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Figure 1: We introduce AccessParkCV, a novel ML-based disability parking detection and characterization pipeline, composed
of an object detection and oriented bounding box model, that (1) locates disability parking from aerial orthoimages and (2)
estimates the accessible width of disability parking spaces. We motivate its design using results from a needfinding interview
study, and present two case study applications utilizing the pipeline inferences.
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structured interview study with 11 PwDs to advance understanding
of disability parking uses, concerns, and relevant technology tools.
We find that PwDs often adapt to disability parking challenges
according to their personal mobility needs and value reliable, real-
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1 Introduction

Accessible parking is critical for people with disabilities (PwDs),
allowing equitable access to destinations, independent mobility,
and community participation [43, 49, 70]. Although public tran-
sit remains a valuable option, it is not always available, equally
distributed, or accessible [56, 65, 74]. Since the Americans with Dis-
abilities Act (ADA) of 1990 [76], 4-8% of public parking spaces in
the US are required to be reserved for drivers and passengers with
disabilities [43]. However, this mandate includes no compliance or
verification measures [76], and there has been no systematic large-
scale study of the allocation and characteristics (e.g., size) of disabil-
ity parking in the US. Further, there is limited qualitative research
about how PwDs feel about and use disability parking [43, 60].

In this paper, we first present findings from semi-structured in-
terviews with PwDs about their perspectives and uses of disability
parking. We then introduce a novel computer vision (CV) pipeline
for disability parking inference, called AccessParkCV, that not only
identifies and locates disability parking slots from aerial imagery
(e.g., plane flyovers) but also characterizes their widths. While our
algorithms build on emerging work in deep learning to assess built
infrastructure from aerial images (e.g., [32, 67]), including park-
ing [8, 9, 21, 82, 91], we uniquely contribute new techniques for
disability parking and an accompanying labeled dataset for others
to build on our work. As mixed-methods research, our research
questions (RQs) span both the formative and technical:

e RQ1: How do PwDs use disability parking, and how does it
fit into their overall transportation profile?

o RQ2: How well can CV models locate and characterize dis-
ability parking from aerial imagery?

e RQ3: How could inferences from such a CV model be used
to build technology tools for PwDs and policymakers?

To address these questions, we first recruited eleven PwDs for
a three-part, semi-structured interview (60-90 minutes). In Part 1,
we asked about general transit choice behavior and travel before
specifically investigating disability parking in Part 2. In Part 3, we
showed thirteen sketches of envisioned technology tools for dis-
ability parking, including route planning, in situ navigation, and
the "out-of-car" experience once parked. From thematic analysis of
study transcripts, we find that PwDs’ priorities vary significantly
with each individual’s mobility needs and that such needs are not
met by current disability parking policies or implementations. Con-
sequently, PwDs must adapt dynamically when preparing to travel
and when parking. We also find that PwDs value real-time and
reliable information about accessible parking and places of interest
(POIs) in advance of making trips.

Informed by these qualitative findings, we designed, built, and
evaluated a novel disability parking inference pipeline, Access-
ParkCV, capable of identifying, locating, and characterizing the
width of disability parking spots in orthorectified aerial imagery. To
train and evaluate our pipeline, we annotated 11,762 parking spots
from open-source aerial orthoimages of Seattle, WA [84], Washing-
ton, DC [28], and Spring Hill, TN [48]. Our open-source pipeline
achieves state-of-the-art performance: a micro-F1 score [80] of 0.89
on detections and an average error of 5.40% (SD = 17.52%) when
estimating parking width. Further, to explore generalizability across
datasets and the pipeline’s susceptibility to error, we performed
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two additional investigations: an evaluation on regions outside the
training set including at different resolutions and a comparison of
the pipeline’s parking width error to the error between two human
annotators. Moreover, to demonstrate the value of these automated
extractions, we introduce two example applications: a geoanalytic
disability parking map for policymakers and disability advocates,
and an end-user personalized mobile app for seeing and filtering
for disability parking.

In summary, we contribute formative study findings about
the perceived benefits, uses, and drawbacks of disability parking
in the US; a new algorithmic pipeline for detecting and locating
disability parking spots from aerial imagery and for characterizing
their quality; a new disability parking dataset for others to build
on our work; and two example applications demonstrating the
potential of our pipeline and dataset. To support open science and
enable others to build on our work, both the annotated dataset?
and AccessParkCV code? are open source.

2 Related Work

We provide background on the role and implementation of disabil-
ity parking before contextualizing our work in parking-focused
mapping tools and computer vision techniques.

2.1 Disability Parking

Disability parking is fundamental to ensuring equitable access and
independent mobility for people with disabilities (PwDs) [43, 49].
In the US, its origins are intertwined with the broader disability
rights movement and the push for societal inclusion throughout
the latter half of the 20th century [78]. Early federal legislation,
such as the Architectural Barriers Act of 1968 [1] and Section 504 of
the Rehabilitation Act of 1973 [2], began mandating accessibility
in specific contexts, laying the groundwork for more comprehen-
sive standards. However, it was the passage of the Americans with
Disabilities Act (ADA) in 1990 [76] that established enforceable,
nationwide requirements for accessible parking in public accom-
modations and commercial facilities.

The ADA Standards for Accessible Design [70] provide detailed
specifications for disability parking spaces. Key requirements in-
clude specific minimum dimensions, adjacency to marked access
aisles that provide critical space for ramp deployment or maneuver-
ing mobility devices, and clear signage featuring the International
Symbol of Accessibility. Van-accessible spaces mandate even greater
width and vertical clearance, along with specific signage, to accom-
modate larger vehicles often equipped with lifts [87]. The required
number of accessible spaces is calculated based on the total parking
capacity of a lot, ensuring proportional availability [43, 70].

Despite these federal mandates, manual audits conducted across
regions consistently reveal significant deficiencies in the implemen-
tation and maintenance of disability parking [36, 81]. For instance,
a survey of 50 public accommodations in Maryland found that
26% failed to provide the legally required number of accessible
spaces, and 32% lacked a necessary van-accessible space [81]. Com-
mon defects included improperly marked or absent access aisles
and inadequate accessible routes connecting parking to building

!https://huggingface.co/datasets/makeabilitylab/disabilityparking
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entrances [81]. Similarly, fieldwork at 36 locations in Melbourne,
Australia—which has similar disability parking requirements to the
US [3]— found that none fully complied with recommended best
practices, citing issues like undersized spaces, poor line marking,
and missing curb ramps [36].

These infrastructural shortcomings directly impact the lived
experiences and mobility of PwDs [36, 58, 73]. For example, the
aforementioned Melbourne study also surveyed 71 disability park-
ing permit holders, revealing widespread feelings of insufficient
accessible parking availability, particularly in busy activity centers,
along with concerns about the safety of space placement relative to
traffic [36]. Research in Saga, Japan, observed decreased vacancy
rates after introducing a formal permit system, with subsequent sur-
veys indicating user frustration regarding lack of availability [58].
Furthermore, ethnographic work with families managing childhood
disability in Ontario, Canada, demonstrated how parking facilities
could be "technically” accessible according to regulations but func-
tionally inaccessible due to factors like timing, poor snow clearance,
or temporary obstructions. This often forced families to develop
their own coping strategies with little institutional support, high-
lighting the difference between compliance and true usability [73].

Finally, a large body of work investigates disability parking abuse
or violations, including motivations [43] and potential enforcement
or prevention strategies [23, 59, 79]. Though our research does not
focus on violations, such misuse exacerbates the availability issues
stemming from inadequate provision or poor design [79].

In sum, prior research establishes the critical importance of dis-
ability parking, details the design standards intended to ensure its
utility, and documents common failures in implementation along
with the negative consequences for users. Building on this founda-
tion, our work seeks to deepen our understanding of how disability
parking affects the planning and travel behavior of PwDs through
qualitative inquiry. Further, we introduce a novel disability park-
ing detection pipeline, moving beyond the limitations of localized
manual audits highlighted in previous studies.

2.2 Accessibility and Parking Technology Tools

Many technology tools aim to provide PwDs a gateway to infor-
mation about accessibility and infrastructure features in the phys-
ical world, including sidewalks [74], crosswalks [5], and POI ac-
cess [11]—though disability parking itself has received less atten-
tion. To enable these tools, varying approaches are used to source
data about the features in question, including crowdsourcing and
specialized hardware and computer vision. We discuss both acces-
sibility crowdsourcing and parking management systems as two of
these information gateways.

Crowdsourcing is a commonly used approach to scalably col-
lect information about the built environment, and many tools are
built off of crowdsourced data [35, 57, 63, 74]. A user survey of the
wheelchair accessibility crowdsourcing app, Wemap [57], found
that people liked the idea of crowdsourced apps and said that they
would use them. A non-accessibility focused survey on crowdsourc-
ing found that people want reliable information that can suggest
parking location and dimensions [61]. For accessibility specifically,
tools such as AXS Map [35], EasyWheel [62], WheelMap [63], and
SmartBFA [38] are all crowdsourcing platforms that allow users to
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manually (or passively, in the case of SmartBFA) tag the accessi-
bility of locations, with both AXS Map and EasyWheel including
parking information. Although crowdsourcing is a powerful tool, it
can suffer from data reliability and requires a user pool to maintain
and update accessibility tags [12, 74]. Our contribution approaches
the problem from a large-scale auditing perspective that does not
depend on users to characterize accessible spaces, though crowd-
sourcing could be used for human review and quality control.

Another avenue for information access to the real-world is park-
ing management systems that provide both real-time information
and may help mitigate disability parking violations [26, 44, 75]. Pro-
posed solutions range from sensors placed on the car or space [15,
24, 26, 44] to camera and machine learning-based parking mon-
itoring [50, 85]. While such systems may allow the user to see
availability in a particular lot ahead of time, installing sensors re-
quires hardware and does not address parking that was not initially
integrated in the parking management system. Moreover, our focus
is on new automated techniques to identify disability parking spaces
at scale (e.g., to enable new types of urban analytics), something
bespoke infrastructure-sensing solutions cannot achieve.

2.3 Automatically Detecting Parking Spots

Our work introduces a novel CV pipeline for disability parking
detection, building on literature in automated analyses of the built
environment from aerial imagery [6, 32, 34, 40, 47, 66]. Given the
many potential applications of automated parking detection in
general—from autonomous driving to parking management—there
is a wide array of approaches for detecting parking spaces and
occupancy (e.g., [21], [33], [9]). However, no such work is dedicated
to detecting and characterizing disability parking specifically, so
we discuss general methods here.

Live occupancy attempts to detect if there is a vehicle in a given
space at a given time [7]. A common approach involves a static
video camera overseeing the parking lot, with parking space posi-
tions annotated a priori by a human; subsequently, an algorithm
attempts to detect the presence of a vehicle within each desig-
nated space, including background subtraction [10, 21, 90], feature
matching from drone footage [72], and variations of convolutional
neural nets (CNNs) 7, 68]. Similar approaches are also used with-
out having a static feed; [27] and [75] determine occupancy via
self-supervised learning and drones to examine license plates with
CNNs, respectively, without requiring a permanently installed cam-
era. Although these approaches are generally effective at detecting
if a car is present, they are not as relevant to our work given that
(1) the spaces must already be identified, (2) we do not attempt to
determine if a space is occupied in real time, and (3) we make use
of aerial, bird’s-eye imagery vs. infrastructure-mounted cameras.

Another common approach, particularly for automated urban
analyses like zone use, is to detect entire parking lots from aerial
images, including producing segmentation masks with variations
on CNNs (e.g., [9], [31]), or just classifying if an image contains a
parking lot [18]. However, we do not attempt to detect full parking
lots, only individual spaces given an arbitrary location.

More relevant to our work are methods to detect if there is a park-
ing space and, if so, geometric boundaries. One approach uses aerial
imagery and breaks parking lots into their constituent structures
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Figure 2: Three example design probes of the 13 total shared with participants: (a) a routing tool showing the path from a
parking space to the entrance of a destination, estimating both driving time and time to traverse to the entrance, (b) information
about a specific place of interest, including disability parking space counts, and (c) a settings page, where one can filter for
disability parking based on personalized needs. See the supplementary materials for the full 13 probes.

(e.g., lines and boxes), then counts the boxes [8, 39, 77]—similarly,
our characterization model also leverages the rectilinear structure
of parking spaces. Other approaches to detecting disability park-
ing use machine learning; Varghese et al. [88] use support vector
machines and background subtraction to detect both delimited
and non-delimited (no demarcating lines) parking spaces. Seo et
al. [77] use self-supervised learning with ~70% accuracy. Lindblom
et al. [54] use CNNs to detect parking spaces from aerial imagery,
but they see a high false positive rate in cases where there are
many lines in the street or box-like shapes. Most similarly to our
work, Huang et al. [33] attempt to generate inclined, or oriented,
bounding boxes around parking spaces from aerial footage (as we
do to characterize the width of spaces). They achieve precision and
recall in the high-90-percent range, depending on the test dataset.
We build on the above work but differ in our focus on detecting
and characterizing disability parking specifically, and use of a trans-
former based architecture for our parking detection model.

3 Study 1: Interview Study of PwDs

We first present our semi-structured interview study of how PwDs
use, feel about, and struggle with disability parking (Study 1) be-
fore introducing AccessParkCV and example applications partially
informed by those formative findings (Study 2).

3.1 Methods

To investigate the effects of disability parking availability, quality,
and characteristics on PwD travel planning, behavior, and attitudes,
we conducted a remote interview study with 11 PwD participants.

3.1.1 Participants. Participants were recruited through word of
mouth, social media, and disability organizations. Study advertise-
ments linked to a screening survey that collected demographics,
disability information, and parking eligibility duration. We selected
11 adult participants (18+) who either had disability parking eligi-
bility themselves or were primary drivers for eligible individuals,
all possessing disability parking placards. Because our study was
advertised online by some partners, we used reCAPTCHA scores
embedded in our Qualtrics screener to filter fraudulent responses.
See Table 1 for detailed participant information.

3.1.2  Procedure. Our semi-structured interview consisted of three
sections: (1) broad exploration of how PwDs use transportation
and disability parking to identify transit choice patterns; (2) ex-
amination of disability parking experiences, including advantages,
disadvantages, and potential improvements; and (3) assessment of

P Age Placard Reason Mobility Aid Travel Freq.
1 25-34¢  Temp. Disability Crutches > 4/week
2 45-64  Perm. Disability Wheelchair > 4/week
3 45-64  Perm. Disability Wheelchair > 4/week
4 25-34¢  Perm. Disability Wheelchair, Leg > 4/week
Braces, Crutches
5 18-24  Perm. Disability Wheelchair > 4/week
6 45-64  Primary driver for PwD  Wheelchair > 4/week
7 45-64  Perm. Disability Wheelchair > 4/week
8 45-64  Perm. Disability Wheelchair > 4/week
9 45-64  Perm. Disability Wheelchair 2-4/week
10 45-64 Perm. Disability Wheelchair > 4/week
11  45-64  Perm. Disability Wheelchair > 4/week

Table 1: Participant demographics. Travel frequency includes
commuting and personal trips.
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participants’ technology usage habits and feedback on 13 design
probes representing potential disability-parking related tools across
five thematic areas: route planning, place-of-interest investigation,
in situ navigation, out-of-car experiences, and curbside assistance—
see examples in Figure 2. Informed by [30], design probes were
shown as PowerPoint slides.

Prior to the main study, two researchers conducted a pilot inter-
view with one participant (P1), after which minor changes were
made to the interview script to ensure clarity. For the subsequent
sessions, two researchers led five interviews each. All interviews
were conducted via Zoom, with each session lasting 60-90 minutes.
Participants were compensated US$25 per hour.

3.1.3  Analysis. We recorded and transcribed all interview sessions.
For analysis, we used a combination of deductive and inductive
coding [13]. To start, we created an initial codebook based on the
interview protocol. Two primary researchers then engaged in an
iterative process of coding and peer checking [20, 53, 64] to ensure
the reliability and validity of the analysis. Of the 11 interviews, one
researcher coded five and another coded six. The two researchers
then met to discuss and resolve any disagreements, updating the
codebook as necessary. The researchers then swapped their set of
assigned interviews and spot-checked each others’ coding.

3.2 Results

Overall, we found that PwDs approach and use disability park-
ing in diverse and personalized ways—often as a function of their
mobility disability, prior experiences, and vehicle type. Still, com-
mon patterns emerged around preferred disability parking designs,
concerns and problems, and opportunities for improvement. We
organize our findings around two key research questions: (1) How
do PwDs use disability parking? (2) What kind of technology tools
or information would PwDs find useful?

3.2.1 Experiences with Disability Parking. Accessible parking is a
complex reality for PwDs, shaped by individual mobility, the need
for self-devised solutions, and frustrating encounters with poorly
designed built environments and public misuse. While regulations
exist, their inconsistent implementation creates access barriers.
Personal mobility needs shape parking preferences. PwDs
assess parking spaces based on a range of factors from mobility
needs to vehicle size and door locations. P7 noted, for example, that
“if the car can fit in and I can get in and out of the car, that’s all I look
for.” Interestingly, the need to find accessible parking dominates,
even compared to traversal distance to the final destination. P6
observed, “Let planners know it doesn’t have to be really close to
the entrance, right? It doesn’t. That’s not so important.” P9 echoed
this but also emphasized the need for accessible routes from the
parking location to the destination: “As long as I can park someplace
and use my equipment, I don’t mind going further, but other times
without sidewalks and curb cuts, there’s been times where... I couldn’t
park anywhere.” Others mentioned the design of spaces themselves:
For example, P2 emphasized that the directional location of the
aisle is also important, saying “Most are on the right side, why not
put them on the left side? Doesn’t make any sense to me, except
for if somebody’s in a manual chair.” These diverse perspectives
emphasize the subjectivity of a preferred disability parking space.
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Figure 3: Participants placed decals, signs, and cones on or
near their vehicles to warn other drivers not to obstruct the
space needed for them or their wheelchair to enter and exit
the vehicle. Photos from participants P7 and P2.

Still, P8, who works as a disability advocate, stated that “the perfectly
designed parking spot is truly an ADA spot, and I don’t say that about
everything that the ADA does; but in terms of parking, it actually did
it right.” This indicates that improper implementation of disability
parking requirements is a key issue, not the regulation itself.
Adaptive strategies. Given inconsistencies in accessible park-
ing, PwDs develop a variety of strategies to ensure their specific
requirements are met. A common approach involves relying on
the assistance of others, as exemplified by P2, who shared: ‘Tmy
husband] would drop me off in front and go park and pick me up.”
Similarly, P4 mentioned ‘T have two brothers... who have a cute little
minivan because of me”, and P6 serves as the primary driver for
her son. Beyond human assistance, multiple participants carried a
sign or a parking cone to delineate their space or warn others from
parking too close, as illustrated in Figure 3. Some reluctantly resort
to parking over multiple spaces, acknowledging its inconvenience
and potential to frustrate others: P7 mentioned ‘I don’t like taking
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two spots at an angle because that pisses people off”, and P3 echoed
“T’ll park out over the white line... and then you come back and you
can see people who got really annoyed, and it’s like, I'm sorry, I can’t
help it.” These strategies, while effective, highlight the persistent
need for PwDs to take extra measures simply to achieve access.

Burden of "wrong" and mental calculus for access. More-
over, employing these adaptive strategies often creates a sense of
doing something "wrong" just to gain access. P2 recounted: “There’s
been quite a few times when I've had to either create my own space
or illegally park in a bank that was closed.” P2 described relying on
facility staff to “find a spot and put cones in the spot next to me... but
it’s a pain in the ass and it really, I wish it wasn'’t like that” (P11).
This tension between access vs. effort was a persistent backdrop
and stressor influencing travel decisions: ‘T do math in my head
about...how badly do I need to go to the store today?” (P11).

Public misuse. Beyond structural and implementation issues,
the challenges of disability parking were exacerbated by members
of the general public. Nearly every participant expressed frustration
at drivers without disability parking placards illegally occupying
disabled parking spots, reducing availability. P8 lamented that these
spots are “always full of people just parking there for two minutes”,
while P5 noted that “people park on the loading spaces all the time
which blocks me from getting in a car completely.” The problem is
further compounded by concerns related to confronting individuals,
as P10 starkly emphasized: “Number one, it’s not my job to educate
the public about disability parking, and number two, people carry
firearms. I don’t want to get shot.”

Alternative transit. While public transit can be a promising
option—and several participants reported using public transit in
combination with other travel forms—similar to prior work [56, 65],
we found that public services are not always available or problem-
atic in other ways. For example, P7 stated, “T’ve never taken public
transit in Seattle because it’s just impractical... it’s unpredictable to
take public transit.” In contrast, P8 found success with park-and-
ride options, noting “I’ve found that we drive to [the park and ride]
with lovely accessible spots... and it takes me 30 seconds to take the
train and get dropped off.” However, P9 highlighted key limitations:
“[Public transit] only runs 8 to 5 and doesn’t go out of city limits. It’s
so limited that I'm forced to have a vehicle.” P6 reflected on the ease
of getting on/off accessible buses but pointed to surrounding chal-
lenges: “Being on the bus and getting on the bus is easy, but there’s
all the stuff around it” (P6), referring to other factors like distance
to the bus stop, uphill climbs, and weather conditions.

3.2.2  Desired Data and Technology Tool Needs. When asked about
what information would help participants find and navigate to
accessible spaces as well as opportunities for technology support
tools to help (as part of our design probes), participants commonly
emphasized detailed and up-to-date information about parking
occupancy, location, or existence.

Comprehensive routing. Participants desired accessibility-
aware routing not just to a disability parking space but an accessible
route from their car to the entrance of their destination. P4 noted,
“Sometimes you want to go somewhere and have no idea how you're
going to get there. That’s what I like about routing tools, they may not
give you the exact [details], but they give you something to work with.”
This was highlighted in participants’ responses to our probes (e.g.,
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probes #2, #3, and #5): “that information [showing three spaces, one
van space] is super helpful” (P6), “seeing [the path from the parking
space] is helpful, because when I get out of the car, I don’t necessarily
know whether there’s a flight of stairs or the accessible ramp is that
way... just having that extra information, it can’t not help” (P8); “oh
my gosh, these would be so incredibly helpful. It’s kind of... knowing
what you’re up for” (P10).

Value of dynamic data. Despite the existence of some cur-
rent tools that provide static information (e.g., Google Maps shows
accessible entrances, seating, and restrooms [11], though often in-
complete), participants emphasized that dynamic, real-time data
was paramount. P3 articulated this need clearly: “If you could say
"All these are full; the next closest ADA spot is here,” that would be
pretty cool”. Similarly, P6 expressed a desire to “to know how full the
parking lot is;” with P8 echoing, “that parking garage says it’s full,
but there’s still four accessible spots left. Awesome, I would definitely
use an app like that.” Participants also mentioned learning from
non-traditional information sources, with one explaining, T have
received more help from disability influencers who want to take trips
than probably any typical brochure” (P4). These desires for accurate,
real-time information were particularly visible as positive reception
to probes #3, #6, #9, and #13.

Accuracy and trust concerns. However, there are challenges to
real-time information access, both in determining if a parking space
exists or if it is full. Some participants expressed skepticism about
the reliability of information systems, “[I don’t want] somebody
else’s computer program getting me the information that I want when
I can just do it myself” (P7), in response to probes #4, #5, and #6; “T
don’t think I would believe that those numbers are up to date” (P1);
“Idon’t trust [a tool that shows allocation and location of disability
parking]” (P7). The issue of parking violations further complicates
the usefulness of information systems since violations decrease the
reliability of information about available spaces. As P8 observed,
“The Uber drivers will pull right into the two white stripes because
they know they’re just going to be there for a minute.”

3.2.3 Design Recommendations for Disability Parking. Drawing
on our formative study and ADA guidelines [87], we synthesize
the following design recommendations for disability parking. A
key overarching goal of this paper is to develop sensing solutions
capable of tracking and ensuring compliance with these recommen-
dations, which AccessParkCV in Study 2 partially addresses.

(1) Spacing: Provide adequate, ADA mandated [87] clearance
on one or both sides of the disability parking spot (including
at least one access aisle).

(2) Signage: Ensure there is visible signage for each space (as
mandated by the ADA [87]), indicating disability parking
designation and van accessibility. Signage should empha-
size that access aisles are not for parking and the violation
consequences.

(3) Maintenance: Keep parking spaces well maintained, includ-
ing refreshing fading paint, to ensure that their boundaries
and accessible zones are clear and visible.

(4) Location: Avoid placing disability parking on sloped areas
or directly adjacent to high traffic zones.
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Figure 4: Our dataset contains 11,762 objects in seven categories: access_aisle, curbside, dp_no_aisle, dp_one_aisle, dp_two_aisle,
one_aisle, and two_aisle. The images show examples for each parking category, with access_aisle implicitly included in the
latter four. We include typical and atypical examples, and examples of the resulting detections from our pipeline (with parking

detections in cyan and aisle detections in orange).

(5) Connectivity: Ensure that all disability parking has an ac-
cessible path to the entrance of the destination the lot is
intended to serve.

(6) Compliance: Enact policy and auditing steps to ensure that
disability parking is allocated according to the ADA required
minimums. This is an especially important consideration for
public infrastructure projects that remove parking since for
some, vehicle travel is the only viable option.

4 Study 2: Detecting and Characterizing
Disability Parking from Aerial Images

Building on our Study 1 findings and established ADA guidelines [87],
Study 2 introduces AccessParkCV, a novel computer vision (CV)
pipeline designed for the scalable identification and characteriza-
tion of disability parking spaces from aerial imagery. Our pipeline
directly addresses the need for robust tools to assess compliance
with accessibility standards and to provide actionable data, as high-
lighted by our participants. In particular, location, spacing, and
compliance, from the six design recommendations above; however,
our ability to track real-time occupancy or maintenance status is
limited given aerial imagery update frequency (i.e., several years
between surveys), which we expand on in the Limitations of our
work (Section 6.5).

Below, we begin by detailing our dataset and labeling methodol-
ogy, followed by an explanation of AccessParkCV—composed of
two key pieces, a locator and a characterizer—and three empirical
evaluations: an overall performance evaluation across test sets from

three US regions, an examination of our width characterizer, and an
investigation of model performance on regions outside our dataset.

4.1 Dataset

We present and describe our dataset, including orthorectification,
the collection and labeling methodology, and the seven inference
classes, which allow us to not just detect disability parking spaces
but also categorize them into types (e.g., one vs. two aisle spaces).

4.1.1 Orthorectification. AccessParkCV uses aerial images (e.g.,
from a satellite or a plane flying overhead) with sufficiently high
resolution (~7.6cm/px) that parking slots are visually discernible.
These images are typically collected by local or federal governments
and released openly (e.g., on ArcGIS Online) but can be distorted due
to sensor hardware, terrain structure/elevation, and the curvature
of the earth. Orthorectification removes these distortions [86, 92].
The orthoimage tile system [89] defines each tile by an x, y, and z
axis (with z referring to zoom level, a value expressing the scale at
which the Earth is rendered into tiles), letting us map each pixel in
the image to a precise geospatial coordinate on the Earth’s surface.

4.1.2  Data Sampling and Preprocessing. We source and preprocess
the images used for our final labeled dataset in three steps: (1)
downloading the aerial imagery as 256x256px tiles from three US
cities, (2) stitching the tiles together to 512x512px, and (3) sampling
the resultant 512x512 tiles using a small object detection model
(separate from our main detection model in Section 4.2) to identify
candidate parking areas. For the latter, we use a small seed dataset
from a fourth city (Denver). We describe each step below.
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In Step 1, we use Tile2Net [32] to download our open-source
aerial imagery datasets formatted in the orthoimage tile system. To
ensure geographic diversity and varied urban composition, we use
three US areas: Seattle, WA [84], Washington D.C. [28], and Spring
Hill, TN [48]. For Seattle and Spring Hill, the tiles are natively down-
loaded from the source as 256x256 images, and we adopt zoom level
20 (~15 cm/pixel), balancing a high enough resolution to visually
resolve individual parking spaces and the availability of such data.
For DC, the tiles are 512x512 natively, so for objects in the image
to achieve the same scale as the other two cities, we use zoom level
19. Then, to unify the image sizes across all downloaded tiles, we
resize the DC tiles from 512x512 to 256x256 using the Python Pillow
library’s resize function [19] with the Lanczos algorithm [45]. For
the bounding coordinates of our downloaded regions, see Table 2.

In Step 2, we stitch together the 256x256 tiles in a 2x2 grid,
making 512x512 images, so each image covers a large enough land
area to capture several parking spots in one image without being
cut off, while balancing resource constraints. The output of Step
2 is over two million contiguous 512x512 aerial images across our
three cities; however, this is too many to manually review and label.

Thus, in Step 3, we created a small seed dataset and trained an
initial object detection model (a "hint" model) to guide us towards
images that may contain parking. For hint model training, we use
a separate open-source aerial image dataset, Denver [17], to avoid
bias towards one of our in-dataset cities. We first manually reviewed
Denver’s aerial imagery and identified 70 images with parking lots,
which we label for disability parking using the same methodology
described in section 4.1.3. These images are 1024x1024, rather than
512x512, as we processed this dataset before defining our broader

Poor definition

Figure 5: Examples of potential disability parking spaces that
we decided not to label due to overly narrow aisles, spaces
being blocked due to garbage containers or other obstruc-
tions, occlusions from trees or shadows, or generally poor
definition images.

Figure 6: Examples where the research team struggled to
determine disability parking and/or their bounds. (a) A space
with a logo, which is completely blocked by a temporary
structure. (b) A space with non-visible lines. (c) An atypical
striped zone painted on top of what may be a parking space.
(d) The only case where striping overlaps the logo, creating
ambiguity about whether it is a parking space.

Hwang et al.
Resion Bounding Source # images
& Coordinates Resolution  in dataset
(47.9572, -122.4489) .
Seattle (47.4091, -122.1551) 7.62 cm/pixel 2,790
(38.9979, -77.1179) ,
Wash. D.C. (38.7962, -76.9008) 7.62 cm/pixel 1,801
7943, -87.0034
Spring Hill (357943, -87.0034) Unknown 534

(35.6489, -86.8447)

Total 5,125
Table 2: Each region represented in our dataset and (1) their
bounding coordinates (top is top left coordinate, bottom is
bottom right coordinate), (2) their source resolutions, and (3)
the number of 512x512 images (tiles).

methodology. We kept this size as they are only used for the hint
model, where accuracy requirements are lower.

From this small seed dataset, we train the hint model using
YOLOV8 [37, 71] for 113 epochs with default settings, which we then
run on all two million images from our main cities. Those 512x512
images with a detection confidence higher than 0.3 are marked
“may contain parking”; all others as “may not contain parking.” We
choose 0.3 experimentally: it enables enough flexibility for the hint
model to provide false positives, thereby avoiding overfitting.

Finally, we randomly sample 15,500 images from these two pools
(“may contain parking”, “may not contain parking”) to again avoid
overfitting. From the former, we sample 9,500 images: 6,000 from
Seattle, 2,750 DC, and 750 Spring Hill. From the latter, we sample
6,000 images: 4,000 from Seattle, 1,750 DC, and 250 Spring Hill.
As the 15,500 images are still composed primarily of null images
(images without any disability parking spaces), we further remove
a proportion via manual review, so they do not dominate the fi-
nal dataset. We randomly remove all but ~40% of the null images
from the “may contain parking” pool, as these are the images that
"tricked" the hint model, thereby increasing the robustness of our
final dataset. In total, our final dataset includes 5,125 images: 3,065
null and 2,060 with at least one instance of disability parking.

4.1.3 Classes and Labeling. Inferring a disability parking spot re-
quires an explicit definition of what constitutes disability parking.
Though the ADA clearly defines what disability parking is and how
it should look [70], the only required visual indicator is a verti-
cal sign with the international symbol of access. However, such
signage is not visible from aerial imagery. Although not required,
many disability parking spaces also have the access symbol directly
painted on the ground, which is discernible using CV methods and
aerial imagery. If absent, we must rely on the other visible ADA
requirements (e.g., access aisle adjacent to the parking space [87]).
Thus, in our work, we optimistically consider every space with
a visible access aisle as a disability parking candidate, which is
also corroborated by our Study 1 participants who emphasized the
utility of an accessible space whether or not explicitly marked. This
biases our dataset towards false positives, which we return to in
our Discussion (Section 6.2).

To capture such nuanced definitions of disability parking and to
support diverse downstream applications, we define seven classes
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Figure 7: Our definition of width, and a comparison of that definition for ground truth boxes (that can be arbitrary polygons)
and predicted boxes (that are restricted to being angled rectangles). Note how the overlap between parking space and access

aisle bounding boxes is not double counted.

in our dataset (Figure 4): (1) access aisle (access_aisle), (2) curbside
(curbside), (3) disability parking with no aisles (dp_no_aisle), (4) dis-
ability parking with one aisle (dp_one_aisle) , (5) disability parking
with two aisles (dp_two_aisle), (6) spaces with one aisle (one_aisle),
and (7) spaces with two aisles (two_aisle). Access aisle refers to
visible non-parking zones adjacent to a parking space. Curbside
parking denotes spaces that are along the curb of a street and are
visibly marked as disability parking. Three classes (dp_no_aisle,
dp_one_aisle, dp_two_aisle) are spaces that are visibly distinguish-
able as disability parking, generally via a painted logo, with zero,
one, and two access aisles, respectively. The remaining classes
(one_aisle, two_aisle) are spaces without any obvious indication of
being disability parking but with adjacent access aisles.

We annotate each object in each image with polygons. Although
parking spaces are generally consistently sized quadrilaterals, ac-
cess aisles can be more variable in shape and size, such as triangles,
semicircles, or arbitrary polygons. Therefore, to be considered an
access aisle (and not simply a striped zone adjacent to a parking
space), the aisle must be sufficiently wide and extend along the side
of the parking space to a degree where it could aid access in and out
of a vehicle. While this typically means along at least ~30% of the
parking space edge, we deferred to the labelers’ visual judgment.
We include non-labeled examples in Figure 5. Additionally, defini-
tional gaps remain in instances of distortion or atypical parking
implementation. In these cases, we again deferred to the labelers’
judgment (see Figure 6 for examples).

Two members of the research team manually labeled all selected
images. Labelers met before, during, and after the labeling process
to define and clarify the labeling procedure. Three quarters of the
dataset were labeled by researcher A, with the remaining quarter
by researcher B. Researcher A then quality checked and adjusted,
if necessary, researcher B’s labels to ensure consistency. We did
not perform an inter-rater reliability test given that all labels were
checked for consistency by researcher A.

4.1.4 Summary. Our final dataset comprises 5,125 images, with
2,060 containing a total of 11,762 labeled objects across all classes
(see Table 3 for a breakdown per class). The dataset exhibits signifi-
cant class imbalance, with one-aisle classes dominating all others,
which we discuss further in Section 6.

Class Quantity in dataset Percentage
access_aisle 4,693 39.90%
curbside 36 0.31%
dp_no_aisle 300 2.55%
dp_one_aisle 2,790 23.72%
dp_two_aisle 402 3.42%
one_aisle 3,424 29.11%
two_aisle 117 0.99%
Total 11,762 100.00%

Table 3: The class composition of our dataset.

4.2 Locating Disability Parking

We first describe our approach to locate disability parking spots
followed by characterizing its physical dimensions. To detect and
locate disability parking spaces in aerial imagery, we employ multi-
class object detection. Given a 512x512 orthorectified aerial tile,
the goal is to predict bounding boxes corresponding to one of six
parking-related classes, excluding access_aisle, which we remove
during preprocessing because, by definition, this class is associated
with at least one adjacent parking space, and its presence is implic-
itly captured in the class definitions for adjacent labeled spaces,
thus not requiring independent prediction.

To examine performance across models, we first benchmarked
three candidate object detection models—YOLOv11 large [37], DINO
with a ResNet50 backbone [16], and CoDETR with a SWIN-L back-
bone [93]—the last representing a state-of-the-art transformer-
based detection architecture. All models were finetuned on our
dataset using a 70/15/15 train/valid/test split. Training was per-
formed on a high performance computing cluster (16 CPU cores, 128
GB RAM, NVIDIA L40S GPU with 48 GB VRAM). Batch sizes were
chosen based on model size and hardware constraints: YOLOv11
was trained with a batch size of 16, while the other models used a
batch size of 2. Fine-tuning was initialized from publicly released
pre-trained weights from each model’s official repository (also avail-
able in our Hugging Face repository?). All other hyperparameters,
including data augmentation settings, followed default configura-
tions in their respective repositories. Full details, including training
time, learning rates, and augmentation strategies, are available in

3https://huggingface.co/datasets/makeabilitylab/disabilityparking
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Figure 8: Results from the object detection model on the test set, shown as a confusion matrix, and common examples of the
four largest misclassification categories. Predicted bounding boxes are highlighted in cyan, and ground truth bounding boxes
(for false negatives) in green. We note certain trends in the misclassifications, including occlusion, smudges, or atypical spaces.

the appendix (Section A.4) and our GitHub repository*. For each
model, we selected the best performing checkpoint based on vali-
dation set performance, prioritizing high recall to minimize false
negatives. This decision reflects the application context, i.e., false
positives are easier to manually validate whereas false negatives
result in lost detections that are more costly to recover post hoc.

We then evaluate each candidate model on the test set. CODETR
demonstrated the best performance, achieving the highest micro-F1-
score (0.89) and recall (0.94)—see Section A.4 for detailed metrics for
each model. We thus selected CoDETR for all subsequent analyses.
We reuse the results of this experiment for the in-depth evaluation
of our locator model’s performance (see subsubsection 4.5.1), as the
application context is the same.

4.3 Characterizing Disability Parking

In addition to identifying and locating a disability parking space,
we also aim to infer key characteristics such as size. Drawing on our
Study 1 results, we found that access aisles and the total number of
accessible spaces were key priorities for PwDs. For geometric char-
acterization, we fit oriented bounding boxes (OBBs) to each inferred
object instance. The OBBs are aligned with the dominant axis of
the space, enabling accurate estimations of physical dimensions—
particularly width—regardless of the space’s orientation in the im-
age. Given their rectilinear structure, parking spaces do not require
the granularity of segmentation masks, making OBBs a more effi-
cient and appropriate choice.

To train the OBB model, we again make use of our labeled dataset,
however with some preprocessing to align the input data with
the OBB model’s task. Here, we generate 100x100 crops centered

4https://github.com/makeabilitylab/AccessParkCV

around the centroid of each parking object. In each crop, we extract
labels for all objects in the image, adjusting coordinate positions
and shapes accordingly (i.e., aligning the coordinates with the new,
100x100 image positions from the old 512x512 image positions). We
maintain the same train/valid/test splits as above: any object used
for training the locator model was used for training the OBB model.
For the test set, we remove any objects close to the image’s edge
(i.e., that would require padding to reach 100x100), which ensures
that the model is tested only on objects where the parking space is
whole and not cut-off (for rationale and validity justification, see
Section 4.4 and Section A.1). Our final object-wise train/valid/test
splits are 4983/1015/706.

For the OBB model, we use YOLOv11x [37]. We did not trial other
infrastructures, unlike for the locator model, due to YOLOv11x
showing positive results at the outset (see subsubsection 4.5.2). We
train with the same compute as above, for 200 epochs, with a batch
size of 16, a learning rate of 0.01 with 0.937 momentum and a weight
decay of 5 x 107%. We use all default settings for augmentation,
including hue scaling, translation, and horizontal flipping. Details
are in the Ultralytics documentation.® Further, all specific training
values are in our GitHub repository.

4.4 AccessParkCV: An End-to-end CV Pipeline

Finally, we compose the preceding two models—the locator and
the characterizer—into an end-to-end pipeline called AccessParkCV
(Figure 1). Given input bounding coordinates for a region, Access-
ParkCV locates, classifies, and calculates the width of disability
parking spaces within that region. The two models function in the
same manner as described in Sections 4.2 and 4.3, with the locator

Shttps://docs.ultralytics.com/usage/cfg/#augmentation-settings
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predicted aisle

Figure 9: Results from the OBB model on the test set, shown as a confusion matrix, and examples of access aisle false negatives
and positives. Predicted OBBs are highlighted in cyan for parking spaces and in orange for access aisles. Ground truth polygons
are not shown for false negatives. Once again, we note misclassification trends for occluded and atypical parking spaces.

Researcher A vs. Researcher B

Researcher A vs. Model

Cnt | Mean Difference SD Mean Difference SD
Pixels % Pixels % Pixels % Pixels %

null 10 n/a n/a n/a n/a n/a n/a n/a n/a
curbside 4 -1.03 -3.92 1.33 5.75 3.44 4.25
dp_no_aisle | 12 1.94 4.84 2.47
dp_one_aisle | 174 | 1.03 2.28 4.13 0.81 2.30 5.98
dp_two_aisle | 24 -0.03 0.73 0.5 1.05 2.67 4.24
one_aisle 139 | 016 091 PCL TR VYA 19.36 |
two_aisle 3 1.85 2.01 1.18 1.80 1.72 2.56
Total 366 | 0.65 177 | 557 201 540 6.91

Table 4: Results of the error in estimation of width of parking spaces. We compare the difference between two human annotators
(Researcher A vs. Researcher B), and the difference between a human annotator and the model (Researcher A vs. Model).
Positive indicates overestimation (compared to Researcher A), and negative underestimation. The model sees both larger mean
error, and standard deviation of error. Colors indicate magnitude of values using ColorBrewer sequential blue palette.

model passing 100x100 crops around the centroid of each detected
parking object to the OBB model. Both models use a confidence
threshold of 0.3, which were determined experimentally.

To form the final pipeline output, we apply additional logic to the
resulting characterizer inferences. Firstly, the OBB model detects all
instances of parking spaces and access aisles in an image, however,
we are interested in only the center space and its neighboring aisles
(as the other spaces have their own separate, independent crops).
Thus, we select only the parking space with the highest confidence
score that contains the center point of the 100x100 crop. Then,
we select aisles that are along at least 40% of the longest edges
of the parking space (i.e., the sides), defined by being within 20
pixels of each other. Second, we derive the width from the resultant
OBB detections of the space and its aisles. To calculate the width
of a rectangular parking space from its OBB is trivial; however,
as an access aisle’s OBB’s axis can be at an angle relative to the
parking space’s, what the accessible width of the aisle is is less clear.
Therefore, we define the access aisle width as the length of a vector,

starting at the midpoint and perpendicular to the parking space
edge, pointing away from the centroid, to the farthest intersection
point to an access aisle. If there is no intersection point, the width
is considered zero. Finally, we calculate the total accessible width
for a space by summing the the width of the parking space and the
width of any aisles. Since the width of the aisle is defined relative to
the parking space, any overlap is not double counted (see Figure 7).

To format the output, each detected object is georeferenced to
a position on Earth, and the results are output to both a JSON file
and a shapefile for GIS mapping software.

4.5 Evaluation and Results

We individually evaluate both parts of the pipeline, the locator
and characterizer, examining their effectiveness on out-of-sample
regions and diverse resolutions, and compare the pipeline’s parking
width error to the discrepancy between human annotations.
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. True Ground Recall Mean Width

Region Archetype Positives Truth (%) FN - FP Error (m)

Roosevelt (Seattle) Residential 43 49 87.8 6 4

Northgate (Seattle) Transit Center 164 174 94.3 0 39 0.20 (SD=1.63)

USPS Main Office (DC) Urban Commercial 117 122 95.9 5 11 ’ ’

Audi Field (DC) Sports Stadium 41 43 95.3 2 8

Koreatown (Los Angeles) Commercial/Residential 79 123 64.2 44 23 -0.29 (SD=1.63)

Del Amo Fashion Center (Torrance, LA) Urban Commercial 163 227 71.8 64 30 ’ ’

Shopping Mall (Waltham, MA) Suburban Commercial 132 164 80.5 32 20 0.53 (SD=1.16)

Total All Regions 739 902 819 163 135 -0.10(SD=1.58)

Table 5: The seven one km? regions we evaluated our pipeline on. We do not distinguish between categories for parking
spaces detected, only if they were detected at all. Mean Width Error is shown, in meters, aggregated across three categories:
regions represented in our training data (Seattle, D.C.), Los Angeles, and Massachusetts. Again, positive number indicates
overestimation, and negative underestimation. We see that the model consistently detects a higher proportion of objects, and
with a lower error for width, for the regions represented in the training set.

4.5.1 Detection Model. To examine overall performance, we eval-
uated the CoDETR disability parking locator model on the test set
(717 images across Seattle, DC, and Spring Hill). We matched de-
tected objects to ground truth using the Hungarian method for bipar-
tite matching [41], with an Intersection Over Union (IOU) threshold
exceeding 0.5 to ensure optimal correspondence. For all aggregated
performance statistics (precision, recall, and F1 score), we use the
micro-average [80] to capture the holistic performance of the model
across classes. However, given the dataset imbalance, we encourage
readers to observe the per-class statistics for a comprehensive view.
Overall, the CoDETR disability parking locator model performs
well with an overall precision of 0.85, recall of 0.94, and F1 score of
0.89—see class-specific statistics in Table 6.

Qualitatively examining errors. To better understand model
performance, we manually examined all misclassifications, false
negatives (where a parking space that exists is not detected), and
false positives (where null pixels are detected as a parking space)—
Figure 8. For misclassifications (N=31), the most common error
is one_aisle misclassified as dp_one_aisle or vice versa, perhaps
since the only difference from the aerial view is a visual indicator
(e.g., painted logo). In fact, common cases of dp_one_aisle being
predicted as one_aisle are when the logo is faded, smudged, or
partially occluded. Inversely, in many cases, a space that is occluded
or has some mark near the bottom, is misclassified as dp_one_aisle.

In examining false negatives (N=66), common patterns are paint
fade (thus lower contrast with the pavement), occlusion (e.g., from
trees or shadows), or an access aisle not being detected (thus, not
identifying the space as a one_aisle). For false positives (N=130),
common patterns are access aisles that were blocked by an object,
spaces or aisles that were not labeled (due to occlusion or distortion),
or spaces that looked similar to a parking space with a logo (e.g.,
an empty area with an adjacent striped zone, or a number at the
bottom). Interestingly, in the former two cases, perhaps a more
lenient labeling scheme may have identified the spaces, making the
false positives correct detections.

Finally, single parking spaces detected multiple times with differ-
ent classifications (with one being correct) contributes to the error
rate. This is avoided for the full pipeline by filtering overlapping
detections by confidence score.

4.5.2 OBB Model. Beyond detections, we also examine the other
key component of our pipeline, the characterizer model. Here, we
evaluate it as we did the detection model: on the (100x100) test
set, matching objects with the Hungarian method and an IOU of
0.5. However, we compute only whether the space was detected
as an access aisle or parking space and the presence of false neg-
atives/positives, because the OBB model is solely used for width
estimation, with class prediction handled by the detection model.

Overall, similar to our detection model, we see high performance,
with only 29 false negatives and 31 false positives, of 1,426 de-
tected objects—see Figure 9. Our space characterizer perfectly dis-
tinguishes access aisles from parking spaces. However, access aisles
experience some false negatives (3.5% not detected), often due to
occluded, faded, or smudged aisles, and false positives (4.3% of to-
tal access aisle detections) that commonly result from duplicate
detections of non-rectangular aisles, or the misidentification of
neighboring spaces or striped zones.

Class # in test set Precision Recall F1
curbside 10 0.50 0.40 0.44
dp_no_aisle 45

dp_one_aisle 367

dp_two_aisle 62

one_aisle 553

two_aisle 10 0.55 0.64

Total 1,047 0.85 0.94 0.89

Table 6: Results of our locator model, by class. Note that for
the Total results, misclassifications, or instances where an
object of one class is predicted as another, are considered
false positives for the statistics calculation. Performance
is high for classes with high representation, but lower for
classes that are underrepresented (curbside, two_aisle). Total,
aggregated statistics are formed from the micro-average of
the class level statistics.
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Figure 10: Example FNs and FPs for each evaluation region with ground truth annotations and predictions shown. We see
similar error patterns as before; however, LA disability parking demarcations are often blue (rather than white or yellow) and
more faded, resulting in lower contrast with the pavement. Waltham data is at a much lower resolution, resulting in blurriness.

Evaluating width characterization. In detecting parking spots
and their aisles in a cropped image as an OBB, the key responsibility
of the characterizer is to quantify parking space width (including
access aisles), via the dimensions of the OBBs. To evaluate width
characterization, we compared our model’s error to the error be-
tween two human researchers’ labels. Researchers A and B labeled
the same, randomly sampled 356 object subset of the test set (plus 10
randomly sampled false positives from the detection model evalua-
tion, as null trials), and we calculated the differences in width from
their respective labels. As location data (which is required to derive
real-world distance) was lost during the test set preprocessing, all
measurements for evaluation are in pixels, not real-world units.

Overall, we find that the model performs well: only slightly
worse than the humans with an average error of 5.40% vs. 1.77% and
overall standard deviation of 17.52% vs. 12.05%, though performance
depends on class—see Table 4 and Section A.3.

4.5.3 Cross City Performance. Finally, to investigate how well Ac-
cessParkCV generalizes to regions outside of those used to train the
models, we selected seven additional one km? regions, four from
our original cities that were not in our training set (two from Seat-
tle; two from DC) as well as two neighborhoods in Los Angeles [46]
and one from Massachusetts [69]. These selections were based on
geographic and zone type variation in addition to data availability
in Tile2Net. Aerial imagery from Massachusetts has a much lower
resolution (15 cm/px vs. 7.6 cm/px), which also enabled us to ex-
amine performance on lower resolutions. For ground truth, one
member of the research team manually labeled all parking spaces
and aisles with the same seven classes as before, and we release
these additional seven regions and labels to our HuggingFace. We
evaluate the entire pipeline: the ability to detect parking spaces,
and the accuracy of the pipeline’s estimation of their widths. Each
detected parking space was matched with a ground truth label for
evaluation, again with the Hungarian bipartite matching method
based on an IOU of 0.3. We report results for total objects detected,

without distinguishing between parking classes, due to the low
cross-class sample count.

Overall, as expected, detector model performance drops but still
performs fairly well, particularly on the neighborhoods drawn from
the same cities as the training set (Seattle and DC) with average
recall above 90%; however, performance in LA and Waltham, MA
drops significantly: to ~69% in LA and 81% in MA, which suggests
some amount of per-city training data may be necessary. To advance
understanding of model performance, we once again qualitatively
analyzed errors in each region (Figure 10); we find similar error
patterns as reported in Sections 4.5.1 and 4.5.2. However, we note
two notable distinctions with LA parking data: a prevalence of blue
paint for disability parking (vs. yellow or white), resulting in re-
duced contrast with the surrounding pavement, and more frequent
and severe paint fading, possibly attributable to intense sunlight.
The human labeler also found LA data more difficult to label than
other regions given these reasons, which may have contributed
to the overall error rate (given that the labels themselves may not
be 100% accurate). These patterns may also have contributed to
the width error rate, as parking spaces where the borders are not
clearly defined are more imprecisely detected.

5 Case Study Applications

To help demonstrate the utility of AccessParkCV as well as our
findings from Study 1, we present two case study applications: a per-
sonalized disability parking app (a lo-fi mockup) and an interactive
urban analytics visualization (a mid-fi prototype).

5.1 Personalized Parking Search and Filter

As highlighted in Study 1, individuals with disabilities (PwDs)
highly value pre-trip information regarding location accessibil-
ity, as it significantly reduces travel time and anxiety. Regarding
parking, the availability and size of spaces were frequently cited
as crucial factors. Leveraging classifications and width data from
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Figure 11: Two applications utilizing the results from our detection tool: (a) a personalized parking search and filter application,
and (b) an urban analytics visualization displaying number of disability parking spaces per census tract in Seattle.

AccessParkCV, we designed a lo-fi mapping application (Figure 11a)
that identifies accessible parking options within a given area. The
tool allows users to refine their search based on: the number of ad-
jacent aisles, the total width of the parking space, and its proximity
to their destination. For example, a user operating a ramp-equipped
van, who prioritizes space over immediate proximity to an entrance,
can effectively filter for suitable parking spots and plan their travel
accordingly. While the application does not provide real-time oc-
cupancy data (a limitation of our pipeline), it empowers users to
locate appropriately sized parking spaces that meet their specific
vehicle and accessibility requirements, thereby facilitating the iden-
tification of suitable alternatives if a preferred space is occupied.

5.2 Disability Parking Analytics

As stipulated by the Americans with Disabilities Act (ADA), 4-8% of
total public parking must be designated as accessible parking [43].
To help disability advocates, government officials, and even end-
users themselves understand the distribution and density of dis-
ability parking in their communities, we designed and developed
a mid-fi interactive disability parking visual analytics tool. Illus-
trated in Figure 11b, the tool enables users to conduct in-depth
investigations into disability parking trends, which can be further
disaggregated by community, zoning regulations, and business con-
centration. Such visual analytics provide a data-driven foundation
for local governments to formulate and revise parking and zoning
policies. Furthermore, these visualizations could be integrated into
other regional accessibility metrics, such as AccessScore [51], em-
powering individuals to make informed decisions regarding travel
and residential choices based on accessibility considerations.

6 Discussion

In this paper, we explored the nuances of disability parking in the
US, sharing formative findings on its perceived benefits, uses, and
drawbacks. We also developed a new algorithmic pipeline to detect
and assess disability parking spots from aerial imagery, created
a novel disability parking dataset, and showcased two practical
applications of our methods. Below, we reflect the implications of
our work, our dataset contributions, the future of CV applied to
disability parking, and key limitations and future work.

6.1 Implications for Design

Drawing on our study findings, we synthesize five key recommen-
dations for the design of interactive apps for disability parking.

¢ Beyond location. While showing the location of disability
parking spots on a map is a critical accessibility advance-
ment, it is insufficient to support diverse mobility needs,
vehicle types, and the various requirements for access aisles.
Future apps should leverage AccessParkCV’s ability to in-
fer characteristics like the presence and width of aisles and
surface related metadata to the user (similar to Figure 11a).
Personalized filtering. Because preferences for disability
parking vary significantly—as a function of ambulation abil-
ity, use of mobility aid, vehicle type—apps should empower
users to filter for their specific accessibility criteria (e.g., min-
imum width, presence and orientation of access aisles).
Comprehensive routing. While finding an accessible park-
ing spot is critical so too is the journey from the parking to
the building entrance. Future tools should integrate assess-
ments of the "out-of-car" experience, including the presence
of sidewalks, pathway accessibility, and distances.
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e Trust and transparency. Our participants expressed skep-
ticism about the reliability of disability parking information,
partly due to issues like illegal occupancy and inconsistent
implementation of regulations. To build trust, apps should
surface information sources and, if possible, allow users to
actually look at raw image sources (for verification).

e Real-time occupancy. The ideal app would also provide
real-time availability data, which is beyond the capabilities of
our techniques. Future work should explore hybrid solutions
connected to real-time sensors.

¢ Human-in-the-loop. While our CV techniques perform
well, they are imperfect. Apps should empower users to
provide in situ insights on the quality of a parking spot and
provide feedback on CV detections via their lived experience.

6.2 Dataset Contribution

A key contribution of our work is the first open-source, human-
labeled dataset of disability parking and access aisles from aerial
orthoimages. This dataset comprises 11,762 labeled objects across
5,125 images from three distinct US regions: Seattle, Washington
D.C., and Spring Hill, TN. By stratifying "accessible parking" into
seven distinct classes, including those with varying numbers of
aisles and different visual indicators (e.g., painted logos), we enable
fine-grained analysis and customization for both macro-scale urban
planning and micro-scale personalization. Our dataset includes a
significant number of null examples (3,065 images) from the same
regions, allowing researchers to filter null proportions appropriate
for their desired use case. We publish the dataset in the commonly
used COCO format [52] for convenience.

While the dataset exhibits class imbalance, with one-aisle classes
dominating, this imbalance likely reflects real-world conditions, as
ADA guidelines do not mandate two aisles for all accessible spaces:
only "van accessible” spaces are required to have two aisles and
curbside disability parking is not mentioned [87]. In our locator
model, we find that this imbalance does not significantly affect
results (beyond the curbside class, which only has 36 samples).
However, future dataset expansions should include efforts to reduce
the imbalance.

6.3 Disability Parking CV: A New Benchmark

Our novel computer vision pipeline, composed of a locator and
a characterizer model, sets a new benchmark for scalably detect-
ing and characterizing disability parking from aerial imagery. The
pipeline achieves a micro-F1 score of 0.89 for detection, demonstrat-
ing high overall performance, particularly for classes with strong
representation in the dataset. Importantly, our characterizer model
estimates the width of parking spaces with an average error of
only 5.4%, which directly helps assess compliance with accessibility
standards and to provide actionable data to PwDs, a need strongly
voiced by our interview participants.

The open-sourcing of our pipeline code and experiments along-
side our dataset helps advance research in CV-based analyses of
accessible urban infrastructure [22, 32, 42, 47, 55] and provides foun-
dational benchmarks for this emerging area. While our pipeline
excels at identifying clearly defined and visible disability parking
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spaces, it struggles with "atypical" parking spaces—just as our hu-
man annotators did—due to factors such as faded paint, blurriness,
and unexpected design variation. Our decision to prioritize low-
ering false negatives over false positives reflects the application
context, where undetected accessible parking is more costly than
manually verifying a false positive. This approach aligns with the
principle that humans, particularly those with lived experience,
should remain in the loop for validating and verifying algorithmic
outputs related to accessible urban infrastructure.

6.4 Scale and Generalizability

Our longterm, overarching goal is to accurately detect, characterize,
and track every disability parking spot in the US, if not the world.
While our experiments demonstrate high performance, particularly
for regions within our training set, there are two key limiting fac-
tors: (1) in subsubsection 4.5.3, we show that performance drops
without some per-city training—future work should more com-
prehensively examine performance as a function of training set
size and diversity; (2) the availability of high-resolution aerial or-
thoimagery, which are often created by public agencies like the
US Geological Survey [83] or local governments (the Seattle [84],
D.C. [28], Massachusetts [69], and LA [46] datasets are all provided
on open gov city websites). Continued expansion of the dataset
across a higher diversity of regions, resolutions, and zoom levels
would bolster model generalizability and potentially reduce the
need for extensive fine-tuning on deployment regions.

6.5 Limitations

Our work has several primary limitations. First, in Study 1, our
participant pool was almost entirely composed of wheelchair users.
Greater diversity of disability type and mobility aid would enhance
the generalizability of our qualitative findings. Second, aerial im-
agery inherently limits the scope of detectable parking, as indoor
parking facilities (e.g., in parking garages) are not visible. Third
and relatedly, not all disability parking can be identified from aerial
imagery, including in instances where a space lacks an access aisle
and is only visually denoted by a vertical sign. Furthermore, envi-
ronmental factors like occlusion from trees or shadows can impact
accuracy. Fourth, our approach is reliant on the availability and
quality of high-resolution orthoimagery. Even in cases where such
data is available, aberrations within the dataset can affect the re-
sults (e.g., in DC, the entire National Mall is blurred, presumably
for security reasons). Similarly, real-time applications are also not
possible using only orthoimage datasets, given they are typically
only updated after several years, if ever. Finally, our definitions of
"access aisle" and "width" may not be appropriate in all scenarios.
For example, in our dataset we choose to label striped, triangular
wedges between two parking spaces as an access aisle; however,
if two long, parked cars were to park in the adjacent spaces, there
would be no path out from the aisle.

6.6 Future Work

Future work should address the limitations outlined above. Em-
ploying multiple aerial orthoimage datasets of the same region,
captured at different times, could help mitigate issues caused by
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parked cars occluding disability parking features. Integrating non-
aerial imagery sources, such as Google Street View, could enable the
identification of spaces marked only by vertical signage and poten-
tially provide visibility into indoor parking areas or spaces entirely
occluded from a bird’s-eye view. Further expansion of the dataset to
include a higher diversity of regions, resolutions, and zoom levels
would likely bolster model generalizability and may reduce the
need for extensive fine-tuning on new deployment regions.

Beyond addressing limitations, several potential extensions could
improve AccessParkCV. First, additional classification models or
ensemble voting approaches [25] could be used to reduce the num-
ber of false positives. Second, additional characterizer models could
be added along the pipeline that accept the same image input shape
as the OBB model, such as quantifying a parking space’s degree
of paint fade or if it is angled. Finally, incorporation of contextual
information, such as obstructions on the path to the entrance or
distance from traffic, would allow us to make more holistic claims
on the accessibility of a given parking space.

We envisioned two, non-exhaustive use cases for the data pro-
duced by our pipeline. More applications and tools could also benefit
from the disability parking detections. Disability parking data could
be combined with sidewalk data [51, 74], which could then be inte-
grated into a personalized routing app, or to generate a community
level accessibility score. Further, a tool could be created that audits
and notifies individual businesses if they are compliant with ADA
parking guidelines [87] based on quantity and width.

7 Conclusion

Through mixed-methods research, including an interview study of
11 PwDs and the development and evaluation of a CV pipeline that
can locate and characterize disability parking spaces, we contribute:

(1) Design and policy guidelines for the implementation and
maintenance of disability parking.

(2) An open-source dataset of 11,762 labeled disability parking
spaces and access aisles that can be used for classification,
detection, segmentation, or other analysis tasks.

(3) A CV tool that locates, classifies, and characterizes the width
of disability parking from aerial orthoimagery.

(4) Two envisioned applications that leverage the preceding con-
tributions to enable large-scale disability parking auditing
and individual-scale accessibility filtering.

Our work highlights the potential for large-scale, computer vi-
sion disability parking detection and characterization tools to im-
prove both the implementation of disability parking at large and
for the data from such tools to bolster government-level analysis
and individual-level customization. Our work showcases both the
need for such investigative and personalized tools and the ability
for computer vision to serve as a vital step towards that end.
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A Appendix
A.1 Detecting Objects Split Across Tiles

Figure 12: Illustration for Algorithm 1. We employ a sliding-
window algorithm to detect objects split between tiles. In this
example, the input to the pipeline is the top left tile position
{a}, from which it will stitch together and detect objects in the
2x2 square {a, b, d, e}, denoted in white. The parking spaces in
blue are half in and half out of the square. As the algorithm
proceeds, the parking spaces will be detected in their entirety
in the squares {d, ¢, g, h} and {e, f, h, i} and be included in the
results for the square {a, b, d, €}.
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"Where Can [ Park?"

Algorithm 1 Detect objects in a 512x512 Tile (refer to Figure 12)

Time Cost: O(4n).

Assume: Objects are no wider than 100 pixels.

Input: Top left tile position {a}.

Step 1: Detect in {a, b, d, €}. Ignore objects with a centroid <50
px from border.

Step 2: Detect in {b, ¢, e, f}. Ignore objects with a centroid <50
px from border and >50 px from the vertical middle.

Step 3: Detect in {d, e, g, h}. Ignore objects with a centroid <50
px from border and >50 px from the horizontal middle.

Step 4: Detect in {e, f, h, i}. Only keep objects with a centroid
within a 100 px square around the center point.

Return: All non-ignored objects and their positions.

Because of tiling, some objects will be split across tiles and poten-
tially detected multiple times. We consider two possible solutions
to this problem: (1) to combine detected objects across borders into
one based on their geometry (the approach used by Tile2Net [32]),
or (2) to create a new image, encapsulating the area at the border,
and to detect within this new image, thereby detecting one whole
object rather than multiple fragments of an object.

We opted for Method 2 as Method 1 would raise other detection
problems to consider. For example, parking spaces are quite small
relative to the size of the image; what if, by being split across tiles,
a space is only detected in one tile or in no tiles at all? Furthermore,
a parking space’s classification significantly depends on its features
(e.g., the number of aisles it has, if it has a painted logo, etc.). What if
the space is split so that the logo or an aisle is visible in one tile but
not the other? How would the class be determined? Finally, parking
spaces tend to be both small and adjacent to one another. The object
combination would need to be very robust to avoid combining two
neighboring objects into one.

We avoid all these issues by using Method 2, ensuring we detect
only whole objects, but at the cost of computation. To do this, we
assume that a parking space (with aisles) is no wider than 100 pixels
in a given dimension, which, at our zoom level, holds for all but
the most extreme of scenarios (such as semi-truck parking). In this
way, the locator model is only tasked with detecting entire parking
spaces and passes only unpadded, 100x100 crops to the OBB model.
For a detailed breakdown of the approach and algorithm, including
computation cost, see Figure 12 and Algorithm 1.

A.2 Georeferencing

For a pixel in a given tile whose x and y positions are in the or-
thoimage tile system, we can obtain that pixel’s location on Earth
(given zoom level 20). Orthoimage tiles are representations of the
common Web Mercator projection [4]. We discern a pixel’s latitude
and longitude (in the commonly used WGS84 ) with the following:

longitude = —
ongitu e—270-360—180

180
latitude = — - arctan(sinh (7 — Zﬂi))
b3 220

®https://epsg.i0/4326
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Here, x and y are the fractional values of the pixel in relation to
the tile in which it belongs. For example, in a 256x256 orthoimage
tile with x = 168046,y = 366004, if a pixel is at the 128th row
and column, the values used in the preceding equations are x =
168046.5, y = 366004.5. Then, to calculate distances, and therefore
widths, the latitude and longitude are converted into points in a
projected coordinate system, EPSG:38577 (i.e., pseudo-mercator
with units in meters), and simple Euclidean distance is used.

"https://epsg.i0/3857
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A.3 Width Characterization Histograms
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Figure 13: Results of the pipeline’s derivation of width on the test set, for the classes with over 30 samples: dp_one_aisle,
dp_two_aisle, and one_aisle. Other classes are not shown, as histogram patterns are less visible and robust with the less common
classes. Differences in pixels above are shown in cyan, and percentage difference below in green. Differences are predicted
minus ground truth; therefore, a positive value indicates overestimation. The model sees a large peak around zero (i.e., accurate
estimation), with wider variation depending on class.

A.4 Locator Models and Results

YOLOv11 large DINO (ResNet50 backbone) Co-DETR (Swin-L backbone)
Training Epochs 200 50 50
Selected Epoch 126 27 23
Batch Size 16 2 2
Learning Rate 1072 1074 2x107*
Weight Decay 5x107* 1074 1074
Hue
Saturation
Brlghtne.ss . Resizing
. Translation Resizing ..
Augmentations .. . Random flipping
Resizing Random cropping Random cropping
Flipping (left right only)
Mosaic
Erasing
Precision/Recall/F1  0.76 / 0.92 / 0.83 0.87/0.86 / 0.86 0.85/0.94/0.89

Table 7: Training parameters and results for the three models tested for the object detection component of the pipeline.
Co-DETR sees the best performance in Recall and F1 score.
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