into both the major mobile 
platforms: Apple iOS and Google Android, demonstrating 
the impact of our work.

2. RELATED WORK
We situate our work within sound awareness needs, sound 
awareness tools, and sound classification research.

2.1. Sound awareness needs
Formative studies have examined the sounds, sound charac-
teristics, and feedback modalities desired by DHH users. For 
sounds of interest, two large-scale surveys1,3 showed DHH 
people most prefer urgent and safety-related sounds (e.g., 
sirens) followed by appliance alerts (e.g., microwave beep) 
and sounds about the presence of people (e.g., door knock 
calls). These preferences may be modulated by cultural fac-
tors: people who prefer oral communication may be more 
interested in some sounds (e.g., phone ring and conversa-
tions) than those who prefer sign language.1,3

In addition to these sounds, DHH users tend to desire 
information about certain sound characteristics (e.g., iden-
tity, location, and time of occurrence) more than others 
(e.g., loudness, duration, and pitch).5,15 However, the utility 
of these characteristics may vary by location. For example, at 
home, awareness of a sound’s identity and location may be 
sufficient,10,11 but directional indicators are more important 
when mobile.5 Besides location, social context (e.g., friends 
vs. strangers) could influence the use of the sound aware-
ness tool,3 and thus offering options for customization is 
key (e.g., using a sound-filtering menu).

Figure 1. Different use cases of our SoundWatch sound classification app and one of the four architectures (watch+phone).
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2.3. Sound classification research
Early efforts in classifying sounds relied on handcrafted fea-
tures such as zero-crossing rate, frame power, and pitch.14,18 
Though they performed reasonably well on clean sound files, 
these features fail to account for acoustic variations in the field 
(e.g., background noise).14 More recently, machine learning- 
based classification has shown promise for specific field 
tasks such as gunshot detection or intruder alert systems.4 
For broad use cases, deep learning-based solutions have been 
investigated.11,20 For example, Sicong et al.20 explored a light-
weight convolutional neural network (CNN) on smartphones 
to classify nine sounds preferred by DHH users (e.g., fire 
alarm and doorbell) in a school setting. Jain et al.11 used deep 
CNNs running on a tablet to classify sounds in the homes of 
DHH users, achieving an overall accuracy of 85.9%. We closely 
follow the latter approach in our work by adapting it to low-
resource devices (phone and watch) and performing evalua-
tions in multiple contexts (home, work, and outdoors).

3. THE SOUNDWATCH SYSTEM
SoundWatch is an Android-based app designed for commer-
cially available smartwatches to provide glanceable, always-
available, and private sound feedback in multiple contexts. 
Building on previous work,5,11 SoundWatch informs users 
about three key sound properties: identity, loudness, and 
time of occurrence through customizable visual and vibra-
tional sound alerts (see Figures 1 and 3). We use a deep 
learning-based sound classification engine (running on the 
watch, paired phone, or cloud) to continually sense and pro-
cess sound events in real time. Here, we describe our sound 
classification engine, our privacy-preserving sound sensing 
pipeline, system architectures, and implementation. Our 
codebase is open sourced: https://bit.ly/3bvgCLI.

3.1. Sound classification engine
To create a robust, real-time sound classification engine, 
we followed an approach similar to HomeSound,11 which 
uses transfer learning to adapt a deep CNN–based image 
classification model (VGG) for sound classification. We 
downloaded three recently released (in Jan 2020) image-
classification networks for small devices: MobileNet, 3.4MB; 
Inception, 41MB; and ResNet-lite, 178.3MB, and we used the 
quantized version of the network in HomeSound,11 which 
we call VGG-lite, 281.8MB. We hypothesized that each net-
work would offer different accuracy and latency trade-offs.

To perform transfer learning, similar to Jain et al.,11 we 
used a large corpus of sound effect libraries—each of which 
provides a collection of high-quality, prelabeled sounds. 
Samples for 20 common sounds preferred by DHH people 
(e.g., dog bark, door knock, and speech)1,3 were downloaded 
from six libraries—BBC, Freesound, Network Sound, UPC, 
TUT, and TAU. All sound clips were converted to a single 
format (16KHz, 16-bit, mono) and silences greater than one 
second were removed, resulting in 35.6 h of recordings. We 
divided the sound classes into three categories (see Table 1): 
high priority (containing the three most desired sounds 
by DHH people1,15); medium-priority sounds (10 sounds); 
and all sounds (20 sounds). Finally, we used the method by 
Hershey et al.8 to compute log mel-spectrogram features for 

each category, which were then fed to the four networks, 
generating three models for each architecture (12 in total).

3.2. Sound sensing pipeline
For always-listening apps, privacy is a key concern. Although 
SoundWatch relies on a live microphone, we designed our 
sensing pipeline to protect user privacy. The system pro-
cesses the sound locally on the watch or phone and, in 
the case of the cloud-based architectures, only uploads 
 low-dimensional mel-spectrogram features. Although these 
features can be used to identify speech activity, the spoken 
content is challenging to recover. For signal processing, 
we take a sliding window approach: the watch samples the 
microphone at 16KHz and segments data into 1-second 

All sounds  
(N = 20)

High priority  
(N = 3)
Medium priority  
(N = 10)

Home context  
(N = 11)

Office context  
(N = 6)
Outdoor context 
(N = 9)

Fire/smoke alarm, alarm clock, door knock, doorbell, 
door-in-use, microwave, washer/dryer, phone ringing, 
speech, laughing, dog bark, cat meow, baby crying, 
vehicle running, car horn, siren, bird chirp, water 
running, hammering, drilling
Fire/smoke alarm, alarm clock, door knock

Fire/smoke alarm, alarm clock, door knock, doorbell, 
microwave, washer/dryer, phone ringing, car horn, 
siren, water running
Fire/smoke alarm, alarm clock, door knock, door-
bell, door-in-use, microwave, washer/dryer, speech, 
dog bark, cat meow, baby crying
Fire/smoke alarm, door knock, door-in-use, phone 
ringing, speech, laughing
Dog bark, cat meow, vehicle running, car horn, siren, 
bird chirp, water running, hammering, drilling

Table 1. The sounds and categories used to train our sound  
classification models.

watch-only
Record audio

Watch

Watch

Watch

Watch

Watch

Watch

Watch

Watch

Watch

Watch

Phone

Phone

Watch

Cloud

Phone

Cloud

Compute features Predict sound Display notification
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Figure 2. A diagram of the four SoundWatch architectures with their 
sensing pipelines. Block widths are for illustration only and do not 
indicate actual computation time.

(a) (b) (c) (d)

Figure 3. The SoundWatch user interface showing the (a) opening 
screen with a button to begin recording audio, (b) the notification 
screen with a “10-min” mute button, (c) the main app screen with 
more mute options, and (d) the paired phone app for customizing 
the list of enabled sounds.



 

JUNE 2022  |   VOL.  65  |   NO.  6  |   COMMUNICATIONS OF THE ACM     103

speakers (total 54 videos were used). In total, we collected 
540 recordings (~1.5 h).

Before testing our model, we divided our recordings into 
the three categories (all sounds, high priority, and medium pri-
ority) similar to our training set (see Table 1). For the medium- 
and high-priority test-sets, 20% of the sound data was from 
excluded categories that our models should ignore (called 
the “unknown” class). For example, the high-priority test-set 
included 20% recordings from outside of the three high-priority 
classes (fire/smoke alarm, alarm clock, and door knock).

Figure 4 shows the results of classifying sounds in each 
category. Overall, VGG-lite performed best (avg. inference 
accuracy = 81.2%, SD = 5.8%) followed by ResNet-lite (65.1%, 
SD = 10.7%), Inception (38.3%, SD = 17.1%), and MobileNet 
(26.5%, SD = 12.3%); a one-way repeated measures ANOVA on 
all sounds yielded a significant effect of models on the accu-
racy (F3,2156 = 683.9, p < .001). As expected, the inference accu-
racy increased as the number of sounds decreased from all  
(20 sounds) to medium (10 sounds) and high priority (3 sounds). 
In analyzing performance as a function of context, home 
and office outperformed outdoors for all models. With VGG-
lite, for example, average accuracy was 88.6% (SD = 3.1%) for 
home, 86.4% (SD = 4.3%) for office, and 71.2% (SD = 8.2%) for 
outdoors. A post hoc inspection revealed that outdoor record-
ings incurred interference due to the background noise.

To assess interclass errors, we computed a confusion 
matrix for medium-priority sounds. Although per-class 
accuracy varied across models, microwave, door knock, and 
washer/dryer were consistently the best-performing classes, 
with VGG-lite achieving average accuracy of 100% (SD = 0), 
100% (SD = 0), and 96.3% (SD = 2.3%), respectively. The worst- 
performing classes were more model dependent but gener-
ally included alarm clock, phone ring, and siren, with VGG-lite 
achieving 77.8% (SD = 8.2%), 81.5% (SD = 4.4%), and 88.9% (SD =  
3.8%), respectively. For these poorly performing classes, 
understandable mix-ups occurred such as confusions 
among similar sounding events (e.g., alarm clocks and 
phone rings).

Latency. Low latency is crucial to achieving a real-time 
sound identification system. To evaluate model latency, we 
wrote a script to loop through the sound recordings in our da-
taset for 3 h (1080 sounds) and measured the time required 
to classify sounds from the input features on both the watch 
and the phone. Understandably, the latency increased with 
the model size: the smallest model, MobileNet, performed 
the fastest on both devices (avg. latency on watch: 256 ms, 
SD = 17 ms; phone: 52 ms, SD = 8 ms), followed by Inception 
(watch: 466 ms, SD = 15 ms; phone: 94 ms, SD = 4 ms), and 

buffers (16,000 samples), which are fed to the sound classifi-
cation engine. To extract loudness, we compute the average 
amplitude in the window. All sounds at or above 50% confi-
dence and 45dB loudness are notified; others are ignored.

3.3. System architectures
We implemented four device architectures for SoundWatch: 
watch-only, watch+phone, watch+cloud, and watch+phone+ 
 cloud (see Figure 2). Because the sound classification engine 
(computing features and predicting sound) is resource intensive, 
the latter three architectures use a more powerful device (phone 
or cloud) for running the model. For only the cloud-based archi-
tectures, sound features are computed before being sent to the 
cloud to protect user privacy—that is, on the watch (watch+cloud) 
or on the phone (watch+phone+cloud). For communication, we 
use Bluetooth Low Energy (BLE) for watch-phone and WiFi or a 
cellular network for watch-cloud or phone-cloud.

3.4. User interface
For glanceability, we designed the SoundWatch app as a push 
notification; when a classified sound event occurs, the watch 
displays a notification along with a vibration alert. The dis-
play includes sound identity, classification confidence, loud-
ness, and time of occurrence (see Figure 3). Importantly, each 
user can mute an alerted sound by clicking on the “10 min” 
mute button, or by clicking on the “open” button and select-
ing from a scroll list of mute options (1 min, 5 min, 10 min,  
1 h, 1 day, or forever). Additionally, the user can filter alerts 
for any sounds using a customization menu on the paired 
phone app (see Figure 3d). Although future versions should 
run as an always-available service in Android, currently, the 
app must be explicitly opened on the watch (see Figure 3a). 
Once opened, the app runs continuously in the background.

4. SYSTEM EVALUATION
To assess the performance of our SoundWatch system, we 
performed two sets of evaluations: (1) a comparison of the 
four state-of-the-art sound classification models for small 
devices and (2) a comparison of the four architectures: watch-
only, watch+phone, watch+cloud, and watch+phone+cloud. 
For all experiments, we used the Ticwatch Pro Android watch 
(4×1.2GHz, 1GB RAM) and the Honor 7x Android phone 
(8×2GHz, 3GB RAM). To emulate the cloud, we used an Intel 
i7 desktop running Windows 10 (4×2.5GHz, 16GB RAM).

4.1. Model comparison
We present our evaluation of classification accuracy and 
latency of the four models.

Accuracy. To calculate the “in-the-wild” accuracy of the 
models, we collected our own “naturalistic” dataset similar 
to Home-Sound.11 We recorded 20 sound classes from nine 
locations (three homes, three offices, and three outdoors)  
using the same hardware as SoundWatch: Ticwatch Pro 
with a built-in microphone. For each sound class, we  recorded 
three 10-second samples at three distances (5, 10, and 
15 feet). When possible, we produced sounds naturally 
(e.g., by knocking or using a microwave). For certain difficult-
to- produce sounds—such as a fire alarm—we played snip-
pets of predefined videos on a laptop or phone with external 

Figure 4. Average accuracy (and SD) of the four models for three 
sound categories and three contexts. Error bars in the graph show 
95% confidence intervals.
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ResNet-lite (watch: 1615 ms, SD = 30 ms; phone: 292 ms,  
SD = 13 ms). VGG-lite, the largest model, was the slowest 
(watch: 3397 ms, SD = 42 ms; phone: 610 ms, SD = 15 ms).

Model comparison summary. In summary, for phone 
and watch models, we observed a strict accuracy–latency trade-
off—for example, the most accurate model VGG-lite (avg. ac-
curacy = 81.2%, SD = 5.8%) was also the slowest (avg. latency on 
watch: 3397 ms, SD = 42 ms). Further, the models MobileNet 
and Inception performed too poorly for practical use (avg. ac-
curacy < 40%). ResNet-lite was in the middle (avg. accuracy = 
65.1%, SD = 10.7%; avg. latency on watch: 1615 ms, SD = 30 ms).

Comparison to prior approach. We also evaluated the 
performance of the full VGG model running on the cloud, 
which is used in the state-of-the-art prior work on sound 
classification.11 The average inference accuracy (84.4%, SD 
= 5.5%) was only slightly better than our best mobile-opti-
mized model (VGG-lite, avg.= 81.2%, SD = 5.8%)—a promis-
ing result as our VGG-lite model is less than 1/3rd the size of 
VGG (281.8MB vs. 845.5MB).

4.2. Architecture evaluation
We compared the performance of four different archi-
tectures of SoundWatch: watch-only, watch+phone, 
watch+cloud, and watch+phone+cloud (see Figure 2), which 
may differ in performance and usability.

For each architecture, we used the most accurate model 
on the watch and phone: VGG-lite; the cloud used the full 
VGG model. Informed by prior work,16 we measured CPU, 
memory, network usage, end-to-end latency, and battery 
consumption. For the evaluation, we used a script running 
on a laptop that looped through the sound recordings for  
3 h to generate sufficient sound samples (1080). For the bat-
tery experiment only, the script ran until the watch battery 
reached 30% or less (i.e., just above the 25% trigger for low-
power mode), a common evaluation approach.16 To deter-
mine CPU, memory, and network usage, we used Android 
Profiler, a commonly used profiling tool. For power usage, 
we used Battery Historian. Finally, to determine end-to-end 
latency, we measured the elapsed time (in milliseconds) 
between the start of the sound recording to when the notifi-
cation is shown. Here, we detail our results.

CPU Utilization. Minimizing CPU use will maximize the 
smartwatch’s battery performance and lower the impact on 
other running apps. Our results for CPU usage on the watch 
and phone are as shown in Figure 5a. As expected, the watch’s 
CPU utilization was lowest for classifications performed on 
the phone (watch+phone; avg.= 22.3%, SD = 11.5%, max = 
42.3%) or on the cloud (watch+phone+cloud; avg. = 23.0%, SD 
= 10.8%, max = 39.8%). In these architectures, the watch was 
used only for recording sounds and supporting user inter-
actions. For watch+cloud, the watch additionally computed 
the sound features and communicated with the cloud over 
WiFi, which resulted in significantly higher CPU utiliza-
tion (avg.= 51.1%, SD = 14.9%, max = 76.1%). Finally, for the 
watch-only design, CPU utilization nearly maxed out (avg.= 
99.0%, SD = 2.1%, max = 100%) because the classification 
model ran directly on the watch, revealing that this design 
is impractical for real-world use. However, future advance-
ments in machine learning and wearable technology may 

lead to smaller models and more powerful watches that 
can run these models locally.

Memory usage. A smartwatch app must be memory effi-
cient. Unsurprisingly, we found that the memory usage heav-
ily depended on where the model (281.8MB) was running; 
hence, watch-only and watch+phone consumed the high-
est memory on the watch (avg. = 344.3MB, SD = 2.3MB, max 
= 346.1MB) and phone (avg.= 341.5MB, SD = 3.0MB, max =  
344.1MB), respectively (see Figure 5b). This indicates that 
running a large model such as VGG-lite on the watch will 
likely exceed the memory capacity of current smartwatches. 
The other app processes (e.g., UI and computing features) re-
quired less than 50MB of memory.

Network usage. Low network usage increases the 
app portability, especially in low-signal areas, and may help 
reduce Internet costs. Only the cloud-based architectures 
required network because the classifications were performed 
locally for watch- or phone-based designs. Specifically, for 
watch+cloud, the average network consumption, when 
the system was actively classifying sounds every sec-
ond, was 486.8B/s (SD = 0.5B/s, max = 487.6B/s), and for 
watch+phone+cloud, it was 486.5B/s (SD = 0.5B/s, max = 
487.2B/s), which is very low (~1.8MB/h). In reality, sounds 
will likely not occur every second, which will reduce the to-
tal consumption even further.

Battery consumption. We measured the battery drain 
time from full charge until 30% (see Figure 6), finding that the 
watch-only architecture consumed a lot of battery: it reached 
30% battery in 3.3 h only. Within the remaining architectures, 
both watch+phone (30% at 15.2 h) and watch+phone+cloud 
(30% at 16.1 h) were more efficient than watch+cloud (30% at 
12.5 h), because the latter used WiFi, which consumes more 
energy than BLE.19 Similar trends were observed on the phone; 
however, running the model on the phone (watch+phone) was 
still tolerable compared to the watch (see Figure 6). In sum-
mary, we expect the watch-only design would be impractical 
for daily use, whereas others are usable with the on-device 
implementations fairing slightly better than the cloud ones.

End-to-end latency. A real-time sound awareness sys-
tem needs to be performant. Figure 7 shows a computational 
breakdown of end-to-end latency, that is, the total time taken 
in obtaining a notification for a produced sound. On average, 
watch+phone+cloud performed the fastest (avg. latency = 1.8 s,  
SD = 0.2 s) followed by watch+phone (avg.= 2.2 s, SD = 0.1 s),  
which needed more time for running the model on the 
phone (vs. cloud), and watch+cloud (avg.= 2.4 s, SD = 0.0 s), 
which required more time to compute features on the watch 
(vs. phone in watch+phone+cloud). As expected, watch-only 

Figure 5.  Average CPU (a) and memory (b) usage of the four 
architectures. Error bars show 95% confidence intervals.

Watch

Phone

Watch
W-Only
W-C
W-P
W-P-CPhone

(a) Avg. CPU Usage (%) (b) Avg. Memory Usage (MB)
0 20

6.6
14.9

23
22.3

51.1
99

40 60 80 100

41.9

341.5

34
42.4
344.3

0 60 120 180 240 300 360

33.7



 

JUNE 2022  |   VOL.  65  |   NO.  6  |   COMMUNICATIONS OF THE ACM     105

was considerably slower (avg.= 5.9 s, SD = 0.1 s) and is, thus, 
currently unusable (though future smartwatches could be 
more capable). In summary, except for watch-only, all archi-
tectures had a latency of about 2 s; we evaluate whether this 
is acceptable in our user study.

Architecture evaluation summary. In summary, watch+ 
phone and watch+phone+cloud outperformed the watch+cloud 
architecture for all system parameters. Additionally, the 
watch- only architecture was deemed impractical for real-life 
use due to high CPU, memory, and battery usage, and a large 
end-to-end latency. Among the phone-based architectures, 
watch+phone+cloud performed better than the watch+phone.

5. USER STUDY
To study end-user perceptions of our system results and reac-
tions to SoundWatch across multiple contexts, we performed 
a lab and campus walkthrough evaluation with eight DHH 
participants. Although SoundWatch can support any archi-
tecture or model, we used only the best- performing architec-
ture (watch+phone) and model (VGG-lite) for this study.

5.1. Participants
We recruited eight DHH participants (three women, three 
men, and two nonbinary) using email, social media, and 
snowball sampling. Participants were on average 34.8 years 
old (SD = 16.8, range = 20–63). Four had profound hear-
ing loss, three had severe, and one had moderate. Seven 
reported onset as congenital and one reported one year of 
age. Seven participants used hearing devices: three used 
cochlear implants, one used hearing aids, and three used both. 
For communication, five participants preferred sign lan-
guage and three preferred to speak verbally. All participants 
reported fluency with reading English (5/5 on rating scale, 5 
is best). Participants received $40 as compensation.

5.2. Procedure
The in-person procedure took place on a university campus 
and lasted up to 90 min. Sessions were led by the lead author 
who is hard of hearing and knows level-2 ASL. A real-time 
transcriptionist attended all sessions and five participants 
opted to additionally have a sign language interpreter pres-
ent. Questions were presented visually on an iPad, whereas 
responses and follow-up discussion were spoken or trans-
lated to/from ASL. The session began with a demographic 
questionnaire, followed by a three-part protocol:

Part 1: Introducing SoundWatch (5–10 min). First, 
we asked about general thoughts on using smartwatches 
for sound awareness. The researcher then demonstrated 
SoundWatch by explaining the UI and asking participants to 
wear the watch while making three example sounds (speech, 
door knock, and phone ring). Participants could also make 
their own sounds (e.g., by knocking or speaking).

Part 2: Campus walk (20–25 min). Next, the research-
er and the participant (with the watch and phone) visited 
three locations on campus in a randomized order: (1) a home-
like location (a building lounge), (2) an office-like location (a 
grad student office), and (3) an outdoor location (a bus stop). 
These locations allowed participants to experience Sound-
Watch in different auditory contexts. In each location, par-
ticipants used the watch naturally (e.g., by sitting on a chair 
in an office) for about 5 min. In locations with insufficient 
sound activity (e.g., if the lounge was empty), the researcher 
produced some sounds (e.g., by washing hands or opening a 
door). Before exiting each location, participants completed 
a short feedback form.

Part 3: Posttrial interview (45–50 min). After the 
campus walk, participants returned to the lab for a semis-
tructured interview about their overall experience, percep-
tions of SoundWatch across the three locations, reactions 
to the UI, and any privacy concerns. We then asked about 
specific technical considerations, such as accuracy–la-
tency trade-offs and the four possible SoundWatch archi-
tectures. For accuracy–latency, we gathered their expecta-
tions for minimum accuracy and maximum delay and 
whether these perspectives changed based on sound type 
(e.g., urgent vs. nonurgent sounds) or context (e.g., home 
vs. office). To help discuss the four SoundWatch architec-
tures—and to more easily allow our participants to under-
stand and track differences—we prepared a chart enumer-
ating key characteristics such as battery or network usage 
with a HIGH,  MEDIUM, or LOW rating based on our sys-
tem experiment findings. Finally, we asked participants to 
rate the “ease-of-use” of each architecture (high, med, or 
low) by weighing factors such as the Internet requirement, 
number of devices to carry (e.g., 1 for watch-only vs. 2 for 
watch+phone), and the size of visual display (e.g., small for 
watch vs. medium for phone) and provide reasoning for 
their choice.

5.3. Data analysis
We analyzed the interview transcripts and the in situ form 
responses using an iterative coding approach.2 To begin, 
we randomly selected three out of eight transcripts; two 
researchers read these transcripts and developed an initial 

Figure 6. Battery level over time on the (a) watch and the (b) phone 
for the four architectures: watch only, watch+cloud, watch+phone, 
and watch+phone+cloud. Baseline represents the case without the 
SoundWatch app running.
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In contrast, for nonurgent sounds (e.g., speech and 
laughing), more accuracy was preferred because partici-
pants mentioned that repeated errors could be annoying 
(7/8). For example:

“I don’t care about speech much, so if there is a conversation, 
well fine, doesn’t matter if I know about it 1-2 second later or  
5 seconds later, does it? But if it makes mistakes and I have to get 
up and check who is speaking every time it makes a mistake, that 
can be really frustrating.” (P5)

Finally, for medium-priority sounds (e.g., microwave for 
P3), participants (7/8) wanted a balance, tolerating a moder-
ate amount of delay for moderate accuracy.

Besides sound type, preference also varied with the 
context of use (home vs. office vs. outdoors). Participants 
preferred having less delay in more urgent contexts and 
vice versa. That is, for the home, participants (8/8) wanted 
high accuracy—and accepted more delay—because, for 
example:

“I know most of what is going on around my home. And at home, 
I am generally more relaxed [so] delay is okay. But, I don’t want 
to be annoyed by errors in my off time.” (P8)

For the office, participants (6/8) felt they would toler-
ate a moderate level of accuracy with a moderate level of 
delay, because “something may be needing my attention 
but it’s likely not a safety concern to be quick about it” (P8). 
Preferences for outdoors were split: four participants 
wanted a minimum delay (at the cost of accuracy), but the 
other four did not settle for a single response, mention-
ing that the trade-off would depend on the urgency of the 
specific sound:

“If it’s just a vehicle running on the road while I am walking on 
the sidewalk, then I would want it to only tell if it’s sure that it’s 
a vehicle running, but if a car is honking say if it behind me, I 
would want to know immediately.” (P2)

Architecture comparison. By saliently introducing the 
performance metrics (e.g., battery usage) and usage require-
ments (e.g., Internet connection for cloud), we gathered 
qualitative preferences for the four possible SoundWatch 
architectures: watch-only, watch+phone, watch+cloud, and 
watch+phone+cloud.

In general, watch+phone was the most preferred archi-
tecture among all participants, because, compared to watch-
only, it is faster, requires less battery, and has more visual 
state available for customization. In addition, compared to 
cloud-based designs, watch+phone is more private and self-
contained (does not need Internet).

However, five participants wanted the option to be 
able to customize the architecture on the go, mentioning 
that in outdoor settings, they would instead prefer to use 
watch+phone+cloud because of speed and accuracy advan-
tages. This is because in the outdoor context, data privacy is 
of less concern for them. For example:

“Accuracy problems could be more [outdoors] due to background 
noise and [thus] I prefer to use cloud for [stronger] models if 
[the] internet is available. At home/office, there is a possibility of 
private data breach.” (P6)

codebook. The researchers then independently assigned 
codes to the three transcripts, while simultaneously refin-
ing their own copy of the codebook (adding, merging, or 
deleting codes). The researchers then met again to discuss 
and refine the codebook, resulting in 12 level-1 codes and 
41 level-2 codes) arranged in a hierarchy. This final code-
book was used to code the remaining five transcripts by the 
two coders, resulting in an interrater agreement (measured 
using Krippendorff’s alpha) of 0.79 (SD = 0.14, range = 0.62-1) 
and a raw agreement of 93.8% (SD = 6.1%, range = 84.4%-100). 
Conflicting code assignments were resolved via consensus.

5.4. Findings
We detail participants’ experience with SoundWatch during 
the campus walk as well as comments on model accuracy–
latency, system architectures, and the user interface.

Experience with campus walk. All participants found 
the watch generally useful to help with the everyday activi-
ties in all three contexts (home-like lounge, office, and out-
doors). For example,

“My wife and I tend to leave the water running all the time so this 
app could be beneficial and save on water bills. It was helpful to 
know when the microwave beeps instead of having to stare at the 
time [microwave display].” (P6)
“This is very useful for desk type work situations. I can use the 
watch to help alert me if someone is knocking the door, or coming 
into the room from behind me.” (P7)

However, all participants also reported problems, the most 
notable being delay and misclassifications; the latter were 
higher in outdoor contexts than in others. For example,

“The app is perfect for quiet settings such as [at] home. [While 
outdoors,] some sounds were misinterpreted, such as cars were 
recognized as water running.” (P3)

In situ feedback form responses corroborate these com-
ments, with average usefulness for lounge (4.8/5 on a rating 
scale (5 is best), SD = 0.4) and office (4.6/5, SD = 0.5) being 
higher than for outdoors (3.5/5, SD = 0.5).

Even with a low usefulness rating in outdoor settings, 
all participants wanted to use the app outdoors, mention-
ing that they may be able to use contextual information to 
supplement inaccurate feedback. For example,

“Sure there were some errors outdoors, but it tells me sounds are 
happening that I might need to be aware of, so I can look around 
and check my environment for cues.” (P8)

Model accuracy–latency comparison. Deep learning-
based sound recognition will never be 100% accurate. Thus, 
we asked participants about the minimum required accura-
cy and the maximum tolerable delay at which they will use a 
smartwatch app. The most common preference was a maxi-
mum delay of “five seconds” (5/8) and a minimum accuracy 
of 80% (6/8); however, this choice was additionally modulat-
ed by the specific sound type. Specifically, for urgent sounds 
(e.g., fire alarms or car horn), participants wanted the mini-
mum possible delay (at the cost of accuracy) to get quick in-
formation for any required action, because “I’ll at least know 
something is happening around me and [...] can look around to 
see if a car is honking” (P2).
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lower-confidence classifications and less-urgent sounds. End-
user customization should also be examined. Each user could 
select the desired sounds and the required accuracy, and the 
app could dynamically fine-tune the model (e.g., by using a 
weighted class accuracy metric). Finally, as proposed by Bragg 
et al.,1 researchers should explore end user interactive train-
ing of the model. Here, guided by the app, participants could 
record sounds of interest to either improve existing sound 
classes or to add new ones. Of course, this training may be 
tedious and difficult if the sound itself is inaccessible to a 
DHH user.

6.3. Privacy implications
Our participants were concerned with how cloud-based 
classification architectures may invade their own “sound” 
privacy and of others around them. However, uploading 
and storing data on the cloud have benefits. These datasets 
can be used for improving the classification model. Indeed, 
modern sound architectures on IoT devices (e.g., Alexa and 
Siri) use the cloud for exchanging valuable data. A key dif-
ference to our approach is that these devices only transmit 
after listening to a trigger word. Thus, what are the implica-
tions for future always-listening sound awareness devices? 
We see three. First, the users should have control over what 
data gets uploaded, which can be customized based on con-
text (e.g., offices might have more private conversations than 
outdoors). Second, future apps will need clear privacy poli-
cies such as GDPR or CCPA that outline how and where the 
data is stored and what guarantees the users have. Finally, 
users should always have access to their data with an option 
to potentially delete it, in entirety, from the cloud.

6.4. Future smartwatch applications
In contrast to past wearable sound awareness work,6,9,13 we 
used commercially available smartwatches, a mainstream 
popular device that is more socially acceptable than HMDs6,9 
or custom hardware-based6 solutions—and that may be pre-
ferred over smartphones for sound recognition feedback.3 
So, what are other compelling applications of a smartwatch-
based sound awareness for DHH users? Full speech tran-
scription, a highly desired feature by DHH users,3 is difficult 
to accommodate on the small watch screen, but future work 
could explore highlighting important keywords or summa-
rizing key conversation topics. Sound localization is also 
desired1,5 and could be investigated by coupling the watch 
with a small external microphone array or designing a cus-
tom watch with multiple microphones. However, how best 
to combine different sound and speech features (e.g., topic 
summary, direction, and identity) on the watch is an open 
question. Goodman et al.5 investigated designs for combin-
ing sound identity, direction, and loudness on watch; how-
ever, this study was formative with a focus on user interface. 
Future work should also explore the system design aspects 
of showing multiple features—a challenging problem given 
the smartwatch’s low-resource constraints.

6.5. Limitations
First, although our sound recognition technology is heav-
ily informed by DHH perspectives, such as those of our 

Watch+cloud was preferred by two participants only for 
cases where it is hard to carry a phone, such as in a “gym or 
[while] running outdoors” (P1). Finally, watch-only was not 
preferred for any situation because of high battery drain.

User interface suggestions. Overall, participants ap-
preciated the minimalistic app design and the customiza-
tion options (mute button and checklist on phone). When 
asked about future improvements, they suggested three:  
(1) show the urgency of sounds—for example, using vibra-
tion patterns or visual colors; (2) show direction of sounds, 
particularly for outdoor contexts; and (3) explore showing 
multiple sounds to compensate for inaccuracy:

“You could give suggestions for what else sound could be when 
it’s not able to recognize. For example, […] if it is not able 
to tell between a microwave and a dishwasher, it could say 
“microwave or dishwasher”, or at least give me an indication of 
how it sounds like, you know like a fan or something, so I can see 
and tell, oh yeah, the dishwasher is running.” (P4)

6. DISCUSSION
Our work reaffirms DHH users’ needs and preferences for 
smartwatch-based sound awareness5, 17 but also (1) imple-
ments and empirically compares state-of-the-art deep learn-
ing approaches for sound classification on smartwatches,  
(2) contributes a new smartwatch-based sound identification 
system with support for multiple device architectures, and  
(3) highlights DHH users’ reactions to accuracy–latency 
trade-offs, device architectures, and potential concerns. 
Here, we reflect on further implications and limitations of 
our work.

6.1. Utility of sound recognition
How well does sound recognition tool need to perform 
to provide value? Our findings show that this is a complex 
question that requires further study. Although improving 
overall accuracy, reducing latency, and supporting a broad 
range of sound classes is clearly important, participants felt 
that urgent sounds should be prioritized. Thus, we wonder, 
would an initial sound awareness app that supports three 
to ten urgent sounds be useful? One way to explore this 
question is to study SoundWatch—or a similar app—over 
a longitudinal period with multiple customization options. 
However, this approach also introduces ethical and safety 
concerns as automatic sound classification will never be 
100% accurate. High accuracy on a limited set of sounds 
could (incorrectly) gain the user’s trust, and the app’s fail-
ure to recognize a safety sound (e.g., a fire alarm) even once 
could be dangerous. In general, a key finding of our research 
is that users desire customization (e.g., which sounds to 
classify) and transparency (e.g., classification confidence).

6.2. Toward improving accuracy
Our user study suggests a need to further improve system accu-
racy or at least explore other ways to mitigate misclassification. 
One possibility, suggested by P4, is to explore showing multi-
ple “possible” sounds instead of the most probable sound—
just as text autocomplete shows n-best words. Another idea is 
to sequentially cascade two models, using the faster model to 
classify a small set of urgent sounds and the slower model for 



research highlights 

 

108    COMMUNICATIONS OF THE ACM   |   JUNE 2022  |   VOL.  65  |   NO.  6

sound-localisation device for people 
with impaired hearing. In Proceedings 
of the 16th international ACM 
SIGACCESS conference on Computers 
& accessibility (2014), ACM, Rochester, 
NY, 337–338.

 7. Guo, R., Yang, Y., Kuang, J., Bin, X., 
Jain, D., Goodman, S., Findlater, L., 
Froehlich, J. Holosound: Combining 
speech and sound identification for 
deaf or hard of hearing users on a 
head-mounted display. In The 22nd 
International ACM SIGACCESS 
Conference on Computers and 
Accessibility (2020), ACM, 1–4.

 8. Hershey, S., Chaudhuri, S., Ellis, D.P.W., 
Gemmeke, J.F., Jansen, A., Moore, 
R.C., Plakal, M., Platt, D., Saurous, R.A., 
Seybold, B., et al. CNN architectures 
for large-scale audio classification. In 
2017 IEEE international conference 
on acoustics, speech and signal 
processing (ICASSP) (2017), IEEE, 
New Orleans, LA, 131–135.

 9. Jain, D., Findlater, L., Volger, C., Zotkin, D.,  
Duraiswami, R., Froehlich, J. Head-
mounted display visualizations to 
support sound awareness for the deaf 
and hard of hearing. In Proceedings 
of the 33rd Annual ACM Conference on 
Human Factors in Computing Systems 
(2015), ACM CHI, Seoul, Korea, 
241–250.

 10. Jain, D., Lin, A.C., Amalachandran, M., 
Zeng, A., Guttman, R., Findlater, L., 
Froehlich, J. Exploring sound awareness 
in the home for people who are deaf 
or hard of hearing. In Proceedings of 
the 2019 CHI Conference on Human 
Factors in Computing Systems (2019), 
ACM, Glasgow, UK, 94:1–94:13.

 11. Jain, D., Mack, K., Amrous, A., Wright, M.,  
Goodman, S., Findlater, L.,  
Froehlich, J.E. HomeSound: An 
iterative field deployment of an 
in-home sound awareness system 
for deaf or hard of hearing users. 
In Proceedings of the 2020 CHI 
Conference on Human Factors in 
Computing Systems, CHI ’20 (New 
York, NY, USA, 2020), Association 
for Computing Machinery, Honolulu, 
Hawaii, 1–12.

 12. Jain, D., Ngo, H., Patel, P., Goodman, S., 
Findlater, L., Froehlich, J. SoundWatch: 
Exploring smartwatch-based deep 
learning approaches to support sound 
awareness for deaf and hard of hearing 
users. In ACM SIGACCESS Conference 
on Computers and Accessibility (2020), 
ACM, 1–13.

 13. Kaneko, Y., Chung, I., Suzuki, K. Light-
emitting device for supporting auditory 
awareness of hearing-impaired  
people during group conversations. 
In Systems, Man, and Cybernetics 
(SMC), 2013 IEEE International 
Conference (2013), IEEE, Manchester, 
UK, 3567–3572.

 14. Lu, L., Zhang, H.-J., Jiang, H. Content 
analysis for audio classification and 
segmentation. IEEE Trans. Speech and 
Audio Process. 10, 7 (2002), 504–516.

 15. Matthews, T., Fong, J., Ho-Ching, 
F.W.-L., Mankoff, J. Evaluating non-
speech sound visualizations for the 
deaf. Behav. Inf. Technol. 25, 4 (2006), 
333–351.

 16. Mazumdar, A., Haynes, B., Balazinska, 
M., Ceze, L., Cheung, A., Oskin, M. 
Perceptual compression for video 
storage and processing systems. In 
Proceedings of the ACM Symposium 
on Cloud Computing (2019), ACM, 
Santa Cruz, CA, 179–192.

 17. Mielke, M., Brück, R. A pilot study 
about the smartwatch as assistive 
device for deaf people. In Proceedings 
of the 17th International ACM 
SIGACCESS Conference on Computers 
& Accessibility (2015), ACM, Lisbon, 
Portugal, 301–302.

 18. Saunders, J. Real-time discrimination 
of broadcast speech/music. In 1996 
IEEE International Conference 
on Acoustics, Speech, and Signal 
Processing Conference Proceedings 
(1996), Vol. 2, IEEE, Atlanta, GA, 
993–996.

 19. Shahzad, K., Oelmann, B. A 
comparative study of in-sensor 
processing vs. raw data transmission 
using ZigBee, BLE and Wi-Fi for data 
intensive monitoring applications. In 
2014 11th International Symposium 
on Wireless Communications 
Systems (ISWCS) (2014), IEEE, 
Barcelona, Spain, 519–524.

 20. Sicong, L., Zimu, Z., Junzhao, D., 
Longfei, S., Han, J., Wang, X. UbiEar: 
Bringing location-independent sound 
awareness to the hard-of-hearing 
people with Smartphones. Proc. 
ACM on Interact. Mob. Wearable and 
Ubiquitous Technol. 1, 2 (2017), 17.

 21. Yeung, E., Boothroyd, A., Redmond, C.  
A wearable multichannel tactile display 
of voice fundamental frequency. Ear 
Hear. 9, 6 (1988), 342–350.

 22. Yuan, H., Reed, C.M., Durlach, N.I. 
Tactual display of consonant voicing 
as a supplement to lipreading.  
J. Acoust. Soc. Am. 118, 2 (2005), 1003.

hard-of-hearing lead author, we do not assume it is univer-
sally desired. Some DHH people may feel negatively toward 
this technology, especially those who identify as part of deaf 
culture.1,3 At the same time, past work,1,3 such as our own 
survey with 201 DHH participants,3 suggests the DHH 
community is broad and many DHH individuals do find 
sound recognition valuable. Still, future work should con-
tinue to examine preferences for sound feedback with a 
diverse section of the DHH population to verify our findings.

Second, our short 20-min campus walk, although useful as 
an initial, exploratory study, could not investigate pragmatic 
issues, such as user perception of battery life and long-term 
usage patterns. Future work should perform a longitudinal 
deployment and compare results with our lab findings.

Third, our model accuracy results, though gathered on 
real-life recordings of 20 sounds, do not accurately reflect 
real-world use where other sounds beyond those 20 could 
also occur. Although our approach provides a baseline for 
model comparison and contextualizing user study findings, 
a more accurate experiment would include a post hoc analy-
sis of sound data collected from longitudinal watch use.

Finally, we evaluated our models on specific hardware 
devices (Ticwatch Pro Watch, Honor 7x Phone). Although 
the relative comparisons are likely generalizable, the 
absolute performance metrics will change as the mobile 
and wearable technologies evolve in the future. Additional 
studies will be needed then.

7. CONCLUSION
In this paper, we performed a quantitative examination of 
modern deep learning-based sound classification models 
and architectures as well as a lab exploration of a novel smart-
watch sound awareness app with eight DHH participants. 
We found our best classification model performed simi-
lar to the state of the art for nonportable devices although 
requiring a substantially less memory (~1/3rd) and that the 
phone-based architectures outperformed the watch-centric 
designs in terms of CPU, memory, battery usage, and end-
to-end latency. Qualitative findings from the user study con-
textualized our system experiment results and uncovered 
ideas, concerns, and design suggestions for future wearable 
sound awareness technology.
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