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Automated sound recognition tools can be a useful complement to d/Deaf and hard of hearing (DHH) people’s typical 
communication and environmental awareness strategies. Pre-trained sound recognition models, however, may not meet the 
diverse needs of individual DHH users. While approaches from human-centered machine learning can enable non-expert 
users to build their own automated systems, end-user ML solutions that augment human sensory abilities present a unique 
challenge for users who have sensory disabilities: how can a DHH user, who has difculty hearing a sound themselves, 
efectively record samples to train an ML system to recognize that sound? To better understand how DHH users can drive 
personalization of their own assistive sound recognition tools, we conducted a three-part study with 14 DHH participants: 
(1) an initial interview and demo of a personalizable sound recognizer, (2) a week-long feld study of in situ recording, and 
(3) a follow-up interview and ideation session. Our results highlight a positive subjective experience when recording and 
interpreting training data in situ, but we uncover several key pitfalls unique to DHH users—such as inhibited judgement 
of representative samples due to limited audiological experience. We share implications of these results for the design of 
recording interfaces and human-the-the-loop systems that can support DHH users to build sound recognizers for their 
personal needs. 
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1 INTRODUCTION 
Recent advances in machine learning (ML) and signal processing have enabled new automatic sound recognition 
tools for d/Deaf and hard of hearing (DHH) users. Work in sound awareness [8, 27, 37, 53, 54] shows that DHH 
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users desire sound recognition to augment personal safety (e.g., footsteps) and social awareness (e.g., nearby 
voices), and to respond to non-urgent alerts (e.g., home appliances). To meet these needs, automatic sound 
recognition features are now included on both major mobile platforms: Apple iOS [5] can notify users when it 
recognizes eleven sound categories (e.g., baby crying, car horn), while Android’s Sound Notifcations feature [29] 
supports ten sounds plus a timeline of all recently detected sounds. However, these features—and prior work 
implementing sound classifcation for DHH users [37, 38, 55, 67]—use generic models that are pre-trained on 
large sound corpora for a rigid set of sound classes, and as a result may not adapt to user-specifc needs. 
Designed for universal support, this “one-size-fts-all” approach to sound recognition does not meet DHH 

users’ requests for personalized sound categories (e.g., family members’ name calls [8, 37]) nor does it account 
for edge cases in real-world sound events (e.g., a generic cat vs. my cat). A potential solution is to incorporate 
approaches from human-centered ML research [21, 62] to support DHH users in training personalized models of 
their own. However, end-user ML solutions that augment human sensory abilities present a unique challenge 
for users who have sensory disabilities [23, 40, 58]: how can a DHH user, who has difculty hearing a sound 
themselves, efectively record samples to train an ML system to recognize that sound? 
Building on work by Kacorri et al. and others (e.g., [41, 49, 69]) to support blind and low-vision people in 

training personal object recognizers, we explore the parallel question of how DHH people can train personal 
sound recognizers. In contrast to the rich corpus of blind photography work (e.g., [1, 39, 74]) that underpins 
the visual object recognizer eforts, very few studies have focused on how DHH users record and engage with 
audio data—despite this data predicating a sound recognizer’s efectiveness for DHH users. One exception comes 
from Bragg et al. [8], who surveyed DHH people on their sound awareness needs, used the fndings to design 
a personalizable sound recognition prototype, then ran a brief Wizard-of-Oz study where DHH participants 
recorded samples of two sounds (alarm clock, door knock) to train a model. Another exception is a workshop 
study by Nakao et al. [58] that had DHH participants collaboratively interact with a sound recognition interface 
to characterize their understanding of ML, such as challenges with defning ML tasks for sounds they know but 
cannot hear. Both studies demonstrated the potential for DHH users to train a sound recognizer; however, several 
open questions remain; for example, what considerations do DHH users make when recording in environments 
with real-world acoustic variation—like overlapping sounds and background noise [50]—and what kinds of 
features can aid DHH users in assessing their recorded samples as training data? 

To understand the experience and needs of DHH users in recording sound samples to train future personalized 
sound recognition systems, we conducted a three-part study with 14 DHH participants: 

(1) an initial interview session to provide an introduction and hands-on engagement with an existing person-
alizable sound recognizer [28]; 

(2) a week-long feld study to independently record sounds of interest via a smartphone app; 
(3) a follow-up interview to discuss the experience and design probes for new recording and training tools. 

We focus our analysis on considerations made while approaching the recording task, perceived challenges 
and successes during recording, and interpretations on the quality of recorded samples. Participants conveyed a 
positive outlook towards these tasks and felt most confdent recording sounds that were continuous, prominent, 
and controllable (e.g., a faucet). However, they described challenges in recording spontaneous, invisible, or complex-
to-produce sounds (e.g., emergency sirens) that could make training important sound categories infeasible for 
DHH end-users. Participants often considered their data in terms of its diversity—refecting prior work with 
other non-expert ML users [58, 78]—but limited audiological experience led to unique challenges in determining 
the diversity among their samples, as well as how representative each sample was to its real-world counterpart. 
These and other challenges resulted in several design suggestions for more specialized feedback. 

This paper contributes: (1) an empirical account of non-expert DHH users’ experience with real-world audio 
recording to train a personal sound recognizer; (2) characterization of DHH users’ conception of real-world audio 
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data in an ML context, including sense-making strategies; and (3) design implications to support DHH users in 
building their own personalized sound recognition systems. 

2 RELATED WORK 
We review past research about sound awareness preferences of DHH people, tools that can support sound 
awareness, and human-centered machine learning. 

2.1 Diversity of Sound Awareness Needs 
While prior work has consistently found DHH participants to be interested in sound awareness tools, this 
interest is not uniform and is often conditioned on cultural identity and context. A DHH person may belong 
to Deaf (capital ‘D’), deaf, or hard of hearing communities [13, 57]. Individuals who identify as Deaf follow an 
established set of norms, behaviors and language (called ‘Deaf culture’ [47, 57]). In contrast, for hard of hearing 
or deaf individuals, deafness is primarily an audiological experience [57]. The cultural diference may infuence 
sound awareness needs. Bragg et al. [8] and Findlater et al. [22] conducted online surveys with 87 and 201 DHH 
participants, respectively, fnding that hard of hearing users may be more interested in certain sounds (e.g., phone 
ringing, spoken conversations) than users identifying as d/Deaf. 
While accounting for the diverse perspectives of DHH people, prior work also highlights several general 

preferences among DHH users. Overall, the most desired sound characteristic is identity, which users prioritize 
when compared to other characteristics like volume or duration [8, 22, 27, 54]. When discussing sounds of interest, 
DHH users generally rank awareness of urgent sounds (e.g., safety-related alarms, sirens) as most important, 
followed by sounds that indicate others’ presence (e.g., door knocks, footsteps) and appliance alerts (e.g., oven 
timers, pop-up toasters) [8, 22, 54, 67]. Additionally, the relevance of sound information may change as the user 
moves between social contexts (e.g., family vs. strangers) [8, 22, 36] and physical locations (e.g., at home vs. while 
mobile) [27, 54]. For example, in the home, sound identity may be adequate [37], while directional indicators are 
important when mobile [27]. DHH users have frequently expressed interest in sounds that are specifc to their 
life (e.g., babies and children [54], name calls [8]) and fne-tuned sounds in their home [37], which points to the 
need for end users to be able to personalize their sound awareness tools—the focus of our study. 

2.2 Sound Awareness Tools 
Though our work does not contribute a new sound awareness tool, we turn to prior work in this domain to 
inform our study. An early project by Matthews et al. [53] examined a PDA-based prototype for DHH users 
to request human transcription of both speech and non-speech sounds in the most recent 30 seconds of audio, 
and was well-received despite misjudging relevant sounds. More recent work has aimed to provide broad sound 
recognition support by employing pre-trained classifcation models [37, 38, 56, 67]. For example, Sicong et al. 
[67] deployed a smartphone tool trained for nine sound classes—including police sirens and door knocks—to 86 
participants for two days in a school setting. Users were satisfed with the tool, although some were concerned 
with the accuracy of short sound events (e.g., coughing, crying). Jain et al. [37] installed a tablet-based sound 
classifcation system for 19 sounds in four homes, observing concerns over inconsistent classifcation and a desire 
to personalize the system for sounds specifc to each home. 

Personalization is essential to provide context-specifc support and meet the wide-ranging needs of the DHH 
community [22, 27, 53, 55, 58]. Some projects have explored options for DHH users to flter notifcations for 
certain sounds [27, 37, 38], but they stopped short of adding or modifying sound classes through user-provided 
recordings. Bragg et al. [8] designed a personalizable sound recognition smartphone app and recruited 12 DHH 
participants for a Wizard-of-Oz usability study. While participants found the recording and training workfow 
easy, they recorded samples of only two sounds (alarm clock, door knock) in an ofce setting—an experience that 
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is unlikely to represent the varied use-cases, sounds, and environmental noise in the daily life of DHH users. In 
contrast, we asked participants to select their own sound classes and record samples each day during a week-long 
feld study to learn about practical aspects of the task. 

2.3 Human-Centered Machine Learning 
Human-centered machine learning research aims to design and build automated systems that can fulfll user 
goals, ft user-specifc contexts, and accommodate people without programming experience [21, 62]. From this 
space, several approaches have emerged for people without ML expertise to build models of their own. With 
Automated Machine Learning (AutoML) approaches (e.g., [77]), novice end-users provide a large batch of labeled 
data while traditional ML tasks such as feature engineering, model selection, and hyperparameter optimization 
are completed automatically [18]. In contrast to AutoML’s black box approach to model creation, interactive 
machine learning (IML) leverages end-users as “humans-in-the-loop” to iteratively engage in building and refning 
ML models [3, 19, 61, 70]. An IML workfow involves a quick loop between use of the system and training of 
the target model [70], during which the user may provide indicative samples, describe salient features, or select 
high-level model parameters [19]. Interactive machine teaching [62] is a specifc IML approach that takes the 
engagement further and positions the human-in-the-loop in the role of a teacher with rich knowledge of the 
task instead of a source for data labels [76]. However, work within the approaches above typically assumes that 
the end-user has domain expertise and can readily interact with the data underlying their intended model—an 
assumption that may not hold for DHH users and audio data. 

In the feld of accessibility, human-centered ML applications can allow disabled users to personalize data-driven 
assistive technology to meet their individual needs [40]. However, training an ML-enabled application as a 
personal assistive technology can itself be inaccessible when it requires skills and abilities similar to those the 
application is intended to support [23, 40]. For example, a blind or visually impaired user is likely unable to use 
visual feedback when capturing images for personalizing an object recognizer—a challenge that Kacorri et al. 
and others (e.g., [41, 69]) frst examined via studies of users’ needs in this context, and more recently began 
addressing through active feedback techniques to assist in image capture [49]. Indeed, in Nakao et al.’s [58] 
study of DHH users’ technical understanding of ML, workshop participants struggled to choose acceptable sound 
samples for training due to a lack of non-auditory feedback. For work on sampling feedback, VoiceAssist [65] 
provides real-time visual feedback to help inexperienced users reduce reverberation and background noise in 
voice recordings, and a user study showed third party listeners preferred recordings made using VoiceAssist 
compared to those without. To our knowledge, however, prior work has yet to explore sound sampling feedback 
for sound recognition with any population—a gap which we begin to address with our work. 

IML research for audio has primarily focused on sample annotation and labelling (e.g., [30, 35, 42, 43, 66]). For 
interactive sound recognition, Ishibashi et al. [35] explored visualization options (e.g., spectrograms, thumbnails) 
for browsing large sets of unlabelled audio samples via a clustering interface. Google’s Teachable Machine 
experiment [11, 28] allows non-expert users to quickly train a personal sound recognition model with their own 
audio samples, but ML expertise is required to have agency over the produced model (e.g., redefning features). 
Nakao et al. [58] studied non-expert DHH users’ understanding of ML with a similar interactive workfow that 
supported training sets built from users’ recordings or selected from a large sound library [26]. DHH participants 
overcame gaps in their technical understanding and identifed additional use cases after hands-on experience, 
but some struggled to review samples and defne ML tasks for sounds they knew but could not hear. This work, 
in combination with the work of Bragg et al. [8], begins to outline a design space for personalizable sound 
recognizers trained by non-expert DHH users. We continue this thread by focusing on how DHH users record 
and interpret audio samples for this purpose. 
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Table 1. Demographics of study participants. HH = hard of hearing. 

ID Age Gen. Iden. Hearing loss Hearing dev. Relationship to sound ML exp. 

P1 20 W HH Profound Both 
“I assume the same way that hearing people perceive sound (when I use my 
cochlear implant and hearing aid), but with more mental concentration. As well Some 
as some gaps, like not noticing or picking up quieter and/or unclear sounds.” 

P2 53 W Deaf Profound Hearing aids 
“With an assistance of hearing aid, I learn to identify the sound based on the 
vibration an/or the rhythm. I hear the pitch, note, timbre, range... but I can’t Slight 
identify the spoken words.” 

P3 47 M Deaf Profound Hearing aids “When I hear sound by my hearing aid, I can feel that sands jump in my head.” Some 
“With hearing aids on, I experience sound much as a hearing person would, with 

P4 23 M HH Mod. Severe Hearing aids maybe a bit more difculty. Without hearing aids, sounds are kind of muddled 
and mufed, leaving me to parse together words based on mouth movements, Slight 
context, and location.” 

P5 56 W Deaf Profound Hearing aids “Environment sounds help me know what is going on.” Slight 

P6 24 W Deaf Profound Cochlear imp. 
“I wear my two cochlear implants to listen to the sounds. [...] I can hear music 
[with] words that I don’t understand, and I can understand the sounds around Some 
me, such as alarms, television, conversations from people.” 

P7 28 M deaf Profound None 
“I was born to live without sound, so I never really knew what the sound is all 
about. Music is probably the loudest thing that I can relate to, even though, I Some 
can’t hear it at all, just the vibrations.” 

P8 87 M deaf Profound Hearing aids “I experience voice through my hearing aids directly or through my mobile phone. 
Other sounds in the world are muted or absent.” None 

P9 69 M Deaf Severe Hearing aids “I use it for language, as English is my frst language. I don’t listen to music. I 
prefer to not use my hearing aid at home, unless I’m watching TV.” Slight 

P10 70 W HH Mod. Severe Hearing aids “[Sound] is always distorted and I don’t know which direction it is coming from.” None 

P11 44 W Deaf Profound None 
“I rely on vibrations [...] [and] visual alerts (looking outside my window for ex-
pected deliveries or someone arriving at my destination), and mostly have few Some 
people informing me of the sounds.” 

P12 35 W Deaf Profound Hearing aids “I’m full Deaf so most sounds don’t make sense to me.” None 

P13 19 M Deaf Severe Hearing aids “I can hear sound very quietly without my hearing aids and with it it becomes 
amplifed but I can’t process the sound correctly.” Slight 

P14 31 W Deaf Profound None “I need a tool that acknowledges important sounds or noises.” Some 

3 METHODS 
To understand user experience when recording sound samples for a personalizable sound recognition system, we 
conducted a three-part study with 14 DHH participants: an initial interview session, a week-long feld study to 
record samples, and a follow-up interview and design probe activity. 

3.1 Participants 
We recruited 14 DHH participants via email lists at two U.S. universities as well as via social media and snowball 
sampling (Table 1). Eight participants identifed as women and six identifed as men. Participants were on average 
43.3 years old (SD=21.3, range=19-87). Nine participants identifed as Deaf, three as hard of hearing, and two 
as deaf. Ten participants reported using hearing aids and two used cochlear implants; one used both devices. 
We required access to a laptop or desktop computer, a stable internet connection for video conferencing, and a 
smartphone with 150MB in free storage for recording sounds during the feld study. Informed by Hong et al. [33], 
we asked participants to rate their familiarity with ML on a four-point scale: three reported never having heard 
of it (not familiar), fve had heard of it but did not know what it does (slightly familiar), and six reported being 
somewhat familiar with what it is and what it does. No participant reported having extensive knowledge of ML 
(extremely familiar)—indicating our participants were non-experts. After initial interviews with six participants, 
we added two technology-related screening requirements: use of a laptop or desktop computer at least once a 
week and use of a smartphone for tasks other than phone calls and text messaging at least multiple times a week. 
Participants received a $125 gift certifcate as compensation. 
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Fig. 1. We conducted a three-part study with 14 DHH participants. In Part 1 (a), we conducted an initial interview and 
participants recorded samples of clapping and paper crumpling to train Teachable Machine [11, 28], an online sound recognizer. 
In Part 2 (b), participants recorded sounds in the field for one week. In Part 3 (c), we conducted a follow-up interview and 
brainstormed design ideas for specialized feedback. 

3.2 Procedure 
The study had three parts: an initial interview session to introduce audio recording for sound classifcation, 
one-week use of an audio recording application, and a fnal interview and design probe session (Figure 1). 
Participants also completed an online pre-study questionnaire to collect demographics and gather information 
on sound support technologies, general technology familiarity, and their perspective on important sounds in 
daily life. Consent forms were emailed to participants in advance and verbal consent was taken at the start of the 
initial interview session. 

All interviews were led by the frst author and held remotely using Zoom [80]. Participants could request their 
choice of accommodation: nine opted for sign language interpretation and two opted for real-time captioning; 
three opted for no accommodation. We shared the interview materials in an online slide deck before the study 
(see Supplementary Materials) and employed Zoom’s “Share screen” feature. During both sessions, connection 
problems caused P7’s ASL interpreter to drop out for several minutes; we continued the discussion via Zoom’s 
chat feature. 
Participants received non-auditory feedback via waveform and spectrogram sound visualizations during 

the initial session (Figure 2), and the waveform alone during the feld study (Figure 1b). Waveforms show the 
amplitude—or loudness—of sound over time and are common in audio recording, editing, and playback software. 
DHH participants in prior work liked waveforms while recording samples in a lab setting [8]; we explore their 
value for samples recorded in daily life. Spectrograms show the frequency spectrum over time, are often used for 
scientifc analyses (e.g., bioacoustics [16]), and can be difcult to interpret for novice hearing users [12, 35]. Early 
work showed frequency information was inadequate for DHH users in a sound identifcation task [54]; we briefy 
explore DHH participants’ opinions of spectrograms for displaying sound activity. Below, we detail the three 
sessions of the study. 

3.2.1 Initial Session (75 min). The initial session began with 15 minutes for Zoom setup and orientation, followed 
by a discussion and demonstration of how to personalize a sound classifcation tool. We provided a defnition 

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 2, Article 63. Publication date: June 2021. 



Toward User-Driven Sound Recognizer Personalization With People Who Are d/Deaf or Hard of Hearing • 63:7 

of ML in an audio context, described possible benefts of a trained model using personal recordings, and asked 
participants about their prior experience with audio recording. 
Then, to provide hands-on experience with a personalizable sound recognition tool, we introduced Google’s 

Teachable Machine for audio [11, 28] and its spectrogram visualization (Figure 1a). We led the same discussion 
with all participants during this activity but only ten of the 14 were able to record samples and train the model 
themselves The other four experienced technical difculties and watched the recording and training process on 
the study coordinator’s screen. Participants trained three sound classes: background noise as required by Teachable 
Machine (i.e., “the typical sound activity” in the current setting), hand claps, and paper crumpling. We chose these 
two classes because they are produced by simple physical actions, are reproducible (to provide multiple samples 
to the machine), and have visually distinct frequency signatures in their spectrogram representations. We used 
Zoom’s annotation feature to explain Teachable Machine’s interface but allowed participants to record samples 
on their own, as well as delete and re-record for any reason. We instructed participants to produce each sound 
continuously for several seconds (e.g., “clap your hands”), then use Teachable Machine’s extraction feature to 
split the recording into one-second samples—the required sample format. 

After collecting the minimum samples required by Teachable Machine for each class—20 for background noise 
and eight each for hand claps and paper crumpling—we invited participants to share their interpretation of 
the spectrogram audio representations.1 The data was then passed to Teachable Machine’s training module to 
construct a working classifcation model. To demonstrate both the capabilities and limitations of the tool, we 
instructed them to test the model by again clapping their hands and crumpling paper, and to produce other 
sounds that the tool had not been trained to recognize (e.g., knocking on the table). 

Following the Teachable Machine demonstration, we transitioned to discussing possible characteristics of high 
quality sound samples for training a sound recognizer. Informed by training datasets used in prior work [37, 48], 
we provided a list of fve desirable characteristics to guide participants during the feld study (see Supplementary 
Materials for complete instructions): 

• One sound per sample: The targeted sound is present and louder than other sounds in the sample. 
• Appropriate background noise: Other noise in the sample should be typical of noise in that location. 
• Accurate labeling: The sample is named after the contained sound. 
• Personal: The sample replicates how the sound occurs in your daily life. 
• Complete: The sample contains the entire sound from start to end. 

While pre-processing algorithms may be used to separate multiple sound sources [52] or remove background 
noise [17], we included both to our guide to prompt consideration of audiological phenomena that may otherwise 
not be apparent to DHH people. 
To further spur participants to consider how sounds are captured in a recording, we presented fve video 

clips of realistic sound scenarios (Figure 2, from left): “tea kettle whistle in a quiet home”, “baby crying during a 
thunderstorm”, “emergency siren passing on a busy street”, “dog barking outdoors on a summer day”, and “door knock 
during a small party”. After each video participants provided their own interpretation of each sound scenario’s 
waveform and spectrogram frst, then the hearing frst author connected salient areas of each visualizations 
to events in the video (e.g., thunderclaps during baby crying). We used a comparison slide with all fve sound 
scenarios at the end to solicit participants’ overall opinions of the spectrogram and waveform visualizations. The 
session concluded with instructions and setup for the feld study, as described next. 

3.2.2 Field Study of Recording Practice (1 week). To study how people who are deaf or hard of hearing may record 
audio samples to train a personalized sound recognition system, we asked participants to record sounds in their 
daily life for a week. At the end of the initial session, we helped participants download and confgure the Rev 

1We hoped to prompt consideration of how sound activity can manifest visually. Responses were not included in our analysis. 
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Fig. 2. Videos shown to participants to introduce real-life recording challenges and visualizations. To simulate a recording 
timeline, spectrogram and waveform visualizations were generated using Audacity [6] and set to advance in sync with the 
video clip. To match the described context of the baby crying, dog barking, and door knock events, the hearing first author 
selected an additional audio file (e.g., a recording of a thunderstorm) to layer on top of video’s audio. 

Recorder app [63] on their smartphone. In preparation for our study, we reviewed a variety of smartphone-based 
sound recording apps and selected Rev because it has a simple, well-designed interface with high-contrast 
waveforms, provides immediate cloud backup of recorded clips, and is free on Android and iOS. We set up Rev 
to automatically upload recordings to an anonymous Dropbox account created for each participant. We also 
explained how to disable this “auto-upload” function temporarily if needed—for instance, situations where the 
recording might capture sensitive information. 

For the recordings themselves, we asked participants to record at least three diferent non-speech sounds each 
day for at least fve days over the week (i.e., at least 15 unique sounds in total). To respect participants’ time, we 
imagined the training set would follow a few-shot learning approach: we asked for three to fve samples of each 
sound if possible, with exceptions allowed for sounds that may not occur often (e.g., an ambulance siren). We 
recommended that samples be 5-10 seconds long but for fexibility did not provide a strict time limit. We allowed 
participants to record samples of any non-speech sound, though we asked them to prioritize recording sounds 
that they thought would provide value in a sound recognition tool. While some DHH users may be able to ask 
hearing people for support, others may not, and we requested that participants not ask other people to help with 
the recording or to share input on the quality of a sample to learn about independent recording experience as 
a baseline. Participants could, however, ask another person to produce the sound needed for a recording (e.g., 
asking a friend to knock on the door). 

Each day, participants were prompted via email or text message at a pre-arranged time to complete an online 
diary questionnaire. This questionnaire asked for a list of the sounds recorded that day, motivation for those 
sounds, successes and challenges of recording, any sounds they had attempted but were unable to record, and 
any other information that might have helped with recording that day (see Supplementary Materials). 

3.2.3 Follow-up Interview and Design Probe Activity (60 min). We scheduled a fnal Zoom video call during 
which the interviewer screen-shared a new slide deck (see Supplementary Materials). We provided a copy of the 
participant’s diary entries to reference as needed throughout the session. The frst half of this session consisted of 
a semi-structured interview on the participant’s overall experience with recording sounds, any contrast between 
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Fig. 3. Six of ten sampling features taken from example slides shown to participants. Not shown: waveform, spectrogram, 
background noise removal, and trimming function. (a) Volume monitor, (b) background noise monitor, and (c) overlapping 
sound monitor were examined for real-time support; (d) background noise feedback, (e) overlapping sound feedback, and (f) 
quality rating were for post hoc sample review. For full context, see Supplementary Materials. 

that and their initial expectations, and if they had changed their recording practices over the course of the week. 
Next, we provided a complete list of the sounds they had recorded and asked them to identify which had been the 
easiest and hardest to record as well as if they were satisfed with their recordings. Finally, we reviewed the list of 
high quality recording characteristics and discussed how each of the factors surfaced (if at all) during the week. 

The second half of the session consisted of a design probe activity inspired by Hutchinson et al. [34] to discuss 
new ideas for supporting DHH people in independently sampling sounds. We frst asked the participant to 
describe their ideal features, then presented ten possible feature ideas (Figure 3). For each idea, we showed a 
brief description and two mockups. We asked whether each feature would be useful and if the participant had 
any related design ideas of their own. Finally, we displayed a list of the ten features and asked which to include 
in a redesigned recording app, if any essential features were missing, and for the single most essential one. We 
concluded the session by asking how this app might have changed their experience recording samples during the 
previous week. 

3.3 Analysis and Positionality 
Using refexive thematic analysis [9, 10], we iteratively coded transcripts of both interview sessions and responses 
to the feld study refection form. Our analysis was semantic and realist, and we developed themes using a mixed 
inductive and deductive approach; for example, we structured broader theme development around the steps 
required to personalize a sound recognizer, but we organically identifed themes within each step. The frst 
author briefy read through the data, generated initial codes, then applied these codes to data from two randomly 
selected participants. Another researcher reviewed the code applications, then met with the frst author to discuss 
and refne the codes further. The frst author coded the remaining transcripts, then generated themes from data 
excerpts collated from each code. A refexive approach to thematic analysis emphasizes fndings that are actively 
shaped by the research team’s own social, cultural, and academic biases. The frst author—who ran all interviews 
and led analysis—is hearing. Some authors—who were involved in study design, analysis, and writing—are Deaf 
or hard of hearing. All members of the research team have backgrounds in human-computer interaction and 
many are computer scientists by training. 

4 FINDINGS 
We begin with a quantitative overview of participants’ recordings from the feld study followed by a report on 
their ML expertise. Then, we synthesize their experience based on two key ML components requiring subject 
matter expertise (informed by Yang et al.’s study of non-expert ML users [78]): (1) data and label collection, 
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examined through participants’ overall approach to recording training samples; and (2) data interpretation, 
examined through their assessment of samples’ contents. 
Occasionally, we include quotes that demonstrate confusion on the part of a participant, perhaps due to 

misconception of sound or a misunderstanding of the feedback visualizations themselves (e.g., a participant 
suggests that they could determine pitch from a waveform visualization, which is not possible). We mark these 
quotes where relevant. 

Fig. 4. Breakdown of sound categories recorded by participants. The total classes in each category are shown on the right. 

4.1 Overview of Recorded Samples 
The 14 participants recorded 677 sound samples in total during the one-week feld study (� = 48.4 per participant, 
SD=23.3, range=13-86). They provided 243 sound classes (Figure 4) at an average 17.4 classes per participant 
(SD=5.1, range=10-29) and 2.8 samples per class (SD=1.2, range=1-10). We used the pydub library [64] to analyze 
each samples’ duration, average loudness in decibels relative to full scale (dBFS), and silence—defned as any 
period of 1s or longer where the amplitude was 16 dBFS below the fle’s average. Samples averaged 11.5s in 
duration (SD=4.6, range=2.4-34.8). The average loudness of each sample was -34.1 dBFS (SD=9.5), with P9’s “Tea 
kettle whistle” (3 samples, -15.9 dBFS) being the loudest class by average and P2’s “Bathroom” being the quietest 
(1 sample, -64.7 dBFS). Regarding silence, 158 samples (23.3%) contained at least one silent period lasting 1s or 
more, and 78 of these (11.5% of the total set) contained 3s or more of long silence(s). The length of long silence in 
each sample was, on average, 3.6s (SD=2.3) and 36.6% of the sample’s total duration (SD=22.3%). 

To compare the contents of each sample with its label, we randomly selected half of each participant’s samples 
(N =338) and rated yes or no if the labeled sound class was heard in playback, or unclear for ambiguous or 
unfamiliar sounds. This analysis was meant as a brief, subjective inspection from a hearing user’s perspective 
and not a full assessment of the samples’ overall quality for training an automatic sound recognizer. Two hearing 
researchers independently rated 52 of the samples, met to resolve disagreement and formalize a rating scheme, 
and one of the researchers completed the remaining set. The labeled sound was heard in 92.0% of the samples 
and missing from 3.6%; the remaining 4.4% were rated unclear. For example, P4’s “Freeway trafc noise” and P5’s 
“Car on street” were rated yes for prominent vehicle sounds, P14’s“Busy street noise” was rated no for near silence, 
and P12’s “Car running” was rated unclear for an ambiguous droning sound. Other unclear sounds included P2’s 
“Friend’s apartment” and P14’s “Oil and garlic”. 

4.2 ML Expertise and Prior Recording Experience 
Participants demonstrated a range of ML knowledge in the frst session despite all of them being non-experts. P4, 
for example, recalled a lesson on ML in “one of [my] data science classes”, while P8 was a newcomer: “This is brand 
new to me, but I kind of get the idea.” P7 described practical ML applications, including media recommendations 
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(“Netfix uses it” ) and automatic speech recognition to communicate with hearing people: “Sometimes you’ll need 
to have a human interpreter [...] but it can be nice to have the speech recognition that you could use in an emergency.” 

Following our brief explanation, all participants showed an approximate comprehension of user-driven sound 
recognizer personalization. For example, P3 described the machine’s workfow as, “I make a sound, or there’s a 
sound [happening], and this device will copy it? And then later when the sound is repeated, it will tell me what it 
was?” Participants also recognized the risk of misclassifcation errors, although P12 was interested in having 
agency in fxing them: “Machines aren’t perfect and they can make mistakes too, [...] but I don’t mind that. I’d like 
to help the phone app [to learn].” 

Most participants had recorded audio before, such as for song identifcation (e.g., Shazam) (P6, P7, P13), to play 
for hearing people (P2, P3, P12), and to capture school lectures (P2, P14). However, this experience was limited. 
For example, P8 had only briefy recorded himself playing guitar, while P4 said his experience was incidental: 
“It’s when I’m recording video, and there happens to be audio [with it].” P3 recalled learning from a hearing person 
on a video call that a smoke detector in his house was beeping to indicate low battery, so he recorded all of his 
smoke detectors and shared the recordings to fgure out which battery to replace. P12 had also sent recordings to 
hearing people, “Just to make sure something’s not left on,” while P2 had recorded sounds for fun to “test” her 
hearing friends’ sound recognition abilities. 
Despite limited recording experience, all participants were enthusiastic about recording to train a personal 

sound recognizer during the initial session. Every participant shared at least one desired sound for an automatic 
sound recognizer; interests primarily focused on urgent and social sound, in line with prior work [8, 22, 54]. 
Examples included fre alarms (P4, P5, P9, P14), leaking or running water (P7, P9, P10, P12), musical instruments 
(P2), and name calls from a partner (P9). P10 wanted to know if she had left her car running: “[If] there was a 
warning on your iPhone because it was still hearing the sound of the engine [...] that would be awesome.” Participants 
also shared ideas about what might make recorded audio samples better or worse for training their sound 
recognizer; better samples were assumed to have “clarity” (P5) and be “loud enough” (P8) while worse samples 
could be afected by “overlapping sound” (P6) or “white noise” (P1, P5). 

4.3 Planning and Recording Samples 
We now transition to describing what sounds our participants recorded in the feld, how they planned and 
executed these recordings, and the approaches they used to interpret these samples. 

4.3.1 Selecting Sound Classes to Record. Participants primarily chose sound classes that were personally mean-
ingful or a source of curiosity, although some sounds were recorded out of convenience. Meaningful sounds 
generally aligned with those identifed during the frst session and in prior work [8, 22, 54]—urgent alerts, social 
presence, and home appliances. For example, P14 recorded sounds from her pets to warn “if something had 
happened to them,” while P2 chose to record doors “to know [if] someone is in the apartment.” Curiosity toward 
a sound—such as “a music box” (P10) and “ocean waves” (P11)—motivated other choices, although these were 
likely due to the novelty of the recording activity rather than imagined use cases for a recognizer. Many choices 
emerged organically over the course of the study; as P5 described it, "The ‘doing’ became more interesting as a 
result [of recording]—the more I did, the more I wanted to do.” 
Our study instructions and physical constraints from the COVID-19 pandemic limited some sound choices. 

We prohibited recording speech for privacy reasons, although P9 disregarded this instruction to record his 
partner calling out his name “in an emergency”. P14 recorded an online video of an emergency siren rather than 
the real-life source (contrary to our request), explaining: “I couldn’t stand outside and wait for one to come by.” 
Although no participant mentioned pandemic-related social distancing guidelines seriously limiting the sounds 
they recorded, most samples were recorded around the home. 
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4.3.2 Considering Decision Boundaries and Diversity. When defning each sound class, participants reported 
considering possible decision boundaries and the appropriate diversity across samples, but they described 
uncertainty due to their limited perception of each sound. With regard to decision boundaries, P2 wondered if “a 
kitchen fan and the bathroom fan” sounded diferent enough to allow separate classes, while P9 imagined that 
a faucet in “a stainless steel rectangular sink” and “a rounded porcelain sink” might sound diferent enough to 
allow for separate classes to convey each faucet’s location. P9 further estimated that the faucet “running” and 
“dripping” would necessitate separate labels despite being uninterested in that distinction himself: “I just want 
to know [the faucet] should be turned of.” Other participants hoped the machine could inform them of nuanced 
sound information, but they did not know how to convey this nuance through their data; for example, P1 only 
recorded one door closing class despite wanting more detail: 

“Someone could slam it, it could be more aggressive, it could be like a soft one. [...] Seeing a sound 
recognition [tool] be like, ‘the door closed’. I don’t know if that’s super helpful to me because it doesn’t 
give me the nuance of information or what ‘door closing’ really is. [Maybe] someone’s mad or maybe a 
window’s open somewhere in the house that causes the door to slam shut.” (P1) 

Likewise, P7 was enthusiastic about nuance in the sound of running bath water—“It’d be nice to be away for a few 
minutes and come back when the sound is decreasing [...] to turn the water valve of”—but only captured samples 
for a single “bath water” class. 
Participants also considered the diversity of samples within each sound class—common among non-experts 

(e.g., [33, 58, 78]). Many decided to limit diversity by producing the sound the same way in each sample: “I want 
the sounds to be relatively consistent, just so the machine learning device isn’t like, ‘You have three diferent weird 
noises, but you say they’re all the same’” (P4). However, some attempted to vary the sound “so the machine learning 
capability would be able to understand it more” (P13). The hands-on experience with Google’s Teachable Machine 
seemed to infuence this thinking; for example, P2 wondered how the application would handle the real-life 
complexity of sounds: “Some papers [are] heavy, some papers [are] light. [...] If you’ve already crumpled the paper 
and then try to re-crumple it, that’s going to be a diferent quality.” This motivated P2’s decision to capture diverse 
samples during the feld study; she wrote in one of her daily refections, “I suspect the doors and [blinds] sound 
diferently when they are pulled or pushed in diferent speeds. It’s good to have variation to help the recorder to 
recognize [doors] with diferent sound qualities.” However, this further emphasizes participants’ uncertainty toward 
the real-world variation among the makeup of each sound class—highlighting an area where DHH users may 
need support. 

4.3.3 Factors Impacting Sampling Dificulty. All participants successfully used Rev and described recording 
sounds as “easy” (N =9), “interesting” (7), and “fun” (P4, P10). Most described an initial learning curve that lessened 
with experience: “Once I got used to it, I was able to record like a champ” (P11). Continuous sounds were said to be 
particularly easy to record; for example, P12 said to record her foor fan, “all you got to do is [...] just sit there with 
the app.” Other easy-to-record sounds were prominent (e.g., “microwave beep”, P14) and directly controllable 
(e.g., “fushing the toilet”, P13). 

Uncontrollable sounds, such as pets’ noises, required a diferent approach. For example, P14 struggled to 
anticipate her cat’s activity: “When would [it] purr? [And] predicting when it would meow [...] I had to kind of wait 
for them.” After failing to record his cat early in the week, P3 found a creative but unreliable way to elicit meows: 
“I closed the ofce’s door. [...] [My cat] was like, ‘Meow, meow, meow! I need to get out.’ [But] then the second time she 
wouldn’t meow. I had to let her out and then try it again.” P2 looked for visual signals to anticipate sounds from a 
friend’s cat, like “trying to wait until she opens her mouth” to start recording. 
Time-delayed sounds were easy for some to record because they followed a straightforward process: “The 

tea kettle; I [only] had to wait a little while for it to boil—and the microwave signal; just turn it on for a few seconds 
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[and] wait for it to stop” (P8). Others found this to be inconvenient: “I had to wait for the water to start bubbling 
before I could see it” (P11). 
Visual indicators were essential when recording spontaneous sounds, such as the arrival of “the garbage 

truck” to record “the dumpsters [emptying] outside” (P4). At times, this prevented sampling for otherwise desired 
sound classes: “I couldn’t record [a] bird chirping that was outside—I had no idea when to start the recording. And 
emergency vehicles—like sirens—if I wasn’t able to see the vehicle, then I couldn’t do it” (P7). 
Complexity in producing the sound was mentioned as another challenge: “[I was] multitasking like, ‘Did I 

turn it on? Is the app running? Is this going? Is the garage door okay? Am I going to get hit? What’s going on?’” 
(P12). A few participants recruited family and friends for help producing these sounds, but this introduced new 
challenges. For example, P1 avoided directing her father, as she worried it might suggest a lack of appreciation: “I 
had to give it over to him, like, ‘Oh you can create the sound. I don’t want to critique you too much.’” 

4.3.4 Summary. When defning their sound classes, participants considered possible decision boundaries and 
appropriate diversity for their samples, but inexperience with ML and the real-world variation in the sound 
population led to decisions based on guesswork. They described continuous, prominent, and controllable sounds 
as easiest to sample, but spontaneous, invisible, and complex-to-produce sounds were more difcult—even 
impossible—to capture. 

4.4 Interpreting Sound Samples’ Contents 
During the feld study, participants used Rev’s waveform to visualize the contents of their samples. However, 
limitations with post hoc assessment strategies—such as audio playback and waveform comparison—caused 
participants to desire additional feedback. 

4.4.1 Waveform Use. Participants liked waveforms’ “clear” (P5) and “not complicated” (P2) design that could 
“visually represent what is happening” (P3) to “see the rhythm” (P5, P11). Several participants said it provided 
crucial support while recording samples; without it, P7 said he “would have had no way of knowing that I was 
recording the sound right.” The waveform was commonly used for identifying concurrent or overlapping sounds 
by looking for “some kind of ‘of-pitch’” (P13)2 or anything “unexpected in the shape” (P1). One such unexpected 
noise came from P1’s own physical activity, which she believed was unacceptable for a training set: “Touching a 
doorknob; that touch kind of creates a sound. [...] It showed up very obviously in the waveform and I was like, ‘Oh, 
I’ve got to re-record it.’” However, while P14 liked watching the waveform while recording, she could not use it 
to identify concurrent sounds: “Some sounds were noisy certainly, but [...] [any] overlapping sounds were hard to 
distinguish and separate out.” 

Despite the waveform’s positives, the visualization did not always align with participants’ intuition of sound 
and led to breakdowns in use. For example, P6 expected to see large peaks for thunder when recording a storm 
but found a “jumble of noise” and a “blob of information” that confused her.3 To overcome this, she requested 
the waveform “at least tell me what’s higher and lower frequency.” At times, participants’ residual hearing ability 
allowed them to mitigate waveform breakdowns; for example, after P14 “put the phone right on the cat [...] and it 
didn’t really look like it was purring”, she concluded, “Some of the things were too quiet and they weren’t able to be 
captured.” However, after P1 noticed an empty waveform, her residual hearing ability allowed her to discover, “If 
you replay, you can just make out the water dropping”—an insight that was not possible for P14. After struggling 
to connect the waveform to her intuition, P2 was apprehensive about using it again: “What does that actually 
mean when it goes up and down? [...] If I don’t know the representation that’s there, how do I identify [the sound]?” 

2The waveform displays the amplitude of sound rather than the pitch or frequency. 
3Sample playback by the hearing frst author revealed the sound of heavy rainfall at a similar volume to the thunder. 
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By contrast, P7 took breakdowns in stride: “I had never really seen how [the waveform] works. [...] I expected it to 
be one way, but the waveform showed something completely diferent. I thought it was a cool experience.” 

4.4.2 Subjective Opinion of Sample Qality. When refecting on our characteristics for determining the samples’ 
quality (Section 3.2.1), participants described uncertainty over how accurately they had replicated their sounds, 
and if they had captured indicative background noise. For replicating sounds, P10 was concerned that her manual 
reproduction of wind chimes—an otherwise spontaneous sound—was unrealistic: “It’s a diferent sound. I prayed 
that in the next few days it was going to be windy enough, [...] [but] it felt like it was cheating.” While P10’s residual 
hearing made her aware of her replicated sound’s diference from its real-world counterpart, P12 explained that 
she did not have the same ability: “As a deaf person, [...] I’m just relying on my vision and my [other] senses. And so 
to try and fgure out a temperature [alert] or my cat’s meow, there are visual indicators, but it’s hard to emulate or 
simulate those [realistically].” 
During the initial session, we defned appropriate background noise as “the typical sound activity in that 

location”, but capturing this proved difcult for many participants during the feld study: “It’s hard to diferentiate 
when there’s white background noise versus someone talking really quietly in the background, and if that would be 
interfering [with the sample]” (P1). As a result, participants said they found it more important to eliminate all 
extraneous noise from their samples than to capture realistic background noise for their context: “As long as it 
took full blast on my hearing aids to be able to hear any measure of background noise, I was like, ‘you know what, 
it’s fne’” (P4). When explaining why she chose to “isolate” her sounds, P5 said, “I thought that [doing this] was 
critical to be able to identify what the sound was and be able to recognize it.” P3, however, was more accepting to 
the notion of recording unintended sounds: “My neighbors, they were still making noise; either them talking or 
their TV or their dog was barking. [...] I can’t hear it of course, but my cat was looking around and was drawn to the 
sound.” 

4.4.3 Post Hoc Review Strategies. After recording samples, participants reviewed their samples via audio playback 
and waveform comparison—with mixed success. With regard to audio playback, fve participants said they used 
their residual hearing to listen back to some or all of their samples (P1, P4, P6, P10, P13). However, P6 included a 
caveat: “I would check after recording to make sure I could hear what was going on to the fullest extent that it was 
possible to do. [...] I do not have the same quality of hearing as a hearing person.” All fve participants said they 
used digital hearing aids or cochlear implants to listen to the audio which may distort compressed recordings 
[15]. P10 suggested this issue caused to her to avoid using playback: “The [recorded] sound I heard from my cat 
was not the sound I hear when my cat’s eating. [...] I heard this really loud [*slurping noise*] and I was like, ‘Woo! 
That’s a diferent sound than I am used to.’” However, the remaining three participants said playback made their 
review easier: “I listened to them all eventually with hearing aids. [...] I could just check and go, ‘Okay, you know 
what? That sounds pretty good’” (P4). 
Some participants chose to interpret the contents of their samples in comparison to others in their training 

set. For example, P1 judged samples within the same class against each other by listening back in consecutive 
order, “[Because] maybe there’s something that I didn’t catch, even if I think that [sample] sounds good.” Others 
said that visual comparisons (e.g., fipping between waveforms in the Rev app) were efective for judgments 
across classes, but inefective for samples within the same class; for example, P9 said he was unsure if he had 
successfully incorporated the kinds of diversity he had intended for an appliance alert class: “[The waveforms] 
didn’t really distinguish very well, which made me question, ‘Was the dryer beep [that I recorded] really low, medium, 
and high?’” A few participants failed to see the utility of the waveform for assessment at all; for example, “Some of 
[the waveforms] were skinny and some of them were fat, some of them had patterns and some of them were uniform. 
[...] [I] was curious about it, but can’t say it helped” (P8). Review was also challenging for P7, and he saw potential 
for others to help: “Relying on hearing people to feed the sound to a machine, [...] that might be better.” 
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4.4.4 Summary. To interpret their samples, participants used the real-time waveform, listened to post hoc audio 
playback, made comparisons to other samples in their training set. However, absent or limited audiological 
expertise led to breakdowns in using the waveforms and uncertainty over how indicative the samples were of 
real-world sounds. 

4.5 Ideas for Future Sampling Tools 
In the exit interview, we asked participants to brainstorm their ideal sampling tool for building a personalized 
sound recognizer. We presented a set of design probes [34] (Figure 3) to elicit responses to specifc features 
for such a tool. Here, we quantify and qualitatively describe these preferences, which underscore a desire for 
feedback to (1) better understand the soundscape when recording and (2) provide scafolding for assessing each 
sample during post hoc review. 

Participants only used the spectrogram visualization briefy during the frst study session. Nearly all participants 
were novices and described them as “confusing” (P2, P4, P5, P10) and “overwhelming” (P6). P12 expressed confusion 
over the vertical frequency spectrum, noting the diference from her experience with hearing loss testing: “I 
was thinking the lower [volume] would be on the top. [...] For auditory tests, [...] on the right-hand side is where 
you see [high frequency] on the audiogram.4 [...] It threw me of.” Only two of 14 participants chose to include 
spectrograms in their ideal tool: P14 due to using it extensively in coursework (“I’m able to notice more of the 
texture of sound” ), and P2, who thought it could tell her when “three or four diferent sounds are happening because 
I saw three or four diferent colors.”5 

Reinforcing their positive experience with the waveform, 11 of 14 participants chose to include it in their 
ideal tool, calling it “helpful” (P7, 12) and appreciating its simplifed temporal and volume information. P7 said 
that without the waveform, “I think that the background noise would have interfered, because [...] I’m not able to 
hear [that].” A real-time volume monitor (Figure 3a) was only chosen by eight participants and most preferred 
Rev’s real-time waveform instead. However, P5 thought it could “let me know that something was coming” after 
failing to record passing vehicles. Five participants wanted to include the waveform with the spectrogram for 
“more information” (P8) when needed: “[The waveform] has very concise information of what’s actually necessary, 
the spectrogram captures everything in the environment” (P1). Notably, P10 rejected both visualizations, trusting 
herself to hear the soundscape instead: “I knew that it was recording [correctly]. [...] I could hear with my hearing 
aids, even though the sound was distorted.” 

Many participants desired enhanced awareness of co-occurring sounds; 12 of 14 wanted a real-time overlapping 
sound monitor (Figure 3c) and P12 explained, “I can’t hear things happening at the same time [...] I don’t know if 
it’s the cat meowing or the TV blaring or the washing machine has stopped.” Ten participants wanted a real-time 
background noise monitor (3b) to show the ambient noise level separate from any unique sounds, while nine opted 
for a post hoc background noise removal option to remove any undesired artifacts from their samples. However, 
P2 worried processing could also remove the personal elements of her samples: “Squeaky clean—it’s not normal.” 
Participants desired clearer feedback on the contents of their samples after struggling with interpretation in 

situ. The post hoc quality rating (Figure 3f) was selected by 12 participants, although they said it lacked utility 
out of context: “If the problem [...] was detected, then I’d have to fgure out how to resolve it” (P3). P5 was in favor 
of automatic assessment, saying simply, “I don’t trust myself when it comes to the sound.” All participants selected 
post hoc background noise feedback (3d) and 11 added overlapping sound feedback (3e), hoping both could alleviate 
“doubt” (P1) over the samples’ contents and with “determining whether to re-record” (P4). 

4An audiogram displays the results of a pure-tone hearing test, the gold standard measure of hearing loss [75] using a 2D frequency-volume 
graph. Frequency increases to the right on an audiogram, while volume (as dB loss) decreases moving upward. For more information, see: 
https://www.asha.org/public/hearing/audiogram/
5Color is used on the spectrogram to show amplitude rather than distinguish sounds. 
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Participants presented their own ideas for features, and the most prevalent was a “hypothesis of what the 
machine is hearing” (P6) that would be drawn from “a big dictionary of sounds” (P13). P9 wondered if he could 
guide the hypothesis: “I type in, ‘I’m going to be recording a refrigerator beep.’ Then the system would know I’m 
looking for beeps. It would help [the system] in the process of elimination.” P2 explained her desire to know more 
about class similarity: “I’m curious what made the sound I chose [...] diferent from something else. [...] Like two 
diferent doors: do they go with ‘those two doors sound the same,’ or are they diferent?” Drawing from in situ 
strategies, a few participants proposed using visualizations generated from larger sound libraries to guide their 
expectations of their own samples: “Being able to see what birds chirping might look like on [a waveform] [...] and 
then when I record it, making sure that [my] waveform is matching” (P7). Finally, P1 wanted to make the sampling 
process more closely resemble the end-to-end training of Google’s Teachable Machine: “At the end of it, you could 
actually try to repeat a sound and it would capture, like, ‘90 percent crumpling paper’, ‘30 percent clapping’. Seeing 
those kinds of feedback there, [I] was like, ‘Oh, this is actually recognizing, indicating, positing the sound.’ 

4.5.1 Summary. Participants responded positively to features that would inform of soundscape activity, especially 
to distinguish when sounds overlap or interfere with the sound of interest. In addition, they requested support in 
determining how the machine would interpret each sample in comparison to a larger training set. 

5 DISCUSSION 
This study confrms the potential for non-expert DHH users to train personalizable sound recognizers (as identifed 
in past work [58]) and advances understanding of: (1) how non-expert DHH users approach in situ recording 
tasks to create a sound recognizer training set, (2) practical challenges that they may face when recording a 
variety real-world sounds, and (3) sense-making strategies that they use to interpret audio data in this context. 
Here, we discuss implications of our fndings, opportunities for future work, and the limitations of our paper. 

5.1 Technical Implementation 
Our work fts within a supervised ML context in which audio samples are captured and labeled by DHH end 
users to train a sound recognition model for custom sound classes. Regardless of whether the system is ultimately 
implemented using a single batch training process (e.g., one-time collection of a set of samples to train the model) 
or a more interactive ML approach (e.g., iterative training and refning of the model), DHH users will need to 
capture audio samples. 
Most sound recognizers both for general tasks (e.g., [11, 48]) and specifcally for DHH users [37, 38, 67] 

adapt deep learning approaches from computer vision—such as VGG [68] or ResNet [31]—and use transfer 
learning [72] to train on a large dataset of sounds such as AudioSet [26], FreeSound [25], or feld recordings. 
For example, SoundWatch [38] is a VGG-based smartwatch app that supports 19 sound classes, was tested with 
DHH participants, and is now available as an open-source application [51]. An initial personalizing step might 
be to adapt such a model to enable fne-tuning [79] for an individual user’s sounds (e.g., a generic dog vs. my 
dog). While fne-tuning has shown promise for personalizing activity recognition models [2], the supervised 
approach is data intensive and some DHH users may be uninterested in building a large training set themselves 
[58]. Meta-learning [24] can reduce the necessary data by generalizing information about several related tasks to 
the new task and may realize a few-shot learning approach to sound classifcation, allowing DHH end-users to 
train custom sound classes with just a few samples of their own—a task that all of the participants in our study 
deemed reasonable. 
While the approaches outlined above can allow for models that are trained from an end-user’s samples, our 

results suggest that systems intended for DHH users should allow for other data sources as well. For example, 
participants recorded few samples of urgent sounds during our study (Figure 4) despite this category being the 
most widely requested for sound awareness tools by DHH users [8, 22]. Our participants explained that although 
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they desired more samples of urgent sounds, many of these were infrequent and uncontrollable (e.g., gunshots, 
building fre alarms). Unlike DHH users who depend on visual cues, hearing users may be able to catch part of a 
prolonged sound with no visual cues—such as an approaching siren—but they would likely face similar challenges 
for shorter, spontaneous sounds. To account for this, systems should be designed to support user-provided audio 
in addition to samples from sound libraries, such as Nakao et al.’s [58] design that allows the choice between a 
recording tool or AudioSet [26] search. 
DHH users who desire a personalized model but feel unqualifed to record samples themselves, such as P7, 

provide impetus to explore additional techniques. With reinforcement learning, the system can be incentivized to 
adjust its behavior based on positive and negative feedback, allowing users to guide the model to better ft their 
needs [44]. For example, a recognizer could prompt the user for post hoc assessment of each recognized sound 
and refne itself over time—an approach that has shown promise with deep leaning models for automatic speech 
recognition [60]. However, while a DHH user may feel comfortable assessing this output in a familiar location 
(e.g., their kitchen), they may fnd this task challenging in unpredictable contexts. 

This reinforcement learning approach raises the question of how DHH users can assess a recognizer’s output 
when they themselves are unsure about a sound. Combining multiple models may support a comparative 
evaluation of the sound; a similar technique was leveraged by our participants for interpreting their samples. To 
support evaluation for batch learning personalization, designers can display the custom model’s output next to 
output from a pre-trained model supporting broad sound categories (e.g., [38]). Several of our participants even 
requested a “hypothesis” (P6) after recording each sample, but we found their interest in the model’s state—while 
present—was secondary to their overall uncertainty about the sound itself. Approaches leveraging multiple models 
have also been used for semantic data representation (e.g., navigating a large audio dataset [35]); a pre-trained 
model could additionally provide DHH users with a speculative classifcation of each sample to compare with its 
labeled sound class. 

Our study did not involve use of a human-in-the-loop system past the brief demonstration of Google’s Teachable 
Machine system, but our results motivate future explorations of these systems with DHH users. For example, 
real-time cause-and-efect feedback aforded by human-in-the-loop systems (e.g., [20]) could provide insight 
into how an individual’s samples shape the model, while user-defned decision boundaries (e.g., [4]) could allow 
DHH users to tolerate errors for less critical sounds (e.g., birds) but not others (e.g., alarms). However, most deep 
learning algorithms currently underpinning sound recognizers do not support direct interaction (e.g., adjusting 
parameters) [19], and future work intending to leverage the benefts of human-in-the-loop systems for DHH 
users should explore alternatives. 

5.2 Design Suggestions: Instruction, Visualization, and Feedback 
Our study uncovered unique pitfalls that non-expert DHH users may encounter while recording samples to train 
a personalizable system. In this section, we propose possible solutions to these challenges through specialized 
instruction, enhanced audio visualization, and additional feedback to aid in review. 
Informed by our participants’ experiences, we synthesize four sound dimensions that designers of sound 

sampling tools should consider when supporting DHH users: (1) Volume & frequency: How loud is the sound? 
What range of frequencies are in the sound? Are these properties stable (fre alarm) or shifting (baby crying)? 
(2) Length & continuity: What is the duration of the sound? Is the sound continuous (a fan) or disjoint (typing 
on a keyboard)? (3) Locus of control: What is the user’s role in reproducing the sound, from direct (clapping), to 
indirect (pet sounds), to none (emergency sirens)? (4) Consistency: How varied is the real-world population of the 
sound, from uniform (phone rings), to moderate (musical instruments), to highly diverse (television)? Each DHH 
user’s ability to record a given sound will also depend on personal and contextual factors such as residual hearing 
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ability (e.g., use of cochlear implants vs. no device), lifetime experience with sound (congenital vs. post-lingual 
hearing loss), and recording location (e.g., a quiet home vs. a busy park). 

Prior work shows that non-expert users often misconceptualize how ML systems work [45, 73], and instructional 
scafolding can improve their understanding and satisfaction with personalized ML tools [46]. Prior work on 
non-expert ML use often provides scafolding guidelines; for example, Yang et al. [78] suggests “test-driven 
machine teaching” to guide non-experts through training via real-world test cases. However, to meet DHH users’ 
needs when recording sounds for ML, we suggest that audiological topics also be included in this scafolding. 
First, to support DHH users’ conception of the system’s decision-making process, provide an explanation for 
the sound features used as input to the model (e.g., two-dimensional spectrograms [32]) and show variations of 
these features in samples of the same sound. For example, several of our participants believed all samples for 
a class should be recorded at similar volumes, which may not be required for an ML system yet complicated 
their experience. Second, to support DHH users’ understanding of a model’s decision boundaries, provide an 
overview of common sounds and their distance from one another on the model’s decision axis. Although a 
machine processes sounds diferently than a human, a hearing user may be able to identify relative diferences of 
consequence to a machine (e.g., similar appliance beeps). A DHH user, on the other hand, who cannot hear that 
sound at all, may be forced to guess or “imagine” (P9) these diferences instead. 

A user’s ability to interpret data is essential for training an personalized ML system. Hearing users can assess 
the contents of their sound samples both by listening to the soundscape while recording and by playing the 
audio back afterward, but equivalent techniques are not reliably available to DHH users—even those who used 
residual hearing in our study. Participants liked waveforms for recording in a lab setting [8], and most of our 
participants agreed the Rev app’s [63] waveform visualization was a crucial for recording in situ. However, 
breakdowns in our participants’ waveform sense-making highlights the potential for visualizations that are 
more intuitive to DHH users and informative about the recognition model. For example, during limited use of 
spectrograms, most participants found them difcult to interpret—refecting the known difculties both hearing 
[12, 35] and DHH [54] novices can have with spectrograms. Yet these visualizations are shown to be powerful for 
experienced users [71]—including DHH ones, such as P14—and many sound recognizers extract features directly 
from spectrograms [32]. Interpretation of a sample’s spectrogram on its own may be naive, but it may be useful 
to compare spectrograms across samples, a strategy our participants used with waveforms. Designers could also 
investigate other time-frequency visualizations to inform DHH users in this context, such as correlograms and 
pitchograms [14], or explore new visualizations based on audiograms (2D frequency-volume graphs that are 
widely used in hearing loss testing [75] and referenced by our participants). 

While sound visualizations can help to reveal the full soundscape to DHH users, our participants were also 
enthusiastic about high-level feedback for audiological information. Because many DHH users are unable to 
hear the real-world version of the sound they are recording, they may also be unable to determine how closely 
a sample fts within the broader population of that sound. A 2D feature-embedding generated from the data 
[35, 59] can provide a sense of the diversity of the data in question (e.g., if a class clusters together, if a sample 
is far from its counterparts), but DHH users may have a more signifcant issue in determining why a sample is 
diferent from others. Many participants were also uncertain about co-occurring or overlapping sounds when 
recording, while others desired insight into the ambient soundscape (i.e., background noise). While these artifacts 
alone may not impact a sample’s quality as training data—processing algorithms such as independent component 
analysis [52] may separate sources or negate the impact of ambient sound [17]—additional feedback that informs 
DHH users about these artifacts may greatly enhance a DHH user’s insight into the contents of the sample. 
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5.3 Sociocultural Implications 
Researchers should also carefully consider how to create tools for interested DHH users while not inscribing 
audist beliefs. We encountered a diversity of perspectives in our study that is refective of the wide-ranging needs 
and preferences of the DHH community. While we did not encounter opposition to our envisioned recognizer 
in our study, we do not assume it is universally desired: other DHH people may feel negatively towards this 
technology, especially those who identify as Deaf and as part of Deaf culture [7]. However, our study reiterates 
prior work showing the strong situational value that a sound recognizer can provide for some DHH people 
[8, 37, 38, 67], and it is possible that some DHH users may desire enhanced awareness of a few highly situational 
sounds while otherwise avoiding the hearing world. A personalizable sound recognizer that could be constrained 
to detect only a small subset of sounds (e.g., a child’s cry) may provide essential support while also preserving a 
user’s cultural preferences. In addition, although we designed our study with the belief that a system should 
support independent personalization as a baseline for DHH users, our fndings suggest some users may still 
feel unqualifed for this task. Several of our participants enlisted support from both hearing and DHH family 
and friends when recording which, in combination with collaborative benefts seen in a workshop setting [58], 
suggests that interdependent usage may be natural to some DHH users. 

5.4 Limitations 
First, we focused on DHH users’ needs during data collection and review, and we did not examine other stages of 
training a sound recognizer following the initial session. While Nakao et al. [58] provides an analysis of DHH 
users’ engagement with an IML system, training a working model from our participants’ samples and allowing 
them to engage with it in situ may have provided greater insight toward their conception of this space. Second, 
conducting this study during the COVID-19 pandemic limited our participants to people with high-speed internet 
access and enough time for a research study amidst social, health, and economic uncertainty. Finally, the remote 
nature of this study and COVID restrictions limited participants’ in situ recording contexts and our ability to 
directly observe recording activity, and our request that they do not ask anyone for help when recording sounds 
reduced the realism of the in situ scenario. For a complete understanding of practical recording, future work 
should study recording experiences across a variety of locations and allow users to solicit feedback from hearing 
people. 

6 CONCLUSION 
In this paper, we present an empirical account of the experience people who are d/Deaf and hard of hearing 
(DHH) may record and interpret sound samples for training a personalizable sound recognizer. Our fndings 
demonstrate the need for specialized instructions to fll gaps audiological expertise, carefully-selected audio 
visualization that aligns with user intuition, and clear feedback to reveal sample diversity. In addition, our paper 
highlights the potential for several types of human-in-the-loop sound recognition systems with DHH users to be 
explored in future work. Our work has implications for sound designers, accessible technology researchers, and 
machine learning developers. 
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