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ABSTRACT 
Low-vision and blind bus riders often rely on known physical 
landmarks to help locate and verify bus stop locations (e.g., by 
searching for a shelter, bench, newspaper bin). However, there are 
currently few, if any, methods to determine this information a 
priori via computational tools or services. In this paper, we 
introduce and evaluate a new scalable method for collecting bus 
stop location and landmark descriptions by combining online 
crowdsourcing and Google Street View (GSV). We conduct and 
report on three studies in particular: (i) a formative interview 
study of 18 people with visual impairments to inform the design 
of our crowdsourcing tool; (ii) a comparative study examining 
differences between physical bus stop audit data and audits 
conducted virtually with GSV; and (iii) an online study of 153 
crowd workers on Amazon Mechanical Turk to examine the 
feasibility of crowdsourcing bus stop audits using our custom tool 
with GSV. Our findings reemphasize the importance of landmarks 
in non-visual navigation, demonstrate that GSV is a viable bus 
stop audit dataset, and show that minimally trained crowd workers 
can find and identify bus stop landmarks with 82.5% accuracy 
across 150 bus stop locations (87.3% with simple quality control). 

Categories and Subject Descriptors 
H.5 [Information Interfaces and Presentation]: User Interfaces; 
K.4.2 [Social Issues]: Assistive tech for persons with disabilities 
General Terms 
Measurement, Design, Experimentation, Human Factors 
Keywords 
Crowdsourcing accessibility; accessible bus stops; Google Street 
View; Mechanical Turk; low-vision and blind users 

1. INTRODUCTION 
For people who are blind or low-vision, public transportation is 
vital for independent travel [1,7,25,32]—particularly because their 
visual impairment often prevents driving. In previous formative 
work, we interviewed six blind adults about accessibility 
challenges in using public transportation [2]. We found that while 
buses were frequently a preferred mode of transit, determining the 
exact location of a bus stop was a major challenge [ibid, p. 3249]. 
Strategies for finding bus stops included asking other pedestrians 
for information (if available) or locating known landmarks such as 
bus stop signs, shelters, or other physical objects (e.g., benches). 

In this paper, we focus specifically on the role of landmarks in 
helping blind and low-vision people find and identify bus stop 
locations. While some transit agencies provide brief descriptions 
of their bus stops online (e.g., [26]), this information often lacks 
detail or is inaccessible to visually impaired riders—if available at 
all. Similar to our previous interview findings [2], the American 
Foundation for the Blind (AFB) notes that locating bus stops is a 
significant access barrier often because the bus stops are not 
clearly marked with non-visual indicators or are placed 
inconsistently off roadways [1]. The challenge of locating and 
identifying a bus stop is exacerbated when traveling to an 
unfamiliar location where both the bus stop placement and the 
position and type of surrounding landmarks are not known a 
priori.  

To address this problem, we introduce and evaluate a new method 
for collecting bus stop location and landmark descriptions using 
online crowdsourcing and Google Street View (GSV). Using a 
custom tool that we built called Bus Stop CSI (Crowdsourcing 
Streetview Inspections), crowd workers virtually navigate to and 
label bus stop signs and surrounding landmarks in GSV. This new 
approach is highly scalable in comparison to previous bus stop 
crowdsourcing work, e.g., GoBraille [2] and StopFinder [29], 
which require users to describe bus stops in situ using a mobile 
device. While this paper focuses largely on data collection 
methods, we envision future work that integrates this data into 
transit agency websites and location-aware mobile transit tools 
such as OneBusAway [10]. For example, imagine a smartphone 
application that uses GPS and text-to-speech to automatically 
describe nearby and upcoming landmarks as a blind pedestrian 
navigates towards a bus stop.  

 

 
Figure 1: Visually impaired travelers use landmarks to find and 
verify transit locations [2,14]. In this paper, we examine the feasibility 
of using Google Street View (GSV) and crowdsourcing to collect 
detailed information on bus stop locations and surrounding 
landmarks. The image above shows actual labels from crowdworkers 
in our Mechanical Turk study (Study 3). From left to right: blue 
circular icon=bus stop sign, magenta=bus stop shelter, yellow=bench, 
green=trash/recycling can. 

 



We report on three studies beginning with an interview study 
(Study 1) of 18 people with visual impairments (7 with no 
functional vision) to inform the design of our crowdsourcing tool. 
These interviews extend and complement our aforementioned 
formative work [2] and further emphasize the importance of non-
visual landmarks in helping blind/low-vision travelers find and 
verify a bus stop location. We then transition to describing two 
studies of GSV: a comparative study (Study 2) examining 
differences between physical bus stop audit data and audits 
conducted virtually with GSV, and an online study (Study 3) 
using Amazon Mechanical Turk (MTurk) designed to examine the 
feasibility of crowdsourcing bus stop audits using our tool.  

In Study 2, we found a high correlation between our physical bus 
stop audit data and GSV images across four field sites in the 
Washington DC and Seattle metropolitan areas. This provides 
initial support for using GSV as a lightweight bus stop audit 
method. In Study 3, 153 MTurk crowd workers (turkers) labeled 
150 bus stops using GSV via our custom tool. Overall, our results 
show that an individual turker is able to find and correctly label a 
bus stop and surrounding landmarks with 82.5% accuracy. This 
increases to 87.3% with simple 7-turker majority vote for quality 
control. While not perfect, these results point to the feasibility of 
using GSV and crowdsourcing to gather detailed bus stop 
descriptions. Future work should focus on training and quality 
control to increase accuracy. 

In summary, the contributions of this paper are threefold 
involving both formative and summative findings: (i) our 
interview study adds to the existing literature on how blind and 
low-vision persons use bus transit, with a specific focus on 
navigating to and identifying bus stops; (ii) our comparative 
physical vs. virtual bus audit study is the first of its kind and 
establishes that GSV is a viable data source for collecting 
descriptions of bus stop features and surrounding landmarks; and, 
finally, (iii) our custom tool (Bus Stop CSI) and online 
crowdsourcing study shows that minimally trained crowd workers 
can find and describe bus stops using GSV with reasonable 
accuracy (> 82% without quality control). 

2. RELATED WORK 
Using public transit requires navigating a wealth of visual 
information from maps and schedules to bus stop markings and 
bus route signs. This reliance on visual information makes using 
public transit difficult for people with severe visual impairments 
[1,25]. With bus transit specifically, blind or low-vision persons 
can struggle with determining route and schedule information, 
purchasing fare, finding the correct bus stop location, getting on 
the appropriate bus, and getting off at the right stop [1,2,12,33]. 

Most transit tools designed to assist blind and low-vision bus 
riders focus on two issues: helping identify the correct bus to 
board when waiting at a bus stop [4,27] or providing alerts for an 
upcoming stop while riding the bus [21,22]. We are interested in 
addressing a prerequisite challenge: helping visually impaired 
riders find and verify bus stop locations through the use of 
physical landmarks and detailed bus stop descriptions (e.g., the 
presence of benches, bus shelters). In a survey of 55 persons with 
visual impairments, 85% reported difficulties in finding public 
transit pick-up points such as bus stops [12]. Recent work has 
emphasized the importance of physical landmarks in helping low-
vision and blind users navigate to public transit [2,14]. Landmarks 
can only be used for navigation, however, when their location and 
spatial context (e.g., proximity to other physical objects) is 
known. Typically, this information is not captured or shared via 
traditional navigation tools (e.g., online maps). 

Most relevant to our work is the GoBraille project [2] and its 
follow-up StopFinder [29], which was proposed but never 
evaluated. Both projects emphasized in situ mobile crowdsourcing 
to collect and present data about bus stops and surrounding 
landmarks to aid blind travelers (ibid, p. 323). Their in situ 
crowdsourcing approach takes advantage of the traveler’s 
“downtime” while waiting for a bus: users fill out a simple form 
describing the bus stop (e.g., its location, relative direction, and 
encountered landmarks). While the reliance on blind users for bus 
stop data provides insights that are important to that community 
(e.g., non-visual perceptions of a landmark), the approach suffered 
from critical mass issues and data scarcity. While our aim is 
similar, our approach is unique: crowdsourcing data collection 
online using GSV where anyone at any time can contribute. 

Omnidirectional streetscape imagery such as that found in GSV, 
Microsoft Bing Maps, and some Nokia Maps has been 
increasingly popular as a virtual audit technique in fields from 
urban informatics to public health research [3,8,15,17,18,30]. 
Reported benefits over physical audits include time-savings and 
the ability to monitor and analyze multiple cities from a central 
location [3,30]. As an emerging area of research, most work thus 
far has focused on examining agreement between virtual (e.g., 
GSV) and physical field audit data (e.g., [3,8,15,30]). Important 
for our work here, high levels of agreement have been found for 
measures including pedestrian safety, traffic and parking, and 
pedestrian infrastructure. To our knowledge, however, no one has 
specifically looked at the concordance between physical and 
virtual audit data for bus stops and their surrounding environment 
(which is the focus of Study 2).  

With regard to crowdsourcing for accessibility, Bigham and 
colleagues argue that current technological infrastructure provides 
unprecedented access to large sources of human power that can be 
harnessed to address accessibility challenges [6]. Recent examples 
of such crowdsourcing systems include VisWiz [5] and 
Legion:Scribe [24]. More relevant to our work is Tiramisu [31], a 
mobile crowdsourcing tool developed via universal design to help 
gather and disseminate information about bus arrival time and 
capacity. Our approach is complementary but does not rely on 
mobile crowdsourcing or continuous, active use by crowd workers 
to provide benefits. Finally, in the last decade, a growing number 
of crowdsourcing systems dedicated to geographic content have 
emerged  (e.g., Wikimapia, OpenStreetMap, and Cyclopath [28]). 
Interestingly, past work has found that user-contributed map data 
quality is high even when compared to proprietary systems (e.g., 
[11,16]). Though we currently rely on paid labor via MTurk, we 
plan to explore community-sourcing and volunteer contributions.  

3. STUDY 1: FORMATIVE INTERVIEWS  
In 20101, we conducted formative interviews with six blind adults 
to learn about the challenges faced by visually impaired persons 
when using public transit [2]. Here, we extend upon and 
complement this previous work by covering a wider variety of 
transit systems and involving a greater diversity of visually 
impaired participants. In addition, we specifically investigate the 
role of non-visual landmarks in bus stop navigation. 

3.1 Interview and Analysis Method 
We recruited 18 participants (10 male) with visual impairments 
from the US and Canada with an average age of 52.1 (SD=12.0; 
range=24-67). Eleven participants could not easily read street 
signs due to their visual impairment. Of these, 7 had no functional 
vision. As bus transit systems differ across population densities, 
                                                                    
1 Interviews were done in 2010, but the findings were published in 2011. 



we sought participants from different neighborhood types: 8 
participants lived in urban areas, 7 suburban, and 3 in small 
towns. Participants were recruited via mailing lists affiliated with 
blindness organizations and were paid $15. The recruitment email 
explicitly stated that we were investigating public transit 
accessibility and that participants must be blind or low-vision.  
We conducted semi-structured, phone-based interviews, which 
lasted ~40 minutes. We asked participants about patterns of public 
transit use, challenges experienced therein, and coping/mitigation 
strategies. We then described a hypothetical smartphone 
application that provided the location and description of bus stops 
and surrounding landmarks (e.g., via GPS tracking and text-to-
speech). We asked participants to assess the importance of various 
landmarks for this software application. We recorded, transcribed, 
and coded the interviews using an open coding methodology. 
While our interviews covered a broad range of subjects related to 
transit accessibility, below we primarily concentrate on findings 
related to locating bus stops. 

3.2 Bus Stop Related Interview Findings 
For most participants, public transit was critical for daily mobility. 
One woman, for example, stated that the lack of accessible public 
transit “played into her decision” to retire. Similar to prior work 
[2,12,33], participants described many challenges when using 
public transit including finding bus stops, knowing which bus to 
board, and when to disembark.  

Most relevant to this paper, half of the participants experienced 
difficulty finding the exact location of bus stops when travelling. 
Difficulties included determining the specific location of a bus 
stop (e.g., near-side of intersection, half-way down the block), 
obtaining accessible information sources, and knowing which 
landmarks and businesses indicate a proximal bus stop. Because 
bus stop designs and placement can vary widely within a city—
from stops with a myriad of physical landmarks (e.g., shelters, 
benches, trash cans, and newspaper boxes) to stops with only a 
pole—one participant said with frustration: 

There's really no rhyme or reason of where they put bus stops. 
And there's no way to…tell where a bus stop [is], 'cause you 
don't ever know where the pole is, or how it's marked, or... 
anything like that. (P3, age=63, blind) 

For this participant, the main reason he did not use public transit 
was because of the challenges he faced in finding bus stops. 
Another participant noted that some stops in his city were hard to 
find because they had no non-visual landmarks, only painted 
curbs. Many noted that consistent stop locations and landmarks 
would significantly help them overcome this accessibility 
challenge. For both blind and low-vision participants, finding an 
unfamiliar stop took a lot of time and, as one participant 
explained, required adjusting expectations to reduce stress: 

I think also just not to worry about it so much. Just not stress 
out about it. Just know that it will be new and it will take a little 
more time to figure it out. (P14, 55, blind) 

To find bus stops, participants mentioned using walking directions 
from transit trip planners (if available in an accessible form), 
calling the transit agency2, or asking a sighted person questions 
about the stop’s location. Ten participants (53%) reported asking 
pedestrians or other transit riders for information—a strategy only 
available when others are present (i.e., more difficult at night or in 
more rural areas). Some participants used orientation or mobility 
                                                                    
2 In our prior work, one participant noted poor experience with calling transit 

agencies because they could not adequately explain bus stop locations over the 
phone (perhaps because the agency itself did not store sufficiently detailed 
descriptions about their bus stops in their database) [2].  

instructors to help guide them to routine bus stops. Once 
participants reached the vicinity of the stop, they commonly 
searched for landmarks. For example, if a person uses a cane, s/he 
can hear an echo from a shelter when walking by. 
When asked about which landmarks at bus stops are most 
important to navigation, participants identified shelters and 
benches as the most helpful followed by trash cans, newspaper 
bins, grass shoulders, and other non-visual indicators. A few also 
mentioned knowing the shape of the bus stop pole (e.g., thin vs. 
thick, two-column vs. one). One participant emphatically stated 
that all landmark information would be of critical importance. 
Five participants also mentioned the importance of knowing 
nearby businesses because of their distinct sounds and smells. 

I look for landmarks... like a bus shelter at a certain place... or 
if there's a hedge, like bushes in front of a certain place and 
right by those bushes there's a newspaper rack or something 
like that then I know that it's my stop. If it’s in front of a coffee 
shop…if there's a hotdog stand there, then I know that the bus 
stop is in front of the hot dog stand, you smell it… Noises too, 
you know different sounds. (P14, 55, blind) 

Though participants relied on various technologies for planning a 
trip on public transit, only five participants (26%) used 
smartphone applications for such tasks. These applications 
provided either real-time or scheduled arrival information, and 
helped participants determine which bus to board. None of our 
participants used technology tools while walking around and 
looking for stops, perhaps because no such tool yet exists.  

3.3 Study 1 Summary 
In summary, although our first interview study was conducted 
three years ago [2], the major challenges of blind and low-vision 
public transit riders remain the same despite technological 
improvements in navigation tools, smartphone applications, and 
accessible bus systems (e.g., automated announcements). Most 
participants said that having information about landmarks would 
enable them to use transit more easily (even five participants who 
could sometimes read street signs). Descriptions of the shape and 
location of bus stop poles, shelters, and benches as well as 
information indicating their presence seemed most beneficial. 

4. STUDY 2: PHYSICAL vs. GSV AUDITS 
To assess the viability of using GSV to audit bus stops, we needed 
to first establish that the bus stops captured in the GSV image 
dataset do not differ significantly from current reality (e.g., 
because of image age). Thus, in Study 2, we conducted both in-
person bus stop audits and GSV-based audits across the same four 
target geographic areas and compared the results. An audit here 
means logging the existence of landmarks at bus stops using a 
predefined codebook (described in Section 4.2). While the 
primary aim of this study was to explore what differences, if any, 
would exist between the GSV and physical bus stop audit data, we 
had two secondary aims. First, to investigate the feasibility and 
difficulty of the audit task itself (e.g., can members of our 
research team agree amongst themselves on the application of 
audit measures across various bus stop scenes?). Second, to 
produce a high-quality ground truth dataset that could be used to 
assess crowd worker performance in Study 3. 

Our bus stop audit sites included four neighborhoods in the 
Washington DC and Seattle, WA metropolitan areas (Table 1; 
Figure 2). As bus stop designs differ across cities and 
neighborhoods, we selected a range of densities (e.g., downtown 
vs. suburban) and neighborhood types (e.g., residential vs. 
commercial).  Additionally, we emphasized areas that have high-
demand for public transit (e.g., including schools, major 



department stores, convention centers, and museums). These same 
areas are also used in our crowdsourcing audit study (Study 3). 

4.1 Collecting Physical Audit Data 
Two separate research teams physically visited the bus stop 
locations: one team in Seattle and the other in Washington DC. 
Teams walked (or biked) down each street in the predefined study 
area. They carried smartphones with GPS to help navigate to and 
track bus stops. An online spreadsheet prefilled with bus stop 
locations (e.g., Baltimore & Campus Dr.) and a Google Map URL 
allowed the researchers to track their position and the target bus 
stop in real-time on an interactive map. Visited stops were marked 
in the spreadsheet and linked to a unique index for later analysis.  
At each bus stop location, we took 7-10 geo-timestamped pictures 
from varying angles—roughly 360° around the bus stop from the 
sidewalk and street (far more angles than GSV)—and analyzed 
them post hoc. We were careful to capture clear images without 
occlusion problems. This photographic approach had two primary 
advantages: it created an image dataset analogous to GSV, which 
allowed us to apply a similar auditing methodology to both, and it 
allowed us to examine the image dataset multiple times without 
returning to the field site. 

4.2 Auditing Methodology 
While we had two separate teams photograph bus stops during the 
in-person field site visits, we used one single team of three 
researchers to independently audit (code) both the physical and 
GSV image datasets. This reduced confounds due to different 
auditors. Although bus stop auditing may seem like an objective 
process, it is, in fact, subjective and requires following a 
qualitative coding methodology. For example, one auditor may 
simply miss seeing a particular object in a scene or may 
misperceive or mislabel one object as another. By following the 
iterative coding method from Hurschka et al. [19], our aim was to 
produce two high-quality audit datasets—one for each image 
dataset: physical and GSV—that could then be compared.  
To begin the auditing process, an initial codebook was derived for 
each bus stop landmark: (i) bus stop signs, (ii) bus stop shelters, 
(iii) benches, (iv) trash/recycling cans, (v) mailbox and newspaper 
bins, and (vi) traffic signs and other poles. These landmarks were 
selected based on the findings from our interviews as well as from 
bus stop design guidelines (e.g., [9]). The codebook provided 
detailed definitions of each along with visual examples. We also 
defined the audit area around a bus stop as 20 feet (~6.1 meters) in 
either direction from the bus stop sign (from [20]). Note, however, 
that as our audits were performed via visual inspection of images 
(for both the physical and GSV datasets), auditors could only 
estimate distances.  

During auditing, count data was entered into a preformatted 
spreadsheet tracking the number of each landmark at each bus 
stop. As prescribed by Hruschka et al., each auditor began by 
independently coding a small subset of data—in this case, 15 DC 
and 5 College Park bus stop locations. Afterwards, the auditors 
came together to discuss and modify problematic codes.  With the 
updated codebook, the entire DC and College Park physical image 
dataset was audited (including the original 20 locations, which 
were re-audited) followed by the GSV dataset. We conducted a 
similar iterative coding process for the two Seattle audit areas. 
The codebook descriptions were updated to reflect Seattle bus 
stop designs. 

The GSV audits differed from the physical image dataset audits in 
two ways: first, the auditors used a GSV interface where they 
could control camera angle and location rather than browse 
through a set of static images; second, the auditors rated the 
overall difficulty of auditing each location on a 5-point Likert 
scale, where 1=very easy to assess and 5=very hard to assess. 
These ratings will be used later in Study 3 to investigate whether 
crowdsourcing audit accuracy changes based on rated difficulty. 

4.3 Inter-Rater Agreement on Audit Data 
Before comparing the physical audit data to the GSV audit data 
(Section 4.4), we needed to first calculate inter-rater agreement 
between researchers for each individual dataset. For this, we 
applied the Krippendorff’s Alpha (α) statistical measure (see 
[23]). Although we have previously used Fleiss’ kappa to compute 
inter-rater agreement on streetscape audit tasks [18], this 
statistical measure cannot be applied to count data, which is what 
we have here. Our results are presented in Table 3 (1st pass 
columns). The overall α score between researchers was 0.909 for 
the physical audit dataset and 0.850 for the GSV audit dataset. 

    
Figure 2: The four audit areas used in Study 2 and 3 spanning a range of neighborhood types in Washington DC and Seattle, WA. In all, we 
surveyed 179 bus stops across 42.2 linear km. Each field site took approximately one day to physically survey (~6 hours). 
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 Washington 
DC 

College  
Prk by UMD 

Downtown 
Seattle 

Seattle by 
UW Overall 

Description of Audit Area Dense  
urban 

Suburban  
(next to U. of 

Maryland) 

Dense  
urban 

Semi-urban  
(next to U. of 
Washington) 

N/A 

Total Linear km Surveyed 11.2 11.9* 8.0 11.1 42.2 
# of Bus Stops Found in  

Physical Audit 82 36 35 26 179 

# of Bus Stops Found in 
Physical Audit but Missing 

from Google Maps API 
21 4 3 1 29 

Avg. GSV Data Age (SD) 1.9 yrs (0.3) 1.0 yrs (0.7) 1.9 yrs (0.3) 2.1 yrs (1.1) 1.75 (0.7) 

Table 1: The four areas surveyed in our physical and virtual (GSV) 
audits. Total Linear km Surveyed represents unidirectional surveying 
distance except for the *, which is bidirectional because of wider 
streets separated by a median (i.e., auditors walked/biked one side of 
road and then the other). See Figure 2. 



Similar to most statistical measures for inter-rater agreement, 
there is no universally accepted threshold for determining high 
agreement with the Krippendorff’s Alpha measure. However, [23] 
suggests that agreement scores of α ≥ 0.800 are generally 
considered reliable while data below α < 0.667 should be 
discarded or recoded (p. 241). Though none of our α scores fell 
below 0.667 for either dataset, some categories had α < 0.800. 
One primary source of disagreement involved differing 
perceptions of what geographic area constituted a bus stop (recall 
the 20ft perimeter). For some bus stop locations, traffic signs, 
poles, and other landmarks extended just beyond or just within the 
prescribed bus stop range. These edge cases were difficult to 
assess and contributed to the lower α score. Note also that the 
GSV agreement scores were lower on average than the physical 
audit dataset often because of inferior-quality images (e.g., the 
GSV privacy protection algorithm misidentified some bus stop 
signs as vehicle license plates and blurred them out; see [13]).  

To alleviate such disagreements as recommended by Hruschka et 
al. [19], the three auditors discussed low agreement codes (any α 
< 0.800) and updated the codebook once again. The auditors then 
took a 2nd full independent pass both on the physical and GSV 
audit datasets but focused only on those bus stop landmarks that 
previously had an α score < 0.800. The updated results are in 
Table 2 (2nd pass columns). On this 2nd pass, the overall 
agreement increased from 0.909 to 0.944 for the physical audit 
dataset and 0.850 to 0.930 for the GSV dataset. Importantly, all α 
scores were now ≥ 0.800 thereby completing our iterative coding 
scheme. 

 Physical Audit  
Image Dataset 

GSV Audit  
Image Dataset 

Bus Stop Landmark 1st Pass (α) 2nd Pass (α) 1st Pass (α) 2nd Pass (α) 
Bus Stop Sign 0.937 0.972 0.761 0.916 

Bus Stop Shelter* 0.991 0.991 0.955 0.955 
Bench* 0.940 0.940 0.870 0.870 

Trash/Recycling Can 0.876 0.886 0.793 0.946 
Mailbox/ 

Newspaper Bin 0.886 0.957 0.768 0.938 

Traffic Signs/ 
Other Poles 0.683 0.866 0.685 0.874 

Overall 0.909 0.944 0.850 0.930 

Table 2: Krippendorff’s Alpha inter-rater agreement scores between 
three researchers on both the physical audit and GSV audit image 
datasets. Following Hruschka et al.’s iterative coding methodology 
[19], a 2nd audit pass was conducted with an updated codebook for 
low-agreement scores—in our case, α < 0.800. *Excluded categories 
for 2nd coding pass because original agreement α ≥ 0.800. 

4.4 Comparing Physical vs. GSV Audit Data 
The high agreement scores within the physical and GSV datasets 
provides evidence that the audit data is consistent and of good 
quality. Consequently, we can move towards examining the key 
research question of Study 2: how does the physical audit dataset 
compare to the GSV dataset? To investigate this question, two 
more small procedural steps are required: first, we need to 
amalgamate the three-auditor count data into a single count set for 
both datasets and then, second, we need to decide upon some 
mathematical approach to compare them. For the amalgamation 
method, we take the median of the three auditor counts for each 
bus stop landmark at each bus stop location. For example, if R1 
found 1 traffic sign at a specific bus stop location, R2 found 4 
traffic signs, and R3 found 5, then the median count between them 
would be 4. This allowed us to transform the three count datasets 
into one for both the physical and GSV audit data. For the 
comparison method, similar to Rundle et al. [30], we calculate a 
Spearman rank correlation between the two count sets (physical 
and GSV). 

Our results are presented in Table 3; all are statistically significant 
at p < 0.001. Using Rundle et al.’s definition of high correlation, 
all of our landmark coefficients (ρ) are highly correlated (ρ > 
0.60) between the physical and GSV datasets. The two highest are 
for bus stop infrastructure: Bus Stop Shelters (ρ=0.88) and 
Benches (ρ=0.88). The two lowest are Bus Stop Signs (ρ=0.61), 
which are sometimes difficult to see in GSV, and Trash/Recycling 
Cans (ρ=0.72), which are likely to be the most transient landmark 
type (e.g., they may move a lot over time). 
Physical vs. GSV 

Audit Data 
Bus Stop 

Sign 
Bus Stop 
Shelter Bench 

Trash / 
Recycling 

Mailbox / 
News. Bins 

T. Signs / 
Other Poles 

Coefficient (ρ) 0.612 0.877 0.875 0.715 0.776 0.811 

Table 3: Following Rundle et al. [30], we performed a Spearman rank 
correlation between the physical and GSV bus stop landmark count 
audit datasets. For all coefficients (ρ), p < 0.001. 

It is important to note that during the physical audit, we 
encountered 29 bus stops that were not in Google Transit’s bus 
stop location dataset (21 of which were in downtown Washington 
DC); see Table 1. This Google transit dataset is independent of the 
GSV images. Only three of these bus stops, however, were also 
missing in GSV (due to outdated images). The above correlation 
results are for all 179 physical audit locations with zeros filled in 
for the three missing bus stops in the GSV datasets.  

4.5 Study 2 Summary 
In summary, Study 2 demonstrates that bus stop auditing is a 
subjective process but, more importantly, that the GSV audit 
dataset is highly correlated with the physical audit dataset. This 
indicates that despite instances of GSV image ages being over two 
years old, GSV is a viable data source for gathering up-to-date 
information on bus stop locations and surrounding landmarks. 

5. OUR BUS STOP LABELING TOOL 
Shifting now to preparations for our third study: to allow crowd 
workers to examine and describe bus stops and surrounding 
landmarks in GSV, we created an interactive online labeling tool 
called Bus Stop CSI (Crowdsourcing Streetview Inspections) in 
Javascript, PHP, and MySQL. Unlike previous crowdsourcing 
GSV work which uses static imagery to collect labels (e.g., 
[15,17,18]), our labeling interface is fully interactive and allows 
the crowd worker to move about and control the camera view in 
the 360 degree GSV panoramic space (see Figure 3). Although 
this interactive freedom increases task complexity, the benefits are 
twofold: first, the crowd worker can “walk” in GSV to find the 
target bus stop; second, the crowd worker can shift their view to 
find an optimal labeling perspective (e.g., a camera view that 
avoids occlusions). As we deployed our tool on MTurk, the 
description below is written for that context. 

5.1 Using the Bus Stop Labeling Tool 
When a turker accepts our HIT, they are immediately greeted by a 
four-stage interactive tutorial. Each stage is dedicated to 
progressively teaching the turker about some new interaction or 
labeling feature in our tool (e.g., how to pan the camera, walk, and 
label). The tutorials also teach higher-level concepts such as how 
sometimes a target bus stop icon may show up in the 2D-map 
view but may not actually exist in the GSV pane (due to 
inaccuracies in Google’s transit data). Turkers must successfully 
complete one stage before moving on to the next. Because the bus 
stop signs and landmarks differ in look and feel across cities, we 
created separate interactive tutorials for Washington DC and 
Seattle (eight interactive in total; four for each metropolitan area). 
If a turker was trained in one city, they were required to retrain in 
the other city. 



Once the tutorials are successfully completed, we query the 
Google Maps API to automatically drop the turker close to a bus 
stop in the audit area and the task begins in earnest. Bus Stop CSI 
has two primary modes of interaction: the Explorer Mode and the 
Labeling Mode. In the Explorer Mode, the user interacts in the 
GSV pane using the traditional Street View inputs. Walking is 
controlled by clicking the arrow movement widgets (<, >, ˅, and 
˄). Horizontal and vertical panning in the 360 degree view is 
controlled by clicking and dragging the mouse across the image. 
When the user is first dropped into a scene, s/he is defaulted into 
Explorer Mode. When the user clicks on one of the six labeling 
buttons, the interface switches automatically to the Labeling 
Mode. Here, mouse interactions no longer control movement and 
camera view. Instead, the cursor changes to represent the 
currently selected label. The user can then apply the selected label 
by clicking on the appropriate landmark in the GSV pane. Our 
tool automatically tracks the camera angle and repositions the 
applied labels in their correct location as the view changes—in 
this way, the labels appear to “stick” to their associated landmark. 
Turkers cannot see previously entered labels by other workers.  

In early pilot studies, we found that users would get disoriented by 
accidentally “looking” straight down (towards the street) or 
straight up (towards the sky) in the GSV pane. Thus, to simplify 
GSV interaction and to focus the view appropriately on street-
level features, we reduced vertical panning to 20 degrees (0, -20). 
Other GSV adjustments include: hiding the onscreen camera 
control and zooming widgets, disabling keyboard interactions (to 
prevent accidental movement), and hiding textual overlays (e.g., 
street names). In addition, we prevented users from moving more 

than two steps in any direction away from their initial drop point. 
This constraint prevented users from unnecessarily walking down 
streets in search of bus stops. In our dataset, a single GSV “step” 
translates to roughly 5-10 meters of real-world movement (GSV 
steps are smaller in denser areas).  

6. STUDY 3: CROWDSOURCING LABELS  
To investigate the potential of using minimally trained crowd 
workers to find and label bus stop landmarks, we posted our tool 
to MTurk in April 2013. In each HIT, turkers needed to label 14-
16 bus stop locations. We paid $0.75 per HIT ($0.047-0.054 per 
labeling task); which was decided based on the task completion 
time in pilot studies (e.g., approximately $0.10 per minute). 
Although we used 179 bus stop locations in Study 2, here, we use 
a subset 150. This subset is necessary because, as previously 
mentioned, 29 bus stop locations do not show up in the Google 
Maps Transit API (see Table 1). We use this API to automatically 
place turkers next to bus stops in our labeling tool. If the API is 
unaware of the bus stop, we cannot determine its location. 

6.1 Assessing Accuracy 
In order to assess turker performance, we need ground truth data 
about which landmarks exist at each bus stop location. For this, 
we use the median count GSV dataset from Section 4.4. Recall 
that to produce this consolidated dataset, we calculated the median 
count of each landmark type from the three auditor datasets across 
every bus stop location. Here, we further transform these counts 
into binary presence indicators for each landmark type. In other 
words, our ground truth dataset is a 150 row (for bus stop 
locations) x 6 column (for landmark types) matrix where cells=1 
represent the presence of that landmark type at the specified bus 

 
 
 

 
Figure 3: The Bus Stop CSI interface. We use the Google Maps Transit API to determine drop locations nearby bus stops. Crowd workers use the 
Explorer Mode to move around and look for the target bus stop (indicated by the blue icon in the 2D-map view) and the Labeling Mode to label 
any of the six bus stop landmark types. Clicking the Submit button uploads the labels (in this case, a mailbox, bus stop sign, shelter, and bench). 
The worker is then transported to a new location unless the HIT is complete (14-16 bus stop locations are included in each HIT).   
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When one of these “label” buttons is selected, the interface enters the Labeling Mode. The mouse cursor turns into a representative 
icon for the selected label type. The user directly clicks on the object in the GSV pane below to place the label. In this mode, unlike the 
Explore Mode, the camera angle and location is fixed. The interface automatically returns to Explore Mode after each label is placed. 
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stop and cells=0 represent an absence. Although the Bus Stop CSI 
tool gathers raw landmark counts and relative location data on 
landmarks (e.g., a trashcan is north of the bus stop sign), we do 
not evaluate this level of granularity here. Thus, our analysis 
focuses only on whether crowd workers properly indicated the 
presence/absence of a landmark in a scene but without regard for 
multiple occurrences. We leave more sophisticated assessments 
for future work. 

6.2 High Level Results 
In total, 153 distinct turkers completed 226 HITS (3,534 labeling 
tasks) and provided 11,130 bus stop landmark labels. On average, 
turkers completed 1.48 HITs (SD=1.17), which is equivalent to 
23.1 labeling tasks (SD=19.0). The median labeling time per task 
was 44.7s (avg=71.8s; SD=213.1s) and the average number of 
labels per panoramic image was 3.15 (SD=3.06). When compared 
with our ground truth dataset, overall turker accuracy was 82.5% 
(SD=0.3%) for properly detecting the presence/absence of a 
landmark across the 150 bus stop locations. 
When broken down by landmark type (Table 4), the 
mailbox/newspaper bin landmark type followed by the bus stop 
shelter and bench had the highest accuracies at 88.8% (SE=0.4%), 
88.6% (SE=0.5%), and 83.3% (SE=0.5%) respectively. These all 
tend to be fairly salient landmark types in GSV. In contrast, the 
lowest scoring landmark type (Traffic Signs / Other Poles at 
66.2%) is the most open-ended label (i.e., least defined) making it 
susceptible to confusion and misuse. This is particularly true 
given that our ground truth data had a constrained 20 foot extent 
on either side of the bus stop sign meaning that potentially correct 
labels placed beyond that area could be flagged as incorrect. In the 
future, we plan to account for distance in our assessments.   

 
Bus Stop 

Sign 
Bus Stop 
Shelter Bench 

Trash/ 
Recycling 

Mailbox/ 
News Bins 

T. Signs / 
O. Poles Overall 

Avg. Accuracy 
(N= 153 turkers) 

81.9% 
(0.6) 

88.6% 
(0.5) 

83.3% 
(0.5) 

84.9% 
(0.4) 

88.8% 
(0.4) 

66.2% 
(0.4) 

82.5% 
(0.3) 

Table 4: The average labeling accuracy with one turker per scene 
across all 150 bus stops. Cell format: Average (Standard Error). 

Returning to the researcher supplied difficulty ratings from Study 
2, we found a significant difference (p < 0.0001) between turker 
performance on bus stop locations rated easy by our research team 
(N=116) vs. those rated medium-to-hard (N=34). For the easy 
locations, our average per turker accuracies were 84.5% 
(SE=0.3%). This decreased to 74.3% (SE=0.7%) for the hard 
locations, which suffered from occlusion, blurred images, and 
required more movement (including a scene where one virtual 
step leapt forward in a disorienting manner). 

6.3 Accuracy as a Function of Majority Vote Size 
Collecting multiple labels per bus stop location helps account for 
the natural variability of human performance and reduces the 
influence of occasional errors; however, it also requires more 
workers. Similar to Hara et al. [18], here we explore accuracy as a 
function of turkers per scene. We recruited 21 (or more) turkers 
for each of the 150 bus stop locations. We compare ground truth 
data with majority vote labels across four turker groups: 1, 3, 5, 
and 7. Because we have at least 21 turkers per bus stop location, 
we can compute accuracies multiple times for each group size, 
average the results, and calculate error margins. The overall goal, 
here, is to produce a more accurate portrayal of expected future 
performance for each group size. For example, when we set the 
majority vote group size to three, we randomly permute seven 
groups of three turkers. In each group, we calculate the majority 
vote answer for a given bus stop location in the dataset and 
compare it with ground truth. This process is repeated across all 

locations and the five group sizes, where (X=majority vote group 
size, Y=number of groups): (1,21), (3, 7), (5,4), (7, 3). See [18]. 

Overall, we found that accuracy does indeed increase with 
majority vote group size from 82.5% to 85.8% with 3 turkers and 
87.3% with 7 turkers. These gains, in general, diminish in 
magnitude as majority vote group size grows (Figure 4). 
However, for the hardest landmark label type (Traffic Signs / 
Other Poles), we see a continued steady increase as the majority 
vote size grows—perhaps indicating wisdom in the crowds for 
more challenging landmark types. 

6.4 Study 3 Summary 
In summary, though our current crowdsourcing experiments and 
analyses are rather simple, they are the first results to demonstrate 
that minimally trained crowd workers can accurately find and 
label bus stop landmarks in GSV (> 82%). Future work should 
focus on more sophisticated analyses of worker labels including 
count and placement accuracy in each scene. In addition, more 
work is needed to establish the required accuracy level needed to 
provide value to transit agencies and navigation tools. 

7. DISCUSSION AND CONCLUSION 
In this paper, we conducted three studies related to the use of non-
visual landmarks in locating and verifying bus stops. While Study 
1 extended upon our previous formative work, our findings re-
emphasized the significance of landmarks in aiding visually 
impaired navigation. For example, we found that benches and 
shelters were most helpful, which crowd workers correctly labeled 
83.3% and 88.6% of the time, respectively, in Study 3—such a 
result demonstrates the interconnections between our studies. 
Study 2 showed that despite data age and occlusion problems, 
GSV could be used as a lightweight dataset for bus stop audits 
(even when compared to physical audit data). Finally, and perhaps 
most importantly, Study 3 showed that a minimally trained crowd 
worker could find and label bus stops in Bus Stop CSI with 82.% 
accuracy, which jumps to 87.3% with a simple 7-turker majority 
vote scheme). Taken together, these three studies advance the 
current literature and understanding of how information about bus 
stop landmarks could be potentially collected and used to guide 
low-vision and blind bus riders. With that said, our work is not 
without limitations. Here, we briefly discuss limitations that could 
affect the scalability and accuracy of our approach.  

Inaccurate bus stop locations. While our physical audit in Study 2 
found 179 bus stops, 29 of these were missing from the Google 
Maps API. Because we rely on this same API in our Bus Stop CSI 

 
Figure 4: Overall accuracy as a function of majority vote group size. 
Each graph point is based on multiple permutations of the majority 
vote group size across all 150 bus stop locations. Standard error bars 
are in black. Note: the y-axis does not start at 0% (range: 50-100%). 



tool, these 29 bus stops could not be visited—even if they were 
visible in GSV (in this case, all but three were). Similarly, often 
times we found that the exact location of bus stops in the Google 
Maps API was inaccurate (e.g., wrong place on the block, wrong 
side of an intersection). This made our 2D-map pane confusing 
for some scenes—a worker would point the avatar toward the bus 
stop icon but would not see a bus stop in the GSV pane. Other 
data sources (e.g., OpenStreetMap) could likely be used to 
mitigate this problem. 

Image age. While we observed high concordance between our 
GSV bus stop audit data and our physical audit data, the image 
age in GSV remains a concern. Although Google does not 
publicly specify a GSV update plan from city-to-city, Washington 
DC has been updated three times in the last four years. In 
addition, Google just updated 250,000 miles of road in early 
October 2012 (http://goo.gl/hMnM1).  

Scene difficulty: The following GSV-related problems made it 
more challenging to label bus stops: (i) distance: most streets are 
driven once by a GSV car from a single car lane in one direction. 
This can create distant views of bus stops; (ii) occlusion: bus stop 
landmarks are sometimes occluded by a parked bus or other 
obstacle, (iii) lighting: shadows from trees and buildings can make 
bus stop landmarks hard to see; and (iv) blur: as previously 
mentioned, sometimes GSV misidentifies a bus stop sign as a 
license plate and blurs it out, which makes it harder to identify. 
One potential solution would be to integrate other streetscape 
imagery sources (e.g., Microsoft Streetside) to gain multiple 
simultaneous views of an area.  
Selecting bus stop landmarks. Our tool allowed crowd workers to 
label six landmark types but other landmark types could also be 
useful (e.g., grass, trees). For example, one turker left a comment 
saying, “There is a tree very close to the bus stop sign” Future 
work should examine other landmark types and continue 
performing user-centered design to see how these landmarks 
affect navigation. 
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