2507.23190v1 [cs.HC] 31 Jul 2025

arxXiv

Accessibility Scout: Personalized Accessibility Scans
of Built Environments

William Huang
University of California, Los Angeles
Los Angeles, CA, USA
william.huang@ucla.edu

Jon E. Froehlich
University of Washington
Seattle, WA, USA
jonf@cs.uw.edu

Xia Su
University of Washington
Seattle, WA, USA
xiasu@cs.washington.edu

Yang Zhang
University of California, Los Angeles
Los Angeles, CA, USA
yangzhang@ucla.edu

| suffered a spinal cord injury and
use crutches for short distances and
a wheelchair for long distances.

@ | am on the older end and cannot
walk longer distances due to fatigue.
| really like having something to
hold on to while | walk. When | think
about it, | hate distractions like TVs
in my sleeping spaces.

| need a walker to get around. |
need to take many breaks when
traveling far distances. My hearing
and eyesight isn't so good anymore so
I like quiet and well-lit places where
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continuous railings for

support while walking.
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difficult to transfer
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it difficult to sit down
and stand up,
especially with fatigue.

The restroom entrance
is narrow, making it
difficult to maneuver a
wheelchair or walker.

Proximity to busy road
creates noise, making
it difficult to hear or
conversate properly
given limited hearing.

The living space has a
V.

Bookshelves may be

too high to reach

while using a

wheelchair or crutches.
J

Fixed seating makes it
challenging to transfer
from a wheelchair or
walker.

S
Insufficient lighting to
see clearly at night. )

| can enjoy my peace.

Figure 1: Accessibility Scout is an LLM-based personalized accessibility scanning system for semi-automatically modeling
a person’s accessibility preferences to identify and visualize accessibility concerns in images of built environments. (Left)
Accessibility Scout converts plain text descriptions of accessibility and collaborative human-AI accessibility annotations into
LLM-interpretable user models. (Right) User models are used to generate personalized accessibility scans for each individual.
Images can be sourced from anywhere, including Yelp, Google Maps, AirBnB, Facebook, Booking.com, and more.

Abstract

Assessing the accessibility of unfamiliar built environments is criti-
cal for people with disabilities. However, manual assessments, per-
formed by users or their personal health professionals, are laborious
and unscalable, while automatic machine learning methods often
neglect an individual user’s unique needs. Recent advances in Large
Language Models (LLMs) enable novel approaches to this problem,
balancing personalization with scalability to enable more adaptive
and context-aware assessments of accessibility. We present Acces-
sibility Scout, an LLM-based accessibility scanning system that
identifies accessibility concerns from photos of built environments.
With use, Accessibility Scout becomes an increasingly capable "ac-
cessibility scout", tailoring accessibility scans to an individual’s
mobility level, preferences, and specific environmental interests
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through collaborative Human-AI assessments. We present findings
from three studies: a formative study with six participants to in-
form the design of Accessibility Scout, a technical evaluation of 500
images of built environments, and a user study with 10 participants
of varying mobility. Results from our technical evaluation and user
study show that Accessibility Scout can generate personalized ac-
cessibility scans that extend beyond traditional ADA considerations.
Finally, we conclude with a discussion on the implications of our
work and future steps for building more scalable and personalized
accessibility assessments of the physical world.
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« Human-centered computing — Accessibility systems and
tools; Interactive systems and tools.
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1 Introduction

Safe and accessible spaces are crucial for human well-being [19,
29, 39, 47] and quality of life [62]. However, these spaces are not
guaranteed, especially for people with limited mobility who often
cannot explore or use certain environments without proper accom-
modations. According to the CDC, 12.2% American adults have
a mobility disability [14], with a majority of people expected to
face mobility challenges as they age. In response, significant efforts
have been made to identify accessibility concerns to renovate or
build more accessible physical environments and inform people
with limited mobility about potential challenges in unknown places
[22, 25, 27, 63, 75, 82].

To scalably identify accessibility concerns, accessibility practi-
tioners have codified common accessibility problems into standard-
ized accessibility checklists like the Home Safety Self-Assessment
Tool [33] and ADA building codes [3]. These checklists allow non-
experts to evaluate and enforce the accessibility of environments
more easily. Researchers have expanded upon this approach through
automated accessibility auditing tools like RASSAR [74], which uses
mobile AR and computer vision to identify pre-defined accessibility
features and crowdsourcing platforms like Project Sidewalk [66],
which defines a set of key sidewalk accessibility features for crowd-
workers to annotate. While these systems are a cost effective and
easily scalable way to collect large amounts of data, their checklist-
based approach to identifying accesibility accessibility concerns
fail to consider an individual’s unique abilities, needs, preferences
and how they change over time. Thus, the accessibility informa-
tion generated from these approaches fail to capture how people
personally experience accessibility in their physical environment
[23, 40, 41, 45, 52, 57, 62, 76]. This mismatch can create a misleading
perception of accessibility, potentially leading people with disabili-
ties into frustrating and dangerous situations or imposing needless
restrictions that further limit spatial opportunities.

In response, we propose a novel accessibility auditing approach
leveraging recent advancements in large language models (LLMs),
enabling personalized accessibility scans of built environments
at scale. We present Accessibility Scout, an LLM-based personal-
ized accessibility assessment system to semi-automatically identify
accessibility concerns from images. Accessibility Scout accepts im-
ages of built environments to identify and visualize personalized
accessibility concerns, enabling users to analyze thousands of envi-
ronments at scale using data readily available from sites like Yelp
or Google Maps. Through collaborative annotations, our system
allows people with disabilities that affect their mobility to validate
outputs from LLMs while incrementally learning their motor capa-
bilities, preferences, and environmental interests to continuously
updating its user model and improve its assessments over time.

We first ground our work by conducting a formative study to
identify the current difficulties, needs, and process of finding ac-
cessible spaces. These insights informed the design of Accessibility
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Scout, aligning its prediction pipeline with how users naturally
evaluate accessibility concerns and enabling users to guide the
system through collaborative human-AI annotations to build a dy-
namic model of the user’s needs and preferences. We then recruited
10 participants with varying levels of self-described mobility to
build personalized user models through hour-long interactions
with Accessibility Scout and conducted a technical evaluation us-
ing generated personalized accessibility annotations across 500
images of built environments. Finally, we conducted a user study
where participants evaluated the usefulness of personalized ver-
sus non-personalized system outputs and shared their thoughts
through interviews. These evaluations yielded both quantitative
and qualitative insights about our system. Our findings indicate that
Accessibility Scout effectively generates useful data and engages
users, while raising important considerations for future Al systems
for accessibility scans.

Our contributions are threefold: First, we introduce the first LLM-
based approach to accessibility auditing, enabling semi-automatic,
personalized assessments. We show that scalable personalization is
possible using low-cost inference methods and readily available on-
line data. Third, we provide novel insights from our user-centered
design and evaluation, highlighting effective LLM user modeling
strategies, new accessibility scanning methods, and new interaction
techniques for human-AI collaborative annotations in accessibility.
We believe Accessibility Scout paves a new path toward person-
alized accessibility assessment, with the potential to transform
current accessibility practices. This potential is amplified by the
vast number of online images (e.g., from Airbnb to Yelp), which Ac-
cessibility Scout could use to support people with limited mobility
in making travel decisions, room reservations, and event planning.

2 Related Work

We situate our work in digital accessibility assessment, visual affor-
dance predictions, LLM-based personalization, and mobility model-
ing for accessibility.

2.1 Digital Accessibility Assessment

Recent innovations in sensing and computing have advanced envi-
ronmental accessibility assessments. For example, Bring Environ-
ments to People [18] lets people with limited mobility remotely
assess spaces through browser-based virtual tours. Other research
[32, 38, 58, 60, 61] builds upon this idea by utilizing embodiment
techniques in virtual reality (VR), allowing users to explore and
assess digital twins of physical environments. Crowdsourced ap-
proaches like Project Sidewalk [66, 70, 77] use online crowdwork-
ers to remotely label accessibility issues. Researchers have also
attempted to automate accessibility auditing using computer vision
to capture precise measurements and detect key issues in built en-
vironments using smartphones [74], robotic mechanisms [72, 73],
existing imagery from Google Earth and Google Street View [36, 68],
3D scenes [28], scene graphs [24, 28], and point clouds [6, 8, 69].
However, current digital accessibility assessment solutions gener-
ally lack sufficient customizability and personalization features to
support the diverse needs of the disability community. Accessibility
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Scout addresses this issue by using LLMs and human-AI collabo-
rations to continuously model a user’s needs and generate more
personalized accessibility scans.

2.2 Visual Affordance Prediction

Evaluating accessibility through images can be viewed as an appli-
cation of visual affordance prediction, the process of using visual
cues to identify how an object should be used. Recent research
have shown how we can infer affordance from images through the
innate properties of objects [15, 81], physical and social boundaries
in a scene, [20], and specific interactions like grabbing [71]. Affor-
dance prediction has become especially important with the rise of
semi-autonomous robots, where robots must first identify whether
a certain action is feasible before attempting it [11, 17, 56]. This pro-
cess is similar to accessibility evaluations, where users must identify
the feasibility of completing specific actions before traveling to the
location. Closer to our work integrating recent developments in
LLMs, recent developments in computer vision demonstrate how
LLMs can be grounded to produce better affordance predictions
[16, 64] and how LLMs can leverage visual affordance to improve
outputs [17, 48]. We view Accessibility Scout as a human-centered
approach to LLM-based visual affordance approaches where users
leverage chain-of-thought prompting techniques to guide LLMs to
consider specific tasks and that task’s affordance in relation to the
user’s capabilities and environmental features.

2.3 LLM-based Personalization

Interest in LLM-based personalization is growing across various
domains [51, 78, 85, 86]. Recent research has used LLMs to simu-
late human test subject responses in Turing tests [4] and replicate
individual attitudes and behavior in interview responses [31, 59].
LLM agents have also been used to simulate user feedback on
user interface usability [26, 79]. Harrak et al. [10] used LLM-based
personalization to synthesize on-demand feedback from a target
audience with LLM-based personas.

Closer to our work using LLMs to generate accessibility insights
that influence how users choose environments are LLM-based per-
sonalized recommendation systems. Researchers have used LLMs
to capture preferences of blind and low-vision individuals for nav-
igational aid [5]. Joko et al. [37] demonstrated the use of LLMs
to guide the creation of more aligned user preferences that better
match users’ actual preferences. Other research explored how LLMs
can democratize personal health insights [21, 53] and create per-
sonal medical assistants [83]. LLMs have also been used to enhance
traditional recommendation algorithms. Zhang et al. demonstrates
the addition of smartphone sensory data to improve the emotional
response of recommendations through LLMs. Other works demon-
strate that the integration of LLMs into existing systems can directly
improve recommendation quality [9, 49, 50].

2.4 Mobility Modeling for Accessibility

HCI reserachers have modeled motor capabilities to evaluate er-
gonomics [43, 44, 67] and assess the usability of different tech-
nologies and systems for a variety of audiences. While these user
modeling frameworks were designed for general populations, other
works focus primarily on people with limited mobility. Huang et
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Figure 2: Two examples that show the comparisons between
generic LLM-generated annotations and those with basic
personalization for two participants in our formative study.

al. [35] improves pose estimation for wheelchair users using syn-
thetic data from photorealistic avatars driven by user-centered
motion generation techniques. More closely related is literature
on accessibility simulations using virtual human agents. Kakla-
nis et al. [38] models older adults and people with disabilities by
breaking down tasks into hierachical motions and interactions for
ergonomics testing of product prototypes in different scenarios
and tasks. Embodied Exploration [60] models wheelchair users with
avatars in VR using three key dimensional parameters: wheelchair
maximum width, wheelchair armrest height, and seated eye height.
These parameters are used to enhance the embodied experience,
enabling more accurate accessibility assessments in VR environ-
ments. More automated utilization of user models include recent
works in transportation network accessibility evaluations, using
GIS-based networks [54, 84] to model how user preferences and
capabilities might affect route finding.

Accessibility Scout introduces a dynamic new approach to digital
accessibility assessment by harnessing recent advances in LLM-
based collaborative annotation, visual affordance prediction, and
personalization. Unlike traditional methods, Accessibility Scout
empowers users to construct individualized user models that adapt
to their specific needs and preferences, enabling image-based ac-
cessibility evaluations that more accurately reflect how they would
experience and navigate a given environment before travel.

3 Formative Study

To inform the design of an LLM-based accessibility assessment
system, we performed an initial formative study with the following
goals: (1) to advance understanding of the current practices and
challenges of accessibility assessment for people with limited mobil-
ity; (2) to investigate the feasibility of using LLMs for accessibility
assessments; (3) to elicit user feedback on the idea of personalized
accessibility scans. We recruited six participants (U1-U6), all self-
identified as daily wheelchair users and were compensated with
$20 for their time. Refer to Appendix Table A.1 for demographics.

3.1 Procedure and Analysis

Before the study, participants were sent an initial survey about de-
mographics and self-described motor capabilities. Two researchers
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then conducted a ~30-min virtual research study with each partici-
pant individually through online meetings. Our study was approved
by our institution’s IRB.

Each study began with a semi-structured interview where partici-
pants were asked about their current experience virtually analyzing
environments to further understand the needs and challenges of
existing solutions. Participants were then shown images of differ-
ent places and asked to think-aloud on how they would assess the
accessibility of the environment. Researchers then generated two
sets of accessibility concerns using OpenAI GPT-40-2024-08-06 [1]
by prompting with and without the user’s self-described motor ca-
pabilities listed in Table A.1. Researchers then visually annotated
each concern on the image and asked participants which set of
annotations they preferred.

We collected audio recordings and notes, which were analyzed
via thematic analysis [12] by two researchers to identify key themes
and concerns. The first researcher, who also conducted the in-
terviews, reviewed all transcripts and notes to develop an initial
codebook. The two researchers then discussed the codebook, itera-
tively resolved disagreements, and developed a final version of the
codebook. The first researcher then converted this codebook into
identified themes. Participant quotes have been lightly edited for
concision, grammar, and anonymity.

3.2 Findings

We highlight four key findings below in regards to existing acces-
sibility assessment practices, personalization in accessibility, and
reactions to LLMs for accessibility assessment:

Existing accessibility assessments deter exploring new en-
vironments. All participants agreed that current methods for en-
vironmental evaluation were difficult or insufficient. Many partici-
pants cited this as a reason why they do not explore new environ-
ments with comments like "even though I've done my due diligence
to ensure accessibility to my needs, there’s a reasonable chance that I'll
get there, and it’s still going to **** up.” (U6). The tedious process of
finding data can be a deterrent in and of itself, with U5 stating that "I
know we might want to go try a new place and with having to Google
[accessibility]. I might just say, no. Let’s just go somewhere where we
know it’s going to be accessible. So that is definitely a deterrent” (U5).

Merits of LLMs for automatic accessibility assessments. All
participants stated that the LLM annotations with and without their
self-provided information were useful, especially when compared
to existing accessibility data available online. Researchers also note
that all participants found that the LLM’s generated accessibility
scans were equal or improved when prompted with the participant’s
self-described mobility. Example feedback regarding the usage of
the LLM included "It’s amazing! It’s not only wonderful information,
it makes you feel more included too" (U3); "This is, gonna be so useful.
It’s going to be helpful even." (U5); "Because [the LLM] will identify
restaurants or hotels that will address my needs" (U4).

Need for personalized accessibility assessments. Through-
out the study, participants appreciated the personalized accessibility
assessments as seen in Figure 2. Researchers also noted that all par-
ticipants evaluated environments differently during the think-aloud
exercise, focusing on different aspects depending on their unique
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needs. During the annotations evaluations, U3 appreciated the per-
sonalized annotations mentioning their specific needs, stating "It
mentions that the navigating with wheelchair or crutches. That’s
beautiful. You don’t see that a lot. Usually it just concentrates just on
wheelchairs. So that is so awesome that that’s mentioned." (U3). U6
pointed out that his assessment of accessibility depends on the task
at hand where "The intended function. Is it going to be my permanent
home? Is it going to be a temporary residence. Yeah, it absolutely
changes my requirements of the space” (U6).

Supportive features to improve usability. Researchers found
that participants varied in the amount of detail on accessibility con-
cerns they preferred. U1 points out that when they are conducting
research on environments, "I'm looking for a particular thing. If
wanted more maybe I could click to get more, but the main points
are just simple and quick." (U1). U5 requested more detail stating,
"There’s different levels of wheelchair accessibility. So that extra detail
is super helpful." (U5). Participants also valued the use of visual
markers to indicate accessibility concerns with comments like "T
could see how the [visual annotations] would be very useful, because
[other people] are not in a wheelchair. They don’t see those things that
Ido." (U5). U6 also suggested that the system could be extended fur-
ther to automatically handle environmental inquiries, "I think you
could do the calling in, if not with a you know actual voice, certainly
by automated emails." (U6).

4 System Design and Implementation

Following findings from our formative study showing how simple
LLM prompts can produce useful accessibility scans, we developed
Accessibility Scout, which combines LLMs and computer vision to
model a user’s accessibility preferences and enable semi-automatic,
personalized, accessibility scans. All system components were de-
veloped using OpenAI ChatGPT-40-2024-08-06 [1]. See Figure 3 for
a system diagram.

4.1 Design Considerations

We developed Accessibility Scout with the primary objective of en-
abling users to run accessibility scans personalized to their individ-
ual needs at scale. We report on the following design considerations
derived from our formative study:

D1: Support context-aware and adaptive personalization.
Participants in our formative study often qualified their assess-
ment of accessibility by the specific times and tasks they engage
in. This goal aligns with findings from Lattman et al.’s [45], which
detailed how perceived accessibility is highly context-dependent.
Participants also emphasized that their accessibility needs change
over time, whether due to physical decline or new techniques to
navigate previous inaccessibilities. Therefore, a robust accessibil-
ity scanning system should support adaptive personalization by
allowing users to provide feedback to address evolving needs and
situational contexts.

D2: Enable human oversight over AIL. While initial findings
from our formative study indicate LLMs are capable of generating
useful accessibility scans, we must acknowledge their susceptibility
to inaccuracies and hallucinations. Participants echoed these senti-
ments, emphasizing the need for a tool that works with them and
not for them. To support this, users should be able to review and
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Figure 3: Accessibility Scout system structure. Users first submit an image of an environment and their intent. Accessibility
Scout identifies potential tasks and their actions to predict environment concerns. The user can then provide feedback on these
concerns to update their user model, which leads to improved accessibility assessment in future scans.

revise LLM-generated annotations, facilitating both personalization
and error correction. Our system should also be easily interpretable,
helping users to easily understand and guide the scanning process.

D3: Generate detailed accessibility concern information.
Participants preferred varying levels of detail in accessibility infor-
mation depending on how important it was to access a given space.
They also highlighted the value of being able to explore additional
details about a concern when needed. Accessibility Scout should
support these needs by providing a variety of accessibility informa-
tion, allowing users to quickly glance at key insights or conduct a
more in-depth analysis of the built environment as needed.

D4: Enable the system to run at scale. Participants in our
formative study were especially excited about using a potential
LLM-based system to more efficiently discover accessible environ-
ments. For example, participants envisioned using such a system to
evaluate multiple Airbnbs more efficiently than would be possible
through manual inspection, simplifying the search for accessible
vacation options. To support such use cases, Accessibility Scout
must be able to scale to handle large volumes of built environments.

4.2 User Modeling

Accessibility Scout’s user modeling component handles the mainte-
nance of a structured user model which can be iteratively updated
through user feedback and is easily interpreted by LLMs.

User model structure. To facilitate both human interpretability
and Al performance, we represent the user model in JavaScript
Object Notation (JSON) format. Each user model consists of a set
of attributes which describes a specific movement (e.g., reaching
above with my right arm), how the movement might be affected
(e.g., I can not reach above shoulder level), whether the movement
is frequently performed, and the affected body part or preference
(arms, legs, feet back, chest, hands, eyes, ears, brain, user preference).

An example of a user model attribute is shown in Figure 3. This
user model structure can capture physical attributes of a user (e.g.,
footprint of a wheelchair), sensory and cognitive attributes (e.g.,
sensitivity to sound), and the user’s value system (e.g., prefer quieter
places) which has been shown to better represent a user’s decision
making [62], and provides additional context to the importance
of specific subtasks through the frequency boolean. Furthermore,
JSON attributes allow various details, including context and specific
scenarios, which can grow and shrink over time.

Elicitation methods. To generate the user model, we enable
three different elicitation methods: (1) Self-Description. Users are
able to enter an unstructured textual description of their capabilities
and preferences which can include recounts of prior experiences. An
LLM then decomposes this self description into a series of affected
motions which can be input as the user model. (2) Environmental
Annotations. Users can also choose to annotate concerns in images
of different environments. The concerns, their reasoning, and the
image are entered into an LLM to generate a user model. (3) Feed-
back on Environmental Annotations. Users can also update their
user model by providing feedback to Al-generated environmental
annotations. User feedback, the original annotation, and the image
are then inputted into an LLM and used to update the user model.
All elicitation methods are implemented through textual input. User
interfaces to utilize elicitation methods are detailed in Section 4.3.

4.3 Accessibility Assessment

Accessibility Scout uses the user model to generate accessibility
concerns on images of different environments (Figure 3). In order
to build a more human-interpretable and controllable system, we
designed the assessment process to mimic how participants from
our formative study evaluated the accessibility of places by the
tasks they may prohibit. This serves three primary purposes: (1) To
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address the need for task-specific accessibility assessments iden-
tified through our formative study. (2) To generate more relevant
and interesting concerns. (3) To enable parallelized LLM requests
for scalability and reliability.

Task identification. To generate comprehensive and detailed
accessibility scans, we first identify the spatial tasks a user could
engage in based on their intended use of the environment. Users
first input an image of an environment and a short description
of the environment and their intended usage into an LLM which
is prompted to predict a set of common tasks that a user might
perform in the environment (e.g., study at a cafe). Within the same

context window, the LLM is then prompted to decompose each
one of these tasks into subtasks (e.g. reading your textbook is a
subtask of studying at a cafe). Each subtask consists of a short de-
scription, potential locations these subtasks might be performed
in an environment, and primitive motions necessary, a concept de-
rived from Kaklanis et al.[38] which models any task as a series of
fundamental movements like grabbing, reaching, and pulling. Fig-
ure 5 illustrates an example of the identified tasks and fundamental
motions required when a user specifies their intended use of the
environment for a date. By first breaking down the environment
into potential tasks and subtasks, we treat accessibility assessments
as a task affordance problem which is both more reflective to what
a user might actually need and enables more focused LLM contexts
to generate better predictions later on. Prompts for are shown in
Appendix Figure B.1 and Figure B.2.

Concern identification. To identify key environmental con-
cerns, we use Set-of-Mark Prompting [80]. Images are overlaid
with semantic segmentation masks generated from Semantic-SAM
[46], providing textual labels for different semantic segmentation
masks of the image to enhance the LLM’s spatial understanding.
Masks are later used for visualization purposes in the user interface.
For each task generated from the task identification process, its
task description, list of subtasks, the user model, and Set-of-Mark
prompts are fed into an LLM prompted to identify key parts of the
environment that would prohibit the task. For each task, the LLM
outputs a set of environmental concerns. Each concern consists of
a short name, reason for why the concern was identified for the
user, and the location by the label generated from Semantic-SAM
segmentation. We note these concerns are qualitative heuristics
like "low" or "soft" and not precise measurements. Each task is pro-
cessed in a parallel LLM request for speed, smaller context and
more focused context windows, and partial outputs in cases where
the API endpoint is unstable. Prompts for this process are shown
in Appendix Figure B.3.
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Figure 6: The Accessibility Scout UL Right: The user can view all detected concerns in the visualizer. Middle: Upon selecting a
specific concern, information on the concern and highlighting are then shown. The user is then able to provide feedback on the
concern to improve the user model. Top left: The text interface for users to add more concerns not identified already. Bottom
left: The text interface for users to view their user model and provide unstructured text feedback.

Concern concatenation. Since concerns are generated in par-
allel, requests can generate redundant accessibility concerns. Thus,
all concerns are grouped through semantic text similarity analy-
sis using Sentence-BERT all-MinilM-L6-v2 [65] with the name
and reason of each concern. Concerns with a cosine similarity
over a threshold of 0.7, selected through experimental analysis, are
combined by selecting the name and reasoning with the highest
average cosine similarity in the group (e.g., High Bar Counter - The
bar counter is too high for the user to access comfortably from a
wheelchair and High Bar Counter - The height of the bar counter
makes it difficult for the user to reach drinks or interact comfortably).
Examples of final accessibility concerns are illustrated in Figure 1,
highlighting various issues identified for users with different mo-
bility levels and preferences. Figure 4 presents a broader range of
compatible photos of built environments.

4.4 User Interfaces

Accessibility Scout has a web user interface implemented in Gradio
[2] that takes images of environments and generates indicators on
potential accessibility concerns which users can provide feedback
on (Figure 6). The following describes an example user scenario:
Alexandria is a wheelchair user using Accessibility Scout to
evaluate the accessibility of an Airbnb. Upon starting Accessibility
Scout with a picture of the Airbnb’s bathroom and her user model,
Alexandria is greeted with a visualization of all detected concerns
(Figure 6 right). She hovers her cursor over the selector labeled Out
of Reach Soap Dispenser which highlights the concern in the visual-
izer. She then clicks on the selector which changes the accessibility
information textbox to show that the soap dispenser is inaccessible
because it is too high on the counter (Figure 6 middle). Alexandria
agrees with this generated concern, selecting the Is Concern radio
button, and provides further feedback in the Envrionmental Concern
Feedback textbox that "The soap dispenser is just too far back on the

counter to reach comfortably". Alexandria repeats this process for
all other identified concerns before noticing that she might not be
able to plug in a hairdryer since the outlet is high up. She clicks
the New Concern button and types in the text interface: "The outlet
seems a bit tall" (Figure 6 top left). She presses enter (same as click-
ing on the Submit New Concern button) and the text interface and
visualizer show a new concern: Tall Outlet. She scrolls down to the
user model viewer and sees a new attribute: Outlet height is beyond
reach from wheelchair (Figure 6 bottom left). She finally finishes
evaluating all generated concerns and clicks Save and Update User
Model which prompts Accessibility Scout to update her user model
with her feedback on this image.

5 Technical Validation

We investigate the feasibility of using LLMs to assess the personal-
ized accessibility of environments and ground our findings from
the subsequent user study through a set of technical evaluations of
Accessibility Scout in 500 images of different environments using
varying user models. Through our technical evaluations, we note
that it is unfeasible to directly evaluate the quality of identified
concern heuristics given their accuracy is subjective (e.g., a table of
34 inches might be okay for someone in a manual wheelchair to sit
at but too low for a power wheelchair). Instead, we defer evalua-
tions on usefulness to our subsequent user study. In this section, we
focus on evaluating the following properties of Accessibility Scout:
(1) Accurate detection of environmental features as a measure of
hallucinations. (2) Distribution of identified concerns as a measure
of Accessibility Scout’s ability to capture accessibility needs in dif-
ferent environments. (3) Differences in detected concerns between
user models as a measure of degree of personalization. (4) Cost of
evaluation as a measure of scalability.
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5.1 Data Collection

Researchers compiled 500 images of different environments across
9 of the most populous cities in each region of the United States
(Los Angeles, San Diego New York City, Philadelphia, Chicago,
Columbus, Phoenix, San Antonio, Houston) sourced from searches
through Google Maps and Yelp. Eight crowdworkers first used key-
words of commonly accessed environments (community centers,
grocery stores, lodging, restaurants, retail stores, transportation
hubs, and public venues) across North America to assemble an
initial dataset of images of environments. Researchers then manu-
ally evaluated and selected 500 images according to the following
criteria: Images showed key parts of the environment including
pathways, utilities, restrooms, and functional areas necessary to
complete the purpose of the area. Images had a wide enough field
of view to capture the entire environment (e.g. full view of the floor
up). All images were then briefly labeled with a general description
of what someone might be doing in that environment. Examples
from the dataset are shown in Figure 4. Using Accessibility Scout,
we run an accessibility scan of each image using each of the user
models created by participants in the first stage of a later user study,
which will be detailed in Section 5.5, as well as an empty "generic”
user model for a total of 11 user models. Demographic information
used to initialize Accessibility Scout are shown in Table 1. As a
result, we generate 5,500 accessibility scans (39,394 concerns).

5.2 Detection Performance

Accurate and robust detection forms the foundation of accessibil-
ity assessment. We measure the number of misdectections using a
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Figure 7: Distribution of twenty-five largest unsupervised
clusters of concerns expressed as a percentage of total con-
cerns in each environment type grouped by ADA categories.
Labels are three representative keywords for a cluster gen-
erated by taking the three terms with the highest Term
Frequency-Inverse Document Frequency, a measure of a term’s
importance within a group of text.

Huang et al.

Table 1: Demographic and self-described mobility of 10 par-
ticipants (P1-P10) in the user study.

ID Age Gender Diagnosed
disability

Self-described mobility and preferences

P1 58 F Spinal cord  Use a manual wheelchair with attached motor. Able to stand

injury, Fi- and pivot for transfers. Upper extremities are weak with limited

bromyalgia,  strength and dexterity. Visual and hearing difficulties.

Stenosis,

Arthritis

P2 54 M Spinal Crutches for short distance and wheelchair for long distances.
cord injury  Not injured from waist up and have full function in chest, arms,

(T11/T12, hands, shoulders, and neck. Nerve damage in hips, hamstring,
L4/L5) and no function from knee down.

P3 61 F Polio, Ambulation causes physical and mental strain due to tripping risk.
Post-polio Stairs, inclines, uneven surfaces, and slick surfaces are difficult.
syndrome Cannot stoop, rise off floor, or rise from low toilet without support.

Stepping in/out of tubs is dangerous but possible with grab bars.
High bar stools are difficult. Holding anything in one hand can be
difficult as I walk with a forearm crutch. Long distances require a
rollator. Muscle fatigue requires frequent breaks.

P4 72 F No di-  Cannot walk extended distances due to fatigue. Long distances,
agnosed staircases are problematic. Handrails are important.
disability

P5 8 F Post-polio Need to use a walker. Right leg is super weak, especially knee.
syndrome Have a hyper extended knee and drop foot. Use a knee brace and

ankle foot orthosis. Cannot walk long distances.

P6 35 M Spinal cord ~ Use a manual wheelchair. Prefer rolling on hard floors. Carpet is
injury (T10)  difficult to push. Can move pretty comfortably and smoothly in

wheelchair and can go anywhere except sandy places.

P7 58 M Quadriplegic ~ Use a manual wheelchair and SmartDrive assistive device. Prefer
(C7) hard floors, wide corridors, low/no thresholds in doorways, auto-

mated entry doors. Need restroom facilities that accommodate
wheelchairs with designs that follow ADA. Appreciate buildings
with elevators that I can operate over special lifts that require
assistance. Appreciate using main entrances over special side en-
trances.

P8 38 M Quadriplegic ~ Use an electric wheelchair. Wide hallways and doorways are a
(C4) must. Prefer hard, smooth floors and no thick carpet. Need eleva-

tors with wide automatic doors and enough space inside. Ramps
need a gentle slope. Need accessible restrooms with enough space
to turn. I do not transfer so toileting and grab bars are not impor-
tant. Prefer lever-style door handles or automatic door handles
since twisting doorknobs is challenging. Paddle switches work
best for lighting. Good lighting is a must to see everything. Need
to watch for rough or uneven surfaces. Long distances are difficult
due to battery constraints.

P9 66 M Paraplegic Use a manual wheelchair. Need doors wide enough for wheelchair.
(T4) Prefer 1 level places and ramps/elevators instead of stairs. Prefer

grab bars in rest rooms, hand drying equipment next to sink, hard
floors, and doors that swing out.

P10 50 M Quadriplegic  Use a power wheelchair and prefer environments with smooth

flat surfaces and open. spaces.

fact-checking approach [34] which only measures object detection
accuracy for detected concerns. Since accessibility is highly sub-
jective, we evaluated our system’s ability to find useful concerns
entirely through our subsequent user study. Human evaluators man-
ually reviewed all 500 accessibility scans generated by the generic
user model, determining whether each identified concern was a hal-
lucination based solely on the following criteria: (1) Does the related
concern exist in the image? (2) Does the concern correctly identify the
object of concern? We evaluate purely on this criteria and do not
attempt to label object qualities like "too high" or "too soft" as true or
false given users can perceive these qualities differently. Evaluators
rated 3590 concerns and found 237 (6.63%) hallucinated concerns,
which were removed from our later user study. Evaluators noted
that hallucinated concerns often centered around specific environ-
mental features not depicted in the image like checkout counters
or TV remotes, potentially indicating that OpenAI-GPT4o has an
existing bias towards specific environmental features.
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5.3 System Cost

We also conducted a basic evaluation on the cost and scanning time
of Accessibility Scout by measuring the average token usage to eval-
uate an environment. We compute an average token usage across
500 images of 8758 tokens/image (STD = 1112.175), 9 requests/im-
age, and average delay of 10.737s (STD = 6.987). We therefore
estimate the cost of using Accessibility Scout as $.021/image with
the ability of running up to 3553 images/minute using ChatGPT-4o-
2024-08-06 as of March 2025[1]. Researchers note that the time of
day can greatly affect the scanning time and reliability as running
Accessibility Scout during North American working hours would
be drastically slower and lead to more dropped API requests. !

5.4 Distribution of Generated Concerns

To understand the distribution of these generated concerns, we
conducted an unsupervised topic clustering of generated concerns
using BERTopic [30]. The top 25 largest clusters were included for
further categorization. First, researchers identified a set of key ac-
cessibility clusters related to ADA guidelines. Researchers manually
assigned these clusters to ADA categories (e.g., Furniture Height,
Floorplan), and assigned the rest of the clusters to "Beyond ADA".
This process resulted in 11 categories shown in Figure 7. We find
that concerns tend to correlate with types of environments. For ex-
ample, "Fixed seating” consists of a higher percentage of restaurant
concerns (22.70%) and "High, Reach, Difficult” concerns are highly
prevalent in grocery stores (27.31%) due to high shelves of items.
We found two clusters that went beyond existing ADA categories:
"tv, television, remote" and "noise, noise sensitivity, sensitivity".
This result indicates the potential for Accessibility Scout to extend
beyond ADA classifications of accessibility to individual needs of
the user. Furthermore, the identification of a "noise" related cluster
indicates that Accessibility Scout considers people surrounding a
user with limited mobility as an important yet often overlooked
facet, and how environments might change even if "noise" is not
directly depicted. Our findings indicate that Accessibility Scout
aligns with common-sense expectations of where accessibility con-
cerns typically arise, demonstrating how our approach can generate
high-quality accessibility data. Moreover, Accessibility Scout goes
beyond detecting only visible environmental features, enabling
dynamic and nuanced spatial inferences.

5.5 Accessibility Scan Personalization

To evaluate Accessibility Scout’s personalization, we use the same
clustering procedure as the previous section with a new analysis to
compute the distribution of accessibility scan clusters across par-
ticipants (Figure 8 left). Additionally, we measure the Wasserstein
Distance between each participant’s distribution scaled by the total
number of concerns in each category which can be interpreted as
the amount of work to transform one participant’s concern distri-
bution to another (Figure 8 right). We note that this metric does
not reflect the quality of personalization, which is evaluated in
the user study, but rather highlights the variation in accessibility
predictions across participants. High Wasserstein distances align
with differences in mobility across participants. Notably, P4 and

!Pricing and timing estimates can vary greatly depending on selected LLM. Other
LLMs can be used to reduce cost.
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P5 demonstrated the highest average Wasserstein distance (0.0708
and 0.0523) as the only participant who did not have a diagnosed
disability and the only participant who walks with the assistance of
a walker, respectively. Even among participants with low Wasser-
stein averages, we still note that there are noticeable differences in
their distribution of concerns as shown in Figure 8 left. For instance,
P6, P9, and P10 had a lower average Wasserstein distance (0.0262,
0.0286, and 0.0304 respectively) as P6 and P9 were both highly inde-
pendent and believed that they could handle most challenges that
came their way, often marking newly identified concerns as irrel-
evant during training, and P10 who believed that most concerns
were not relevant as they were not able to access that environ-
ment feature in the first place given their highly limited mobility
(e.g., fixed seating was not relevant since they could not transfer
at all). These results indicate that Accessibility Scout can differ-
entiate between the unique needs of individual users to generate
meaningfully different accessibility scans.

6 User Study

We conducted a final user study to better understand the capabili-
ties of Accessibility Scout for personalized accessibility scans and
the usability of the system by comparing the usefulness between
concerns generated from a generic and personalized model. We
believe a generic user model is analogous to static one-size-fits-all
approaches to accessibility assessments like checklists while equally
susceptible to hallucinations as the personalized model which al-
lows us to evaluate the impacts of personalization on usefulness.
We recruited 10 participants (P1-P10) with varying levels of self-
described mobility. Participant demographic information is listed
in Table 1. Participants received $100 compensation for completing
the full study, which comprised two stages of approximately one
hour each. Our study was approved by our institution’s IRB.

6.1 Procedure

All participants were sent an initial survey requesting basic demo-
graphic information and a self-description of their physical and
mental capabilities. Their self-description was then used to generate
an initial user model. A dataset of images of different environments
was then compiled through the following procedure. Participants
were first asked to provide 15 different locations they have physi-
cally explored to help participants draw from previous experiences
and better evaluate the performance of Accessibility Scout. For all
evaluations, users were asked to take into account any prior knowl-
edge they had visiting the depicted location, implicitly evaluating
accuracy as well. Researchers then randomly selected 15 unfamiliar
locations. For each location, researchers sourced one image follow-
ing the same criteria as the technical evaluation data in Section 5.1.
Two researchers then conducted the two-stage virtual user study
with each participant through online meetings.

Each study began with an initial one hour stage where partici-
pants were asked to train Accessibility Scout through a user-guided
accessibility scan process. Participants were first given an intro-
duction and briefing on how to use Accessibility Scout to evaluate
generated concerns and provide their feedback. Participants were
given the option of manually controlling the system through re-
mote desktop control or dictating actions to the researchers to use
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Figure 8: Left: Distribution of participant’s generated concerns grouped by ADA categories. Differences in distribution shape
indicate differences in Accessibility Scout’s generation given a specific participant’s user model. All data is displayed on a
symlog scale. Right: Wasserstein distance between participant’s generated accessibility scans. Higher value indicates greater
difference between concerns. PO indicates a "generic" user model or empty JSON, which was not trained by a real user in our

study.

Generic: Lack of Adjustable
Seating - The seating area does
not have adjustable seating for
comfortable TV watching.

Generic: High Bed Height - The
bed height appears to be high
which can make it difficult for a
person with mobility issues to
lie down or stand up.
personalized: High Bed Height -
The bed might be too high for the
user to transfer onto and off
easily with mobility aids

Personalized: Narrow Passageway -
The space around the bed and
chair is limited, which might
restrict wheelchair access.

Figure 9: An example of the user study setup for P2. Users
are asked to rate the usefulness of Unique Concerns (blue and
orange) and Similar Concerns (green) against each other in a
blind test.

the system. A random selection of 15 images from the compiled
dataset was used in this stage.

Following the first stage of the user study where user’s created
their own user model, researchers conducted a blind test to analyze
how well Accessibility Scout personalized to the user. Researchers
scanned the remaining 15 images twice using Accessibility Scout,
once with the trained user model and once with an empty JSON
(generic) user model only representing the LLM’s innate knowledge
of accessibility. Participants were not informed of how the concern
was generated (i.e., from the personalized or generic model) until
after the study concluded, ensuring a blind test process to eliminate
potential bias.

First, 15 Unique Concerns (concerns present from one model’s pre-
diction but not the other) from each model were randomly selected
and shuffled to analyze how well Accessibility Scout could identify
personalized accessibility needs. An example of different unique
concerns is shown in orange and blue in Figure 9. Participants were
then asked to rate the usefulness of knowing each concern before
visiting the environment on a 7-point Likert scale.

In addition, 15 Similar Concerns (concerns present in accessibility
scans from both user models differing only in wording) were ran-
domly ordered and visualized side by side to evaluate Accessibility
Scout’s personalization of concern descriptions. An example of sim-
ilar concerns is depicted in green in Figure 9. Participants were then
asked to evaluate the usefulness of knowing the concern before
visiting the environment for both shown concerns on a 7-point
Likert scale and which concern description they preferred.

After completing all evaluations, participants were informed
that concerns were generated from Accessibility Scout and which
concerns came from the generic vs. personalized user models. They
were then interviewed to better understand any Likert scale ratings
and discrepancies between the two user models. Participants were
also asked to reflect on their overall experience, concerns about
Al in accessibility, and the importance of personalization. These
interviews were conducted in a semi-structured format.

Three researchers then conducted a codebook thematic analysis
[13], a middle ground approach between structured and reflexive
methods, using study recordings, transcriptions, and researcher
notes. Researchers first converged on a set of a priori themes from
prior research and the needfinding study. The first researcher, who
also served as the interviewer, then inductively developed the code-
book by reviewing all transcripts and notes in relation to the origi-
nal themes. The three researchers then collaboratively refined the
codebook, resolving disagreements and grouping codes into themes.
Our thematic codebook is shown in Appendix Table C.2.

6.2 Findings

All ten participants were able to train and evaluate Accessibility
Scout. A Wilcoxon Signed Rank Test, a rank-based nonparametric
test, was then conducted to assess significant differences between
the generic and personalized ratings within each user and across all
users. We note that evaluating statistical differences within users
can capture more insight into individual user variances at the risk
of inflating Type I statistical errors. Figure 10 shows participants’



Accessibility Scout: Personalized Accessibility Scans
of Built Environments

Unigue Concern Usefulness

UIST 25, September 28-October 1, 2025, Busan, Republic of Korea

Similar Concern Usefulness

~

o

Usefulness
w - w

[N]

-

Count

o o H
o
[e]
[e]
P8 P9 P10

iy
Pl P2 P3 P4 P5 P& P7
* * * * *

Participant

PL P2 P3 P4

B Generic I Personalized

10
; 8
6
o}
a
© 2
o o
PS P6 P7 P8 P9 PlO

Participant

PL P2 P3 P4 P5 P6 P7 P8 P39 PlO

Participant
I Generic I Neither [ Personalized
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Preferences between generic and personalized models in similar concerns.

ratings and preferences. Across both studies, participants, rating the
personalized accessibility scans as relatively useful (mean = 4.7/7,
STD = 2.17).

Through our thematic analysis, we identified 51 codes (Table C.2).
Some of the largest codes included “Accuracy and Detail of Con-
cern” which highlighted improvements to the accuracy of our sys-
tem, “Context Influences Accessibility Concerns” which captures
how users also consider accessibility in regards to when and where
something is (e.g., winter vs. summer), and “Al Usage is Appropriate
for Accessibility Scans” which discusses how users feel comfort-
able with Al for accessibility assessments. Below, we present key
findings from our thematic analysis. Participant quotes have been
lightly edited for concision, grammar, and anonymity.

Collaborative Al training is effective. As was demonstrated
in our technical evaluations (Section 5.4), we found that generated
user models from only one hour Accessibility Scout’s collaborative
training was effective in differentiating generated concerns. P2
believed that the current amount of personalization was perfect:
"even with the personalization we just put in, I think is great. I don’t
think it has to go further than that" (P2). Furthermore, participants
also enjoyed the process of training: "Oh this is so much fun, I'm
loving this" (P2), "This is fun" (P5). At the same time, participants also
noted that the collaborative design of Accessibility Scout helped
them trust the system more, alleviating concerns on Al accuracy.
P8 stated that being able to "double check" the Al was vital: "when
we went through the initial study and we were able to add my input
into it, that was amazing like that was absolutely amazing. And you
could see the changes from that...I think that’s amazing. and I think
that’s very important" (P8). P3 shared this sentiment, stating that
control was vital for them to use an Al system: "I'm in control. And
in the end I can choose it or not, use it more, use it less, so in the end
as long as I have control [over the AI]" (P3).

Personalization generally makes accessibility scans more
useful. Unique concerns generated from the personalized model
were perceived as more useful than those from the generic (mean =
4.68,STD = 2.26, mean = 3.35,STD = 2.24, respectively (p < .001)),
indicating that the addition of personalization generates more use-
ful accessibility scans. P8 echoed these findings, stating that the

accessibility scans from the generic user model were laughable:
"[the generic concerns], I would look at that and I would laugh and I
would not look at it again you know. But the personalized informa-
tion that was coming up like I found a lot of that information very
useful” (P8). P10 also found that the addition of personalization
made the system more usable by filtering out unnecessary infor-
mation: "It would just make it easier if it was more personalized. It’d
be less information to filter out...it would make it simpler and more
efficient to have it personalized" (P10). While personalization was
generally perceived as useful, P4 notes that personalization can
actually reduce the usability of Accessibility Scout when trying to
plan for groups: "[Personalization is] low importance...having more
information also allows me to know that if somebody’s coming to visit
what I'm looking for...It lets me know for more than just myself" (P4).

Mixed feedback on referencing user capabilities. Further-
more, while personalized accessibility scans were generally per-
ceived as useful, the language used to convey this data had more
mixed feedback. In comparing descriptions of the same concern,
participants rated the personalized and generic model relatively
similarly (mean = 4.72/7,STD = 2.07, mean = 4.4,STD = 2.04
respectively (p = .187)). We also find that participants only slightly
preferred the wording of the personalized concern when compared
side by side (mean = 5.6/10, STD = 2.458) (Figure 10 right). While
viewing a concern which they regarded as not specific enough,
P8 believed that generic descriptions are less useful: "Makes [the
concern] just a little bit less [useful] when it’s so generic" (P8). P5
noted that mentioning their capabilities helped draw their attention
to key accessibility concerns: "To me [the generic and personalized
descriptions] look very similar. But the [mentioning of a] walker
is just a red light to me, or an alarm bell" (P5). When evaluating a
concern about staircases causing fatigue, P4 notes that the person-
alization of Accessibility Scout was drawing conclusions for them:
"Having it say could cause fatigue just thinking out loud seems overly
narrow and irrelevant...you don’t draw the conclusion for me" (P4).
After reading an explanation for how stairs were not accessible
since they used a walker, P3 believed that extra language personal-
izing the accessibility scans obfuscated the important data: "I don’t
need to read whole paragraphs about things. I just need [to see it]
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and it kind of points [concerns] out" (P3). These findings suggest
that the representation of accessibility concerns is not as important
as identifying them in the first place. This is further compounded
as participants appreciated the ability to verify identify concerns,
rendering the concern descriptions redundant in many cases.

Potential applications. During our user study, participants
offered a variety of different use cases for Accessibility Scout. P7
viewed Accessibility Scout like a pre-game report to lower the
uncertainty in new situations: "The more I can get advanced scout
reports [on accessibility information], the more I can avoid all the
uncertainty and angst of the first couple of visits" (P7). P9 shared
similar sentiments, stating that Accessibility Scout could help them
plan: "If I know more about the location then I can bring things
with me to help overcome the deficits that I do have" (P9). While P6
believed the system was not as useful for scouting unavoidable
environments, they found utility in using Accessibility Scout to
find places to go to.

System improvements. During our user study, participants
shared detailed suggestions for improving Accessibility Scout. All
participants believed that the explanation for why a concern was
found could be more accurate to their individual needs and the en-
vironment. P1, P3, and P7 suggested that the concern descriptions
could be made more concise. P8, P9, and P10 noted that the visual
highlights were sometimes inaccurate and distracted the user. P3
and P4 believed that the ability for users to see human feedback
on the environment would help them trust the system more. P8
and P10 also noted that Accessibility Scout would sometimes show
irrelevant concerns for tasks they could not complete at all (e.g.
Accessibility Scout showed inaccessible seating when they are un-
able to transfer seating at all). Finally, researchers also noted that
concerns would occasionally duplicate, signaling a need to improve
concern concatentation in future versions of our system.

7 Discussion

We discuss key implications of our findings, limitations, and oppor-
tunities for future work.

Application scenarios. Accessibility Scout’s LLM-based ap-
proach supports highly personalized and scalable accessibility au-
diting, appealing for a variety of different use-cases. Through our
formative and user study, we identify some potential use cases.

Prior-visit auditing. Uncertainty about a space’s accessibility of-
ten deterred participants from engaging in activities and made
potential visits more daunting and stressful. Accessibility Scout
is a practical solution to this problem, allowing users to preview
potential accessibility concerns before their visits. Users could use
Accessibility Scout to plan what assistive devices to take, decide
whether to travel with a partner or caretaker, or guide deeper in-
quiries into specific accessibility risks.

Prior-visit location selection. Difficulty finding accessible dining
or lodging often discouraged participants from trying new places.
Accessibility Scout simplifies this process by allowing users to run
scans across on publicly available images of environments to gen-
erate easily skimmable accessibility insights that can guide future
trips and uncover new places to visit. Accessibility Scout’s scalabil-
ity can also enable future work conducting large-scale analysis of
the accessibility of built environments across regions.

Huang et al.

Sharing lived experiences. Participants were excited that Accessi-
bility Scout could help them share parts of their lived experiences
that are often hard to describe, building empathy and understand-
ing among those around them. In doing so, participants believed
they could better prepare the people around them to be more in-
formed accessibility auditors. For other people experiencing major
life changes like illness or injury or their loved ones, Accessibility
Scout can reduce the uncertainty of adapting by providing new
perspectives on what challenges in built environments they may
encounter in the future.

Improving spaces for new demographics. While existing accessibil-
ity tools like ADA checklists [3] or RASSAR [74] try to capture as
many people as possible in its static definitions of accessibility, Ac-
cessibility Scout allows building owners and businesses to identify
key accessibility concerns for specific demographics of people by
evaluating environments on a specified user model, enabling a more
targeted approach for space design. For instance, Airbnb owners
can use Accessibility Scout to rearrange furniture for the specific
needs of their guest or government officials can use Accessibility
Scout to evaluate federal housing for target groups.

Perspectives on personalization. Our user study found that
personalized data was perceived as more useful (Figure 10 left). With
only a brief one-hour personalization session, Accessibility Scout
generated user models appreciably different from baseline (Figure 8
left). We also note that participants had varying preferences for
the way accessibility concerns are described. Given this, we believe
that further personalization is necessary to adapt not only the data,
but its representation to the preferences of the user. These results
support the findings of previous works in perceived accessibility
[23, 45, 52, 62, 76], which state that the willingness to travel to
somewhere is highly dictated by an individual’s perception of that
environment’s accessibility. Personalization offers a new approach
to accessibility assessment by capturing a small slice of how they
“see” to better measure whether or not they would really want to
go. Beyond usability, participants also stated that personalization
made them feel more heard. As P2 states, "That’s so cool because
the user right away feels like they have a voice and they’re being
heard like hey this is a concern for me. So thats super cool" (P2).
Thus, we believe that personalization can be an important tool in
building adoption for future Al accessibility systems by validating
user experiences. While we take one approach using structured
JSON to personalize LLM systems, future works should explore
other representations and methods for user modeling like vector
databases, retrieval-augmented generation, and post-training.

Limitations of using only images. Accessibility Scout was
designed around only environmental images to leverage the wealth
of publicly available data from the internet. However, relying solely
on images also limits Accessibility Scout to only capturing general
heuristics in comparison to exact measurements or environment
dynamics. Thus, the quality of our predictions is limited by when
an image was taken (e.g., a path with snow in the winter vs. in
the summer), how reflective the image is of the actual experience
of being there (e.g., professionally shot AirBnB pictures vs. user
generated content), and what is shown. While participants in our
user study felt that generated accessibility scans were detailed and
accurate enough to be perceived as useful, we believe that Accessi-
bility Scout serves more as a general-purpose tool to alert users to
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potential concerns over a comprehensive accessibility auditing sys-
tem like RASSAR [74]. Further research in HCI and Al is needed to
quantify and evaluate the quality of accessibility scan given person-
alization to build better ground truths and guide the development
of future Al systems. We envision four future areas of work: 1)
How can data accuracy from LLMs be improved through improved
post-training, computer vision tooling, and model selection? 2)
How can we improve an LLM’s ability to make conjectures about
non-visual properties from visual cues? 3) Accessibility Scout can
be easily extended to include multiple images and other textual
data by inputting more data into the context window. What kind
of accessibility information can be collected to improve concern
predictions other readily available data sources (e.g., user reviews,
booking location, time of visit)? 4) What level of assessment detail
is needed for users to evaluate the accessibility of environments?

Explainability in AI systems for accessibility. Given that
Al technologies are still new and unexplored, many participants
in our user study were wary of new Al technologies, especially
as many existing accessibility technologies were not applicable to
their own needs. By designing Accessibility Scout to mimic how
users think about accessibility assessment using a task affordance
perspective, users are more able to engage with and understand
how each concern was generated. Findings from our user study
reflected this, where participants were more receptive to incorrect
concerns as they could trace back the reason the concern was gen-
erated, felt more engaged in the accessibility assessment process,
and generated concerns that they would actually encounter when
entering the environment. This design principle closely follows
Miller et al’s [55] call to action for new explainable Al systems to
avoid the "inmates running the asylum" problem, when systems are
designed around researcher needs over the intended user’s, and in-
tegrate existing models of how people generate, select, present, and
evaluate explanations and decisions in Al systems. Prior work has
also has demonstrated this, showing that Al trust and transparency
are directly related [7, 42]. We believe that future LLMs systems,
especially those that support the diverse needs of groups like people
with disabilities, should continue to be designed around explainable
prediction pipelines, which can make them more approachable for
new users. In doing so, users can be more seamlessly integrated
into future pipelines through human-AI collaborations, increasing
the user tolerance for errors and hallucinations which are currently
unavoidable in modern LLMs.

8 Conclusion

In this paper, we introduce Accessibility Scout, an Al system that of-
fers a new approach to generating personalized accessibility scans
at scale. Accessibility Scout uses human-AlI collaborations to al-
low users to easily and effectively update their personalization by
validating generated assessments. Accessibility Scout can take in
images of any environment cheaply and quickly, making it uniquely
equipped to conduct personalized accessibility scans at a greater
scale. Our technical evaluations demonstrate that Accessibility
Scout can effectively capture a wide range of different accessi-
bility features and adapt to the varying needs of different users.
Furthermore, our user studies demonstrate that not only did users
find Accessibility Scout useful, but the addition of personalization
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enabled by Accessibility Scout improves the overall usability of
the data. Through our work, we demonstrate how Al technologies
can be used to build scalable personalized accessibility solutions by
applying this approach to accessibility auditing, introducing new
ways we can build inclusive spaces and technologies alike.
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A Formative Study Demographics

Table A.1: Demographic information of six participants (U1-
U6) in the formative study.

No. Preferred
D Age  Gender  DiagnosedDis-  Self-Described Motor | Total  Personalized Equal — Generic
ability Capability
Ul 41 M Paraplegic Able to use hands fully, | 4 3 1 0
paralyzed from the
‘waist down
Uz 29 F Leg amputa- Limited to moving | 5 2 1 2
tion around certain terrains
U3 53 M Spinal cordin-  Over long distances I | 4 3 1 0
jury - T11/T12,  use my wheelchair, for
paraplegic short distances I use
crutches
U4 28 F Multiple scle- Numbness on my arms | 4 2 2 0
rosis and feet, a lot of fatigue
Us 47 M C6 incomplete ~ No movement from the | 4 2 1 1
quadriplegic chest down, C6 and be-
low
Us 50 M Spinal cord in-  Paralysis below mid | 2 0 2 0
jury - C5/Cé chest, limited hand
movement,  limited
wrist flexion, no triceps

B Prompts

##INSTRUCTIONS##
You are tasked with identifying the potential tasks a user might perform in a given

< space. You will be given a set of images and a brief textual description of the
< environment and what the user intends to do. Identify all the potential tasks that
< might be performed within the environment depicted in the pictures given the
< provided description and items in the environment. Be as concise as possible.
< Describe only the most relevant tasks. Do not add any tasks that would be
< extraneous. Respond in JSON with these keys and values: "name": string, name of
< the task, "desc": string, brief description of what the task involves.
HHEXAMPLESH##
Input: an image of a bathroom
Output: [
{
"name": "Using the Toilet",
"desc": "Using the toilet for personal needs"
I8
{
"name": "Washing Up",
"desc": "Washing your face and body and freshening up in the morning"
iy
{
"name": "Taking care of Oral Hygiene",
"desc": "Brushing teeth and rinsing your mouth"
>
1
Input: An image of a restaurant I am going on a date at
Output: [
{
"name": "Dining",
"desc": "Eating comfortably at the restaurant"
iy
{
"name": "Reading the Menu",
"desc": "Checking the menu to know what to order"
i
{
"name": "Chatting",
"desc": "Talking with your date
¥

Figure B.1: Prompt used to identify subtasks a user might do
in an environment.

Huang et al.

##INSTRUCTIONS##
You are tasked with identifying all the possible locations a user might perform a task

< in. You will be given an image and environment description and a task in JSON form
< with a name field and a brief description in the desc field. Identify potential
< locations in the image that the user may need to interact with to perform the task.
<> Be as concise as possible, describing only the most important locations. Respond
< in JSON with these keys and values: "name": string, name of the location, "reason":
< string, why the user will interact with this location, "primitives": list[string],
< a list of all primitive motions or actions the user may need to do to perform the
< task at this location. This should be as exhaustive as possible while only listing
< general motions. These should all be motions or physical actions. For example,
< primitives could include "reaching arm up" or "sitting down". These should be as
< general of motions as possible while describing what the user might perform.
H#HEXAMPLES##
Input: A picture of a bathroom.
{
"name": "Using the Toilet",
"desc": "Using the toilet for personal needs"
¥
Output:
r
{
"name": "toilet",
"reason": "Conduct personal needs"
"primitives": [
"sit down",
"stand up",
"bend over"
1,
"name": "Sink",
"primitives": [
reach with arm,
grasp,
}
]
Input: A picture of a restaurant
{
"location": "Dining",
"desc": "Eating comfortably at the restaurant”
>
Output:
r
{
"location": "table",
"reason": "Food will be served at the table"
"primitives": [
"sit down",
"stand up",
"grasp",
"read in dark"
]
}
]

Figure B.2: Prompt used to identify locations user might

perform a subtask and their primitive motions.
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##INSTRUCTIONS##

are a accessibility practioner who is well versed and knowledgeable about mobility
limitations and their potential implications. You are tasked with assessing the
accessibility of different tasks within an environment. The user will give you a
description of their physical abilities and conditions in the form of a high level
description and a JSON with these keys and values in order: "name": string, short
name for the basic movement; "desc": string, one sentence description why this
movement is affected, "frequent": bool, true if this movement is common in
everyday life, "affected_part": a string of the body part this may affect from
(arms, legs, feet back, chest, hands, eyes, ears, brain, user preference). Do not
answer with any hypotheticals. Assess the accessibility of performing the
specific task or action in this environment. Only give accessibility concerns for
parts of the environment that would affect the user from performing the task. Do
not give any concerns for anything this is not relevant to completing the task. A
concern can also be the lack of something like grab bars or handle bars. A concern
can also be the size or shape of the space. You can respond with empty JSONs if
there are no concerns. Contextualize all your answers to what the user can and
can't do. Always justify a concern by one of the given user capabilities. Concerns
should focus directly on the environment. Only label concerns you are certain
would be an issue. Do not use words like "may", "if", or "potentially". You will
then be given an image with number annotations to reference different parts of the
environment and a description of the environment this image is of. Respond in JSON
with these keys and values in order: "name": string, name which is descriptive of
the exact environment concern, "desc": string, brief description of why this
concern would affect the user with no mention of any annotated numbers,
"locations": list[int], the number on the image that is annotated on top of the
concern. Answer only the number mark closest to the concern. Ignore the presence
of people and only focus on aspects of the physical environment.

CLLOLIoporrerrelioliriolios

H#H#EXAMPLES##
Inputed User Model:
C
{

"name": "Walking",

"desc": "The user cannot perform this movement due to reliance on a wheelchair

< for mobility.",

"frequent": true,

"affected_part"

"legs"

3,
{
"name": "Running",
"desc": "The user is unable to perform running due to limitations requiring a
< wheelchair.",
"frequent”: true,
"affected_part": "legs"
3,
{
"name": "Stair Climbing",
"desc": "The user cannot climb stairs as it requires leg strength and mobility
< that are impaired.",
"frequent": true,
"affected_part": "legs"
3,
{
"name": "Standing",
"desc": "The user is unable to stand independently due to limitations in leg
< support and balance.",
"frequent": true,
"affected_part": "legs"
}
]
Input: A picture of a bathroom
Output:
C
{

"name": "Slippery Floors",

"desc": "The marble on the floors can be slippery making it hard to push a
<> wheelchair",

"locations": [

3,
4
]
3,
{
"name": "High Bathtub Walls",
"desc": "The user can not get into the bathtub due to wheelchair usage",
"locations: [
]
3
{
"name": "High Mirror",
"desc": "User is too low to see mirror when in wheelchair",
"locations": [
15
]
3
{
"name": "Out of Reach Outlet",
"desc": "Outlet is too far to reach from wheelchair",
"locations": [
19
]
}

Figure B.3: Prompt used to identify accessibility concerns in
an image.
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C Thematic Coding

Table C.2: All generated themes and codes from user study.

Theme

Code

Count

User Practices

Existing Practices For Accessibility Evaluations
People Evaluate Accessibility For Their Entire Party

General Concerns
About Environment

Children Compatible Design

Concerns Captured by ADA

Concerns Due to Existence of Other People
Accessibility Information Availability
ADA Is Not Fully Enforced or Maintained

System Usefulness

Evaluations Have Correlation With Planned Activity

Participants Expect Inaccessibilities

Context Influences Accessibility Concerns

System Identifies Hard to Notice Concerns

Can/Cannot Infer Non-Visual Properties from Visual

Knowing Accessibility Is More Useful When Choosing a Locations
Data Availability Affects Usefulness of System

Commonly Accepted Concerns Are Not Useful

Build Understanding if Disabilities

B AN = RO ==

—_
(=}

System Features

Able to Accept New Concerns

Structured Presentation of Information
Training Process Is Positively Perceived
Image and Image Highlighting Are Useful
Usefulness of Concern Reasoning

System Is Fast and Responsive

Improvements Needed

Overfitting

Delay

Hallucinations

Highlighting Is Inaccurate

Duplicated Concerns

User Needs Are Dynamic

Detail Level of Concern Descriptions
Accuracy And Detail of Concern Reasoning
Control of What Concerns Are Shown
Accessibility Accomodation Recommendations
Clickable Highlights

Directly Query AI About Places

Integrate Other Human Feedback

Use Reference Measurements in Concern Descriptions

00 B = W N = =N W W] W RN N = NN

Juy
w

Al Usage

Al Usage is Appropriate for Accessibility Scans

Concerns on Al Accuracy

Concerns on Data Security in Al

Al Capabilities of Capturing Perception

Fear Of Al Influencing Perception

AI Mimicking User Perception Is Useful in Accessibility Scans
AI Mimimcking Perception Allows Word View to be Shared
Importance Of Mobility Modeling Accuracy in Al

Lack Of Trust in Al Prescriptions Of Mobility

Personalization

Personalization Builds Trust in AL

Everyone Is Unique

Concerns Should Mention User Capabilities

Personalization Make People Feel Heard

Personalization Reminds People of Their Disabilities and Makes Them Uncomfortable
Mixed Feelings On Usefulness of Personalization

0 W DN O BN U = W W RN R O =N = = =N
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