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Assistant Professor Shwetak Patel 
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With population increases, global economic growth, and shifts in climate, the world is facing an 

unprecedented demand for resources that are becomingly increasingly scarce. Although often 

overlooked, our everyday activities such as commuting to work, showering, and clothes washing can 

have significant impact on the environment. The central problem addressed in this dissertation is 

not that humans negatively impact the environment—indeed, some amount of impact is 

unavoidable—but rather that we have insufficient means to monitor and understand this impact 

and to help change our behavior if we so desire. This dissertation focuses on creating new types of 

sensors to monitor and infer everyday human activity such as driving to work or taking a shower and 

taking this sensed information and feeding it back to the user in novel, engaging, and informative 

ways with the goal of increasing awareness and promoting environmentally responsible behavior. 

We refer to these sensing and feedback systems as eco-feedback technology. Our research takes 

advantage of a number of technology trends including the increasingly low cost of fast computation, 

advances in machine learning, and the prevalence and affordability of new types of display mediums 

(e.g., mobile phones) to design systems never before possible. 

This dissertation provides a theoretical perspective with which to guide the design of new eco-

feedback systems as well as specific formative and technical contributions for eco-feedback in the 

domains of personal transportation and water usage. Key contributions include the invention of new  





low-cost sensing systems for monitoring and inferring transit routines and disaggregated water 

usage in the home along with eco-feedback visualizations that take advantage of this 

unprecedented data. The approaches, empirical findings and a design space for eco-feedback should 

be of interest to researchers working on eco-feedback in HCI, Ubicomp and environmental 

psychology, as well as to practitioners and designers tasked with constructing new types of eco-

feedback systems and/or utility bills. More broadly, this dissertation also has implications for the 

construction of sensing and feedback technology in general, including domains such as persuasive 

technology, personal informatics, and health behavior change. 
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  Chapter 1

Introduction 

The United States consumes one quarter of the world’s energy resources, despite accounting for 

less than five percent of the world’s population (US Department of Energy, 2002). While industrial 

and commercial consumption account for a large portion of this use, individual behavior also plays a 

significant role. Home energy use and personal travel comprise 28% of US energy consumption and 

41% of US CO2 emissions (Shui and Dowlatabadi, 2005). The residential sector alone accounts for 

21% of US energy consumption. Individual behavior also plays a significant role in water usage: 

residential water use accounts for 50-80% of public water supply systems and 22% of total use in the 

US1 (Vickers, 2001; Kenny et al., 2009). According to US government estimates, 36 states will face 

serious water shortages within the next decade (Nesius, 2007). 

So, although often overlooked, our everyday consumption behaviors such as commuting to work, 

showering, and clothes washing can have a significant impact on the environment. The central 

problem addressed in this dissertation is not that humans negatively impact the environment—

indeed, some amount of impact is unavoidable—but rather that we have insufficient means to 

monitor and understand this impact—and to change if we so desire. My dissertation research 

focuses specifically on creating new types of sensors to monitor and infer everyday human activity 

such as driving to work or taking a shower and then taking this sensed information and feeding it 

back to the user in novel, engaging, and informative ways with the goal of increasing awareness and 

promoting environmentally responsible behavior. 

                                                           
1 This figure excludes water use from the thermoelectric industry because most of this use is non-consumptive (see USGS, 

2005). Thermoelectric power plants, which are typically coal, gas, or nuclear fuel based, rely on water to condense steam. 

This process withdraws large volumes of water but returns nearly all of it back to the source with little consumptive use 

(albeit with some environmental consequences, e.g., thermal pollution). We return to this distinction in the Water section of 

the Related Work chapter (Chapter 2). 
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To date, the primary methods applied to reducing consumption have largely been technological and 

economic (Armel, 2008).  For example, the production of hybrid vehicles has been emphasized as a 

major solution to CO2 reduction and oil dependence. However, there is growing evidence that a 

human-centered, behavioral approach should also be pursued to educate, inform, and motivate 

environmentally sustainable human behaviors. Indeed, it has been consistently found that energy 

use can differ by two to three times in identical homes, occupied by people with similar 

demographics (Socolow, 1978; Winett et al., 1979). For example, in a study evaluating the energy 

consumption of 10 identical Habitat for Humanity all-electric homes outfitted with the same 

appliances and equipment, homes exhibited a large range in energy consumption, with the most 

energy intensive home consuming 2.6 times more energy than the least (Socolow, 1978). Similarly, 

with a change in occupancy, the energy usage by the new occupants could not be predicted based 

on the usage of the former occupants (Sonderegger, 1978). Such findings reveal how differences in 

human behavior can significantly affect resource consumption and suggest that intervention 

strategies to promote sustainable behaviors could result in significant reductions of energy and 

water usage (and perhaps in other environmentally relevant areas as well). 

A key problem is that most people are unaware of how their daily activities affect the environment 

and have few resources to find out. For example, a majority of people have no means of judging 

their resource consumption other than monthly (or bi-monthly) electricity, water and gas bills 

which, even then, only provide aggregate details on consumption and nothing related to 

environmental impact. Kempton and Layne (1994) draw the analogy that this would be like shopping 

at a grocery store where the goods are not marked with individual prices and the only feedback 

received about purchasing is through a monthly bill that provides one aggregate, total cost (e.g., 

“You spent $642 for 1527 food units in April”)—see Figure 1.1a. Yet, this is precisely the level of 

feedback that we receive about consumption activities in the home, which makes it difficult to 

economize and judge the relative merits of individual conservation practices (Dennis, 1990). New 

emerging sensing and feedback systems, such as the ones reported in this dissertation, promise to 

transform how residents think about and understand consumption in the home. 

For transportation, the availability of feedback is even more sparse and varied. Although odometers, 

fuel gauges, and even number of trips to the gas station provide us with some indication of our 

driving behavior and routines, there are no forms of feedback that integrate all of our transit— 
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Figure 1.1: (a) Imagine if prices were not marked on goods at the grocery store and instead of paying and 

receiving an itemized bill at checkout, you had to wait until the end of the month where you simply received a bill 

with total aggregate cost. This is the analogy drawn by Kempton and Layne (1994) to depict the amount of 

information available currently for many of the other resources we consume in our lives. (b) Water, gas, and 

electrical meters are not meant to be read and understood by the consumer but rather by trained utility personnel 

for bill tracking purposes. Most people receive feedback through their monthly or bi-monthly bill, which only 

provides one number temporally disconnected from the consumption itself making it difficult to assess what 

activities comprise the most significant usage. 

walking, bicycling, bus riding and more—into a single display. Perhaps partly as a consequence, few 

of us think about or understand opportunities for greener transit when they exist—even if they are 

available along our typical driving paths. An integrated display that senses and feeds back all 

manifestations of human movement could reveal cost savings for different modes of transit, suggest 

eco-friendly alternatives when they exist, and, at the very least, provide a breakdown of the 

different amounts in which we walk, bike, drive or engage in other forms of transit to better 

understand our personal impact on the environment. Even if one were interested in this information 

currently, it would be very difficult to derive and take careful diligence and effort. There is an 

opportunity here for sensing and feedback systems.  

Although historically a variety of methods have been used to promote proenvironmental behaviors 

ranging from informational media campaigns to monetary incentives (see Katzev and Johnson, 

1987), feedback has been shown to be one of the most effective strategies in overcoming the 

disconnect between activity and environmental impact (Geller, 1982). For example, over 30 years of 

investigations into the effect of feedback on electricity consumption reveals typical reductions 

between 5 and 20% depending on the frequency, duration, specificity, and type of feedback (see 

Chapters 3 and 4). These are significant reductions. For example, a 15% reduction in electricity 

across US households represents nearly 200 billion kWh of electricity per year—equivalent to the 

power output of 16 nuclear power plants for a year. Similarly, a 15% reduction in water usage across 

a. b. 
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US households would save an estimated 2.7 billion gallons per day and more than $2 billion per year 

(American Water Works Association, 2001).  

While a majority of research into the effects of feedback on environmentally relevant behavior has 

focused on energy consumption, our goal was to investigate if and how eco-feedback could be 

applied to other areas such as transportation and water usage. In addition, we were particularly 

interested in exploring the link between sensing systems and feedback visualizations. How can we 

sense human activity at a more granular level than has traditionally been possible and then use this 

data to create novel forms of engaging and actionable feedback? What form should this feedback 

take—how should it be designed? The goal here is not to replicate existing sensing or metering 

technologies and, say, simply focus on making this information more accessible but rather to 

explore new levels of feedback never before possible, enabled by fundamentally new types of 

sensing systems. 

 
Figure 1.2: The sensing and feedback loop for human behavior including core underlying research questions. A 

sensing system senses human behavior, which is input into the feedback system and visualized in order to engage, 

inform and potentially change behavior. Changes in behavior (or the lack thereof) are then sensed by the 

underlying sensing system and the loop continues.  

1.1 SENSING AND FEEDBACK 

Human behavior is complex—so much so that it is a fundamental topic of inquiry in such diverse 

fields of research as philosophy, economics, sociology, psychology and, my own discipline, human-

computer interaction (to name a few). As computing shifts off the desktop and integrates itself into 

the various forms of human life (Weiser, 1991), there is an increasing role for computing to not be 

just a productivity tool but to actually fundamentally improve lives—by making us more fit, more 

informed, and more aware of ourselves and the world around us. Sensing and feedback systems for 
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physical activity to improve personal health, for example, have received a tremendous amount of 

attention in the last decade (e.g., Assogba and Donath 2009; Bravata et al. 2007; Consolvo, 2004; 

Consolvo, 2008; Intille 2004; Maitland et al. 2006; Tudor-Locke et al. 2004).  

1.1.1 Potential of Sensing and Feedback 

Sensing and feedback has the potential to be an external, objective eye on our behavior—a way of 

acquiring insights into ourselves that were previously not possible (Figure 1.2). When highlighting 

the potential of sensing and feedback systems, I often use the analogy of a mirror. Imagine living 

during the invention of the mirror—for the first time in history, outside of our shadows or 

reflections in water, we could see ourselves as others do2. Think of how this must have changed self-

perception and self-identity. But even the mirror plays tricks on us—though most of us rely on this 

old form of technology daily, its effect becomes limited with time. We look in the mirror and often 

focus on what we want to see. We present ourselves in the best light to ourselves—we prepare 

before looking in the mirror by sucking in our gut or forming a certain desirable expression on our 

faces. In this way, we don’t always see a realistic portrayal of ourselves. 

Thus, the mirror analogy stops short of highlighting the full potential of sensing and feedback 

systems—not just because it focuses on the external image of who we are but also because we 

prepare ourselves for it. A mirror rarely catches us off guard. One can turn towards a more modern 

technology, the camera, for a potentially more adept analogy. Like the mirror, the camera provides 

an external view of ourselves. And although we might pose and prepare for a picture, the 

spontaneous and perhaps furtive shots are the ones that can shock us—that can reveal the gut that 

we may have unconsciously hid from ourselves or that a style of clothes or haircut were not so 

befitting after all. This is only but a small window into the potential of sensing and feedback systems 

of the future.  

Of course, unlike a mirror or a camera, these systems are not focused on what we look like but 

rather on how we behave. In this way, sensing and feedback is a mirror for behavior; a way of 

reflecting on and understanding ourselves from a different perspective. In the future, these systems 

will not only provide objective measures and timelines of behavior but the more sophisticated ones 

                                                           
2 Human kind has long been interested in viewing its own image. The earliest crafted mirrors were pieces of polished stone 

or obsidian followed later by copper and bronze. Archeologists have found mirrors dating back to 6,000 BC though they did 

not come into widespread production until the 16th century (where they remained a costly luxury until the 19th century). 

Throughout history, mirrors have inspired tales of myths and magic, stimulated psychological inquiry and analysis, and even 

provoked new tests of intelligence—the ability to recognize one’s own reflection in the mirror is seen as a sign of 

intelligence. For more background on mirrors, see Melchior-Bonnet and Jewett, 2001. 
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will actively learn and adapt models to most effectively motivate and coach us to become 

healthier/fitter/better. 

1.1.2 Types of Feedback 

So, how does feedback work and why? As far back as 1927, feedback has been shown to be an 

important means of modifying behavior (Thorndike, 1927). Feedback provides a basic mechanism 

with which to monitor and compare behavior and allows an individual to better evaluate their 

performance. Becker (1978) provides an example of how, during target practice, knowledge about 

where each round hits a target helps the shooter improve his or her aim. This low-level feedback can 

provide explicit detail about how to change or improve specific behavior. In addition, feedback 

about how many targets have been hit after 10 rounds allows the shooter to determine whether his 

or her personal goals have been met. Such high-level feedback can help improve performance by 

motivating a person to try harder or persist longer at a task (Kluger and DeNisi, 1996; Locke and 

Latham, 2002). Feedback appears to work because it has both informational and motivational 

properties: it can provide a basis for assessment and action and enable progress towards a goal 

(Aitken et al., 1994). As a result, feedback can be an effective means to alter human behavior. 

It’s not just the presence of feedback that can change behavior but how that feedback is provided 

(e.g., Figure 1.3). Let’s consider driving for example—imagine that we want to know our vehicle’s 

gas mileage and whether or not it is reasonably close to the Environmental Protection Agency’s 

(EPA) fuel economy estimate. Our sources of feedback are an odometer and a fuel gauge, which 

provide us with information on miles traveled and fuel amount; however, these two sources of 

information must be carefully tracked by hand and combined to calculate gas mileage. Thus, 

although the fuel mileage information is latent within the two information sources provided, it is not 

visualized in an easy-to-use manner. Newer cars, however, provide this information in real-time 

right in the dashboard making it much easier to see if our gas mileage is better or worse than 

government estimates. 

The Toyota Prius hybrid goes even further—its dashboard shows not just the average fuel mileage 

but the current in-the-moment fuel mileage as well as fuel mileage in the last 30 minutes (in five 

minute intervals through a scrolling bar graph). This simple addition in information has allowed 

drivers to drive more efficiently, some reaching average fuel economies far beyond the EPA-

estimates (e.g., Woodyard, 2008; see also Chapter 2). With the emergence of cheap radar, other 
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forms of feedback on driving have emerged in the last decade or so, which are not even located in 

the car. These “vehicle activated signs” provide redundant information with what is already 

available in the vehicle: namely, your current speed; however, studies have shown that they reduce 

driver speed by an average of 10-15% (Goetz, 2011)3. Some cities have taken these signs and added 

a persuasive component to further encourage speed reductions (e.g., Figure 1.3d). I introduce these 

examples to make a key point that we explore in this dissertation: there is a difference between 

information and the way that information is presented—and these differences can greatly impact 

the information’s effect on our behaviors. 

    
Figure 1.3: Different ways of presenting feedback about driving behavior: (a) the traditional dashboard, (b) the 

Toyota Prius dashboard, (c) a vehicle activated sign that displays sensed speeds of oncoming traffic, and (d) a 

clever variation on (c) that changes the currently sensed speed into a persuasive message. Each presentation can 

have a different impact on behavior.  

1.1.3 Eco-Feedback: Sensing and Feedback for Environmentally Impactful Behaviors 

This dissertation focuses on developing new types of sensing and feedback systems for everyday 

human behaviors that impact the environment around us. These sensing and feedback systems, 

which we call eco-feedback technology, sense and provide feedback on individual or group 

behaviors with a goal of increasing awareness and/or reducing the negative environmental impact 

(adapted from Holmes 2007; McCalley and Midden, 1998). Eco-feedback technology is based on the 

working hypothesis that most people lack awareness and understanding about how their everyday 

behaviors such as driving to work or showering affect the environment; technology may bridge this 

“environmental literacy gap” by automatically sensing these activities and feeding related 

                                                           
3 Admittedly, there are actually a number of differences between the dashboard speedometer and the vehicle activated 

sign—differences, which could very well account for the reduced driver speeds in these areas. But this does not undermine 

my point, only enhances it. First, the signs themselves always show the speed limit along with the currently sensed speed—

this allows the driver to easily compare his/her own speed to the limit and adapt as necessary. As we discuss in Chapter 4, 

comparison can be very effective as a complement to straight feedback. Second, the signs themselves often provoke a 

feeling of surveillance or “wrong-doing” as they are placed by local law enforcement or government agencies. This may 

induce a feeling of fear further encouraging a reduction in speed. Finally, unlike your in-car dashboard, the sensed speed 

displayed on the sign is publically visible. Consequently, there are normative or social pressures to conform to the legal 

speed.    

a. b. c. d. 
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information back through computerized means (e.g., mobile phones, ambient displays, or online 

visualizations).  

With the advent of low-cost sensing technologies, fast computation, and advances in machine 

learning, we now have the potential to provide new types of feedback, which are personalized, 

interactive, increasingly motivating, and, perhaps most importantly, tied to specific activities (e.g., 

driving to work, taking a shower, watching TV). Moreover, the next generation of resource 

measurement systems (often referred to as “smart meters”) will soon provide real-time (or near 

real-time) data on electricity, gas, and water usage in homes and businesses. This will produce 

tremendous amounts of data that can be analyzed and fed back to the user, creating even more 

opportunities for eco-feedback technology research. 

In addition, advances and increased accessibility to new display mediums offers a wide range of 

ways to feedback consumption information (e.g., mobile phones, internet, home automation 

centers). Such advances in both sensing and feedback provide a rich space of opportunities for new 

types of eco-feedback that could not be considered in the past. Human-Computer Interaction (HCI) 

and Ubiquitous Computing (Ubicomp) researchers are well positioned to apply their expertise in 

sensing and interface design to create a new generation of eco-feedback technology.  

Indeed, thus far, HCI and Ubicomp researchers have built eco-feedback technologies for a variety of 

domains including energy consumption (Gustafsson and Gyllenswärd, 2005; Petersen, 2009; Yun, 

2009), water usage (Arroyo et al., 2005; Kuznetsov and Paulos, 2010), air quality (Kim, 2009; Kim, 

2010; Kuznetsov, 2011) consumer retail purchases (Tomlinson, 2008), and waste disposal practices 

(Holstius, 2004; Paulos and Jenkins, 2006); see Figure 1.4. In this dissertation, we focus specifically 

on the link between sensing and feedback—the ways in which they interact and how this enables 

 
Figure 1.4: Examples of eco-feedback technology from the HCI and Ubicomp research communities for (a) retail 

purchases (Tomlinson, 2008), (b) energy usage (Petersen, 2009), (c) waste disposal (Holstius, 2004), and (d) water 

usage (Kuznetsov, 2011). 

 

a. b. c. d. 
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new types of eco-feedback particularly for personal transportation and residential water usage. In 

addition, as eco-feedback is still an emerging area of research, particularly in HCI and Ubicomp, we 

explore design guidelines to ease the construction of these systems and provide a theoretical basis.  

1.2 RESEARCH APPROACH 

We have followed an iterative design approach, beginning with formative studies of both personal 

transportation and household water usage that then informed the design and development of our 

sensing and feedback technology. For sensing, our evaluations began in the lab with controlled 

experiments followed by controlled experiments in the field and finally real world deployments. For 

the feedback interfaces, our evaluations range from large scale online survey studies to smaller scale 

ethnographically inspired interviews to actual field deployments. Of the high level research 

questions presented in the eco-feedback diagram in Figure 1.2, this dissertation focuses primarily on 

designing and evaluating sensing and feedback with a smaller emphasis on how this changes 

behavior. As noted in Chapter 3, our goal here—and that we argue of any HCI/Ubicomp researcher 

involved in eco-feedback research—is to provide a strong foundation with which companies and/or 

environmental psychologists can take our ideas/findings and evaluate them in larger-scale, 

randomized control trials. This can, of course, be accomplished through collaboration as well; 

however, such experiments were beyond the scope of this research. 

The results in this dissertation should benefit researchers working in the area of eco-feedback 

including researchers from HCI/Ubicomp, environmental and social psychology, as well as water 

resource management scientists and field workers. Our findings from Chapters 6 and 9 have 

implications not just for the design of computerized eco-feedback but also for older, more 

traditional forms of eco-feedback such as bills and online websites. 

1.3 THESIS GOALS AND CONTRIBUTIONS 

At a high level, the goal of this dissertation has been to design, develop, and evaluate sensing and 

feedback technologies to promote proenvironmental behavior4 and decision making. Our approach 

was fourfold: (1) to draw upon behavioral science, environmental psychology, information 

visualization and past Sustainable HCI research to create a series of guidelines and dimensions to 

                                                           
4 It is not always clear what, exactly, constitutes “proenvironmental behavior.” Stern (2000b) and Steg and Vlek (2009) 

define environmental behavior as any behavior that changes the availability of materials or energy from the environment or 

alter the structure and dynamics of ecosystems or the biosphere and proenvironmental behavior as behavior that harms the 

environment as little as possible. In this thesis, we use environmental behavior and proenvironmental behavior 

interchangeably to fit the latter definition: essentially, behavior that reduces harm to the environment. 
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help both the design and evaluation of eco-feedback systems; (2) to study environmentally 

impactful human behaviors around transit and water usage to uncover insights into how eco-

feedback may play a role; (3) to create and evaluate new types of sensing systems to enable eco-

feedback systems that were previously not possible; (4) and to design, develop and evaluate novel 

eco-feedback interfaces and systems themselves. Below, we trace out the underlying research 

questions within each of these areas and the approach we took to address these questions. Note 

that although we examine and study both transportation and water usage, the primary emphasis in 

this dissertation is on water (which is the main focus in four of the eight content chapters). 

1.3.1 Defining the Role of HCI in Eco-Feedback Research 

The first goal of this dissertation is to examine the role of HCI in the design and evaluation of eco-

feedback technology. While the emphasis of eco-feedback technology is to provide feedback on 

individual or group behaviors to reduce environmental impact, few HCI eco-feedback studies have 

even attempted to measure behavior change. And although eco-feedback is often seen as an 

extension of persuasive technology5 (Fogg, 2002), particularly amongst the HCI/Ubicomp research 

community, eco-feedback actually extends back more than 40 years in fields such as environmental 

psychology and applied social psychology. This gives rise to two interrelated questions: (1) What can 

HCI learn from environmental psychology and related disciplines; and (2) what should be the role of 

the HCI community in contributing to eco-feedback research?  

In Chapter 3, we reflect on the current state of eco-feedback technology through a comparative 

survey of 44 papers studying eco-feedback technology in the HCI/Ubicomp literature and 12 papers 

within the environmental psychology literature. We show that although HCI/Ubicomp researchers 

tend not to evaluate eco-feedback systems in longitudinal behavioral intervention trials common in 

environmental psychology, there is a strong role for HCI/Ubicomp research. Environmental 

psychologists have not traditionally been concerned with the design and advancement of the 

intervention artifact that they are testing, rather its effect on behavior. In contrast, HCI/Ubicomp 

researchers in eco-feedback research have focused on new sensing methods, novel information 

visualization strategies, and new types of interfaces and interactions. These are core areas of 

HCI/Ubicomp expertise. We argue that given the shared pursuits of the two fields, a key outcome 

                                                           
5 The distinction between what qualifies as a persuasive technology versus an eco-feedback technology is not always clear. I 

tend to use the word “persuasive” with care because in common parlance, it often has negative connotations with feelings of 

“manipulation” and “coercion.” I would agree that all eco-feedback has a persuasive element in that it has the potential to 

persuade but there are clearly some eco-feedback designs where the main focal point is to inform rather than persuade. We 

return to this discussion and the role of information versus persuasion in Chapter 4.     
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should be that the two disciplines work more closely together to design and evaluate eco-feedback 

systems and interfaces. 

1.3.2 Transportation and Residential Water Usage Attitudes, Behaviors, and Routines 

Before designing eco-feedback systems for a particular environmental domain, we must understand 

the decisions, constraints, attitudes and behaviors within the domain itself. For example, what 

reasons do people have for preferring car driving over bus transit? And, how much water do people 

think an average shower uses? The second goal of this thesis, then, was to quantitatively and 

qualitatively assess attitudes, perceptions, behaviors and routines around transportation and water 

usage. Although past work has explored some of these issues (e.g., Chetty et al., 2008; Woodruff et 

al., 2008; Strengers et al., 2008), our focus here was particularly on uncovering opportunities for 

eco-feedback. In addition, many of the past formative investigations in HCI have been conducted 

around energy usage (e.g., Chetty et al., 2007), with much less attention towards transportation and 

water.  

1.3.2.1 Transit 

For transit, we performed two formative studies to examine motives, attitudes and behaviors 

around driving and alternative transit (Chapter 5). These studies included: (1) an online survey of 63 

respondents to explore how people make transportation decisions, their willingness to engage in 

green travel, and their reactions to our application design concepts; (2) a one-week experience 

sampling (ESM) study with seven participants that explored in-the-moment reasoning about 

transportation choices.  

Our results show that a number of factors underlie a person’s choice for transit including travel 

time, flexibility and cost. Interestingly, only a small subset of our respondents (19%) considered the 

environmental impact of transit as one of their top three priorities when making transit decisions; 

however, far more were interested in trying to travel in more eco-friendly ways. Additional 

motivations cited included opportunities for exercise, relaxation, and the ability to accomplish other 

tasks. These findings can be incorporated in transit-based eco-feedback, as we do in Chapter 5. 

1.3.2.2 Water 

To inform the design of water usage feedback, we conducted an online survey of 656 respondents 

(Chapter 6).  The survey explored questions such as: How well do people understand water usage 

amounts of common everyday activities like showering and toilet usage? What factors influence 
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water consumption? How do people think about water as a resource?  What are their primary 

motivators for conservation? 

We found ample evidence to support the need for different sorts of water feedback than is currently 

available in most homes. A rather large number of our respondents (33%) received no monitoring or 

feedback about their consumption whatsoever. Our findings also suggest that most people have an 

inaccurate conception of what fixtures and appliances typically the most water. For example, 

approximately a quarter of respondents ranked dishwasher and bath among the top three water 

consumers in the home (dishwashers tend to be the least water consuming fixture/appliance in the 

home). We also found that our respondents tended to grossly underestimate the amount of water 

use various common activities consumed such as showering and lawn watering. Combined, these 

findings point to the potential of water eco-feedback systems for increasing consumption 

knowledge and water literacy. 

1.3.3 Building and Evaluating Sensing Systems for Transportation and Water Usage 

The third goal of this dissertation was to create highly granular sensing technologies for transit and 

water usage behaviors to enable new types of eco-feedback applications. These systems target 

sensing opportunities identified in the aforementioned formative studies. For example, how could 

we build a sensing system that is capable of informing residents about how much water they use at 

each fixture and appliance in their home? 

1.3.3.1 Transit 

To build eco-feedback systems for personal transportation, we wanted to be able to sense a range 

of transit modes from bicycling and walking to taking the bus and driving a car. Although previous 

research has examined using wearable sensors (Choudhury et al., 2008), cell tower infrastructure 

(Sohn et al., 2006), or self-report (Froehlich et al., 2006) to track human transit patterns, our 

research is the first to combine these three methods into a single working system. This enabled a 

new type of transit feedback system: UbiGreen (covered in a subsequent subsection below on novel 

eco-feedback interfaces).  

1.3.3.2 Water 

Our formative water survey showed a profound lack of knowledge and understanding about the 

consumption of common water usage activities in the home. Current state-of-the-art water 

monitoring systems only provide water usage data at aggregate levels (e.g., smart meters). These 
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water sensors allow the water supplier to sample consumption information down to 15-minute 

intervals but the focus is still on bill tracking and not on feeding this information back to the 

consumer. In addition, these solutions only focus on aggregate usage amounts—one number for the 

whole home—making it difficult to ascertain exactly where and for what activity water use is 

occurring. Finally, as these monitoring solutions are utility driven, they require professional 

installation and the data is not “owned” by the household but instead by the utility.  

To address these shortcoming, we developed HydroSense, a real-time water usage sensing system 

that could be installed by the homeowner him or herself and provides disaggregate6 water 

consumption information down to individual fixtures (e.g., the upstairs bathroom toilet or the 

downstairs bathroom faucet). HydroSense represents a significant advance over prior research in 

several regards: (1) HydroSense can be easily installed at any accessible location within a home’s 

existing water infrastructure without the need for a plumber (which greatly impacts the overall cost 

of the device); (2)  HydroSense uses pressure changes to both identify the individual fixture (or 

fixtures) in which water is being used as well as to provide flow estimates; (3) and, given sufficient 

calibration, HydroSense can discriminate between hot and cold water usage.  

To validate HydroSense, we performed two evaluations: (1) a controlled experimental evaluation in 

10 homes of staged water usage events and (2) a longitudinal five-week evaluation in five homes of 

real-world water usage. In the controlled experiment, our algorithms successfully identified 

individual fixtures with 97.9% aggregate accuracy. We also show that an appropriately located and 

calibrated system can estimate water usage with error rates comparable to empirical studies of 

traditional utility-supplied water meters. In the second evaluation, we extended and adapted our 

initial inference algorithm to shift from being a strict template-matching approach to one that is 

based on a Bayesian model. Inspired by algorithms in speech recognition, our novel Bayesian 

approach incorporates template matching, a language model, grammar, and prior probabilities. 

Here, we show that with a single pressure sensor, our probabilistic algorithm can classify pre-

segmented real-world water usage at the fixture level with 90% accuracy and at the fixture-category 

level with 96% accuracy. With two pressure sensors, these accuracies increase to 94% and 98% 

                                                           
6 Aggregate and disaggregate are the two commonly used terms in the resource sensing and utility communities to 

distinguish between overall consumption measurements (aggregate) and per-fixture/per-appliance measurements 

(disaggregate). In the case of water, HydroSense tracks consumption at the disaggregate level—meaning that it senses water 

use at individual fixtures and appliances (and it does so from a single sensing point). Although beyond the scope of this 

dissertation, energy disaggregation sensing is a very hot topic of research at the moment. Please see our paper 

Disaggregated End-Use Energy Sensing for the Smart Grid for more information (Froehlich et al., 2011). 
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respectively. Our evaluations demonstrate the effectiveness of our algorithms but also highlight the 

importance of conducting real-world field trials of sensing technology. 

1.3.4 Design, Develop, and Evaluate Novel Eco-Feedback Interfaces 

Based on the sensing systems described above, our fourth and final goal was to create new types of 

eco-feedback systems and interfaces around this data to inform and motivate proenvironmental 

behaviors. Our high level objective was to rethink the ways in which we could feed back behavioral 

data to the user based on these new types of sensing systems. To accomplish this goal, we propose 

a design space for eco-feedback technology, as well as design and evaluate eco-feedback displays 

for transportation and for water. 

1.3.4.1 An Eco-feedback Design Space 

We provide an eco-feedback design space to allow designers and practitioners to approach the eco-

feedback design process with a tangible structure that exposes assumptions underlying various eco-

feedback techniques and provides a means to reliably compare the strengths and weaknesses of 

different approaches. By reviewing current feedback designs, we isolate and identify eight eco-

feedback dimensions with which to build and analyze eco-feedback systems. These design 

dimensions (and sub-dimensions) include, for example, the spatial proximity between feedback and 

behavior, how the data is grouped or clustered in the display, and the comparison mechanisms 

used. The design space is useful both as a lens to analyze and understand the effectiveness (and 

ineffectiveness) of existing eco-feedback technology as well as a foundation to help build and 

evaluate new systems.  

1.3.4.2 Transit 

Because transportation is inherently a mobile activity, mobile devices are well suited to sense and 

provide feedback about these activities. We designed, developed, and evaluated a mobile phone 

application, called UbiGreen, that semi-automatically senses and feeds back information about 

transportation behaviors by changing the wallpaper (background display) on the user’s mobile 

device. We created two feedback designs in particular: a tree design that grows leaves, flowers, and 

fruit and an arctic eco-system that uses an ice floe and animals to represent green transit use. The 

goal here was not to explore the impact that UbiGreen had on transit behaviors particularly—a 

three week field study with no baseline data is insufficient for this—but rather to explore how 

glanceable, abstract, and ambient visualizations could be used and the reactions it provoked. We 
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evaluated UbiGreen through a three-week, 12 person field study across two American cities: Seattle, 

WA and Pittsburgh, PA. Our findings include recommendations about the use of iconic vs. numeric 

representations of information, the usefulness of wallpaper as a glanceable medium, the use of 

narrative to build anticipation and curiosity, and suggestions for future transit-based eco-feedback 

systems. As this was our first eco-feedback interface evaluation, we also used these findings to 

inform and iterate upon our eco-feedback design space. It also influenced our water feedback 

designs. 

1.3.4.3 Water 

Although much past work has explored visualizing home resource consumption, far fewer, if any, 

have explored interfaces to visualize disaggregated consumption data. The goal here was to explore 

possible eco-feedback interfaces for the disaggregated water usage data provided by HydroSense. 

Questions included: given a rich set of data, what is the most effective way to present it back to the 

user and with what time and data granularity? In addition, given that these eco-feedback systems 

are meant for the home, how can these visualizations incorporate and respond to household 

dynamics and social context such as privacy or competition among family members? 

Our approach was to create and evaluate a series of eco-feedback displays for household water 

consumption that were explicitly designed to explore the above questions. Some of these displays, 

called design probes, were intentionally created to explore points in the design space that may not 

even be possible with current technology, such as a display that provides per-occupant consumption 

data in the household. We evaluated the displays through both an online survey of 651 respondents 

and in-home interviews with 10 households. The findings show that simple feedback is good, privacy 

is a concern but it depends upon how the information is presented. Some issues were polarizing, 

such as the competition within the household or individual accountability, and some interfaces 

induced notions of guilt. Because this is one of the first studies of its kind, the findings should be 

valuable not only to the design of water eco-feedback displays but also in the design of other forms 

of disaggregated feedback. 

1.4 SUMMARY OF CONTRIBUTIONS 

The contributions of this dissertation can be organized around three high-level areas: foundational 

contributions, sensing contributions, and feedback contributions. Although these areas are not 

perfectly independent from one another—indeed, feedback systems are fundamentally dependent 

on the type and resolution of data from sensors in enabling or constraining the presentation of 
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information—these divisions are useful for clearly articulating the primary contributions of this 

dissertation research. 

1.4.1 Foundational Contributions 

The foundational contributions involve motivating the need and potential for sensing and feedback 

systems for environmentally relevant behaviors and in identifying the role of HCI/Ubicomp within 

this area of research: 

1. Assessing the role of HCI in the design and evaluation of eco-feedback systems. 

2. Formative studies of personal transportation attitudes, behaviors and routines to inform the 

design of eco-feedback systems for transit. 

3. Formative studies of residential water usage attitudes, behaviors and routines to inform the 

design of eco-feedback systems for water. 

1.4.2 Sensing Contributions 

The sensing contributions involve the design, development and evaluation of novel sensing methods 

to track environmentally impactful behaviors for personal transportation habits and water usage. 

The primary sensing contributions in this dissertation are for water. Sensing transit activities are a 

secondary contribution: 

4. A method for tracking transit behaviors using automated sensing and self-report. 

5. Design and evaluation of a sensor for automatically determining fixture-level water usage 

events from a single, low-cost sensor. This contribution is three-fold: 

a. A method for identifying and classifying water use through a pressure sensor 

installed in an arbitrary location on the home plumbing system. 

b. A method for calculating real-time flow estimates for disaggregated events. 

c. A method for disaggregating overlapping or compound water events. 

1.4.3 Feedback Contributions 

The feedback contributions involve the design and evaluation of novel eco-feedback interfaces for 

water usage and personal transportation as enabled by the new sensing systems outlined above. 

6. An eco-feedback design space to guide the development and evaluation of eco-feedback 

systems. 
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7. The design, development and evaluation of UbiGreen, an eco-feedback application to 

promote green transportation habits. 

8. The design and evaluation of water usage feedback displays, studying specific dimensions of 

feedback (e.g., level of data granularity) as well as social and household context (e.g., issues 

of privacy). 

1.4.4 Summary 

In summary, this dissertation contributes new knowledge around the construction and evaluation of 

eco-feedback systems. It provides both a theoretical and formative perspective with which to guide 

the design of new eco-feedback systems as well as new methods and applications, in particular, for 

eco-feedback in the domains of personal transportation and water usage. The key technical 

contributions are the invention of new low-cost sensing systems for monitoring and inferring transit 

routines and disaggregated water usage in the home along with eco-feedback systems that take 

advantage of this unprecedented data. This dissertation should be of interest to those working in 

Sustainable HCI and eco-feedback technology including researchers in HCI, Ubicomp and 

environmental psychology as well as practitioners and designers tasked with constructing new types 

of eco-feedback systems and/or utility bills. More broadly, this dissertation has implications for the 

construction of sensing and feedback technology in the domains of persuasive technology, personal 

informatics, and health behavior change (e.g., mobile health).  

1.5 DISSERTATION ORGANIZATION 

This dissertation is broken down into two parts: the first part (Chapters 2, 3 and 4) explores, reflects 

on, and describes the design and evaluation of eco-feedback systems in general, the role of 

HCI/Ubicomp in this endeavor, and strategies for going forward. The second part (Chapters 5, 6, 7, 8, 

and 9) describes the design and evaluation of our own eco-feedback systems, which were created, 

in part, based on the undertakings and findings from the preceding chapters.  

Part I begins with Chapter 2 by presenting background and previous work related to sensing and 

feedback systems for personal transportation and water usage. Chapter 2 also contextualizes and 

positions eco-feedback as a research discipline within HCI/Ubicomp and draws links to the field of 

information visualization. Chapter 3 offers a survey of the eco-feedback research across both 

environmental psychology and HCI/Ubicomp, which we use to compare and contrast the design and 

evaluation approaches taken across the two fields and to identify areas in which HCI/Ubicomp can 
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make the strongest contribution. Chapter 4 continues this interdisciplinary outlook and integrates 

findings from environmental psychology and the behavioral sciences to uncover and synthesize 

models of proenvironmental behavior and motivation techniques that could be utilized to more 

effectively design eco-feedback systems. Chapter 4 concludes by integrating these findings (and 

those from Chapters 2 and 3) into an eco-feedback design space, which serves both as a critical lens 

to evaluate existing eco-feedback systems as well as a guide to help design new ones. 

Chapter 5 offers a transition point to the second part of the dissertation, which is focused 

specifically on personal transportation and water usage. Chapter 5 presents our first eco-feedback 

system: UbiGreen, a mobile phone application that semi-automatically senses and feeds back 

information about personal transportation routines to encourage green transit choices. Chapters 6, 

7, 8, and 9 are focused on sensing and feedback systems for residential water usage. Chapter 6 

provides a formative inquiry into common attitudes, beliefs, and knowledge about water usage in 

the home with the goal of informing the design of water sensing and feedback systems. Chapters 7 

and 8 present the design and evaluation of HydroSense, a water sensing system that provides 

unprecedented levels of sensing granularity (down to the individual fixture) from a single installation 

point. Inspired by HydroSense and informed by our formative work in Chapter 6 as well as the eco-

feedback design work in Chapters 3 and 4, Chapter 9 presents two sets of novel eco-feedback 

displays for water as well as a survey and interview-based evaluations. Finally, Chapter 10 concludes 

the dissertation by highlighting limitations in the preceding chapters and open areas for future work. 

Following this chapter, several appendices provide the study materials used in our studies including 

survey questions, interview scripts, and findings from our pilot studies. 

Most of the work presented in this dissertation has been previously published. Chapters 3 and 4 are 

based on our ACM CHI2010 paper (Froehlich et al., 2010) and on our HCIC2009 workshop paper 

(Froehlich, 2009). Chapter 5 is based on our ACM CHI2009 paper (Froehlich et al., 2009a). Chapter 7 

is based on both our UbiComp2009 paper (Froehlich et al., 2009b) and our Personal and Mobile 

Computing journal paper (Larson et al., 2010). Chapter 8 is based on our Pervasive2011 paper 

(Froehlich et al., 2011). Large parts of Chapter 9 are currently in submission. 

  



19 

  

 

  Chapter 2

Background and Related Work 

Eco-feedback research spans multiple fields including environmental psychology, HCI/Ubicomp, 

economics and the behavioral sciences. Although only recently a target of inquiry within 

HCI/Ubicomp, eco-feedback research has a long history, extending back to the 1970s in other 

disciplines. This chapter and the next two attempt to synthesize this related literature, articulate the 

role of HCI/Ubicomp within eco-feedback research (Chapter 3), and integrate particularly promising 

findings into an eco-feedback design space (Chapter 4).  

In this chapter, we begin by situating eco-feedback research within HCI/Ubicomp (Section 2.1) and 

drawing a link to the field of information visualization (Section 2.2). We then review related work on 

the two environmental domains addressed in this dissertation: personal transportation and water 

usage. Section 2.3 provides work related to transportation sensing and feedback systems while 

Section 2.4 focuses on sensing and feedback systems for residential water usage. As noted in 

Chapter 1, a large portion of this dissertation is devoted to water (Chapters 6 through 9). 

Consequently, Section 2.4 begins with a broad review and background of water supply and usage 

including an argument for why residential water usage deserves attention and different 

strategies/approaches used by water utilities to control demand. 

2.1 SUSTAINABLE HCI 

The goals of this section are to help define and illuminate a still emerging area of research within 

Human-Computer Interaction (HCI) of which this dissertation is a part called “Sustainable HCI.” 

Broadly speaking, Sustainable HCI involves applying HCI methods, perspectives, and techniques to 

issues of environmental health and sustainability. As a still emerging area, there is debate about 
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what constitutes Sustainable HCI and the research therein. To help contextualize and scope the 

research presented in this dissertation, I begin with a brief historical look at Sustainable HCI and 

summarize the state of the field.  

Most attribute the emergence of “Sustainable HCI” as a subfield of HCI research to Eli Blevis’ 

landmark CHI 2007 paper:  Sustainable Interaction Design: Invention, Disposal, Renewal & Waste. 

Although other papers had previously considered the role of technology and environmental 

sustainability (e.g., Jain and Wullert, 2002; Arroyo et al., 2005; Friedman et al., 2006), Blevis’ work 

served as a catalyst to organize and formulate particular research agendas around environmental 

topics. In Blevis’s paper, he argues that sustainability is inherent to HCI and claims that it should be a 

central focus of interaction design:  

The focus [of this paper] is primarily on environmental sustainability and the link between 

interactive technologies and the use of resources, both from the point of view of how 

interactive technologies can be used to promote more sustainable behaviors and—with 

more emphasis here—from the point of view of how sustainability can be applied as a critical 

lens to the design of interactive systems themselves. 

Blevis’ paper considers sustainability as core to interaction design—indeed, he defines design as “an 

act of choosing among or informing choices of future ways of being” (2007). From Blevis’ 

perspective, a designer is centrally placed and perhaps ethically compelled to consider the 

environmental consequences of their design decisions because those decisions shape behavior. 

Although Blevis points to the role of interactive technologies in promoting sustainable behaviors 

(which is largely the focus of this dissertation) his primary focus is in discussing how sustainability 

can be applied to the design of interactive systems themselves. For example, he argues that 

designers should address the current movement towards creating technology for obsolescence, 

which creates a cycle of manufacturing and disposal that is harmful for the environment, rather than 

specifically using technology to persuade individuals to act more proenvironmentally. 

Since Blevis’ paper in 2007, Sustainable HCI has become one of the fastest-growing areas of research 

in the HCI and Ubicomp research communities. The subfield involves a variety of environmentally 

related topics including understanding home resource use and habits (Chetty et al., 2008; Chetty et 

al., 2009; Pierce et al., 2010; Woodroof et al., 2008), the design and evaluation of new resource 

consumption sensing technology (Patel et al., 2007; Gupta et al., 2010, Cohn et al., 2010; Krumm 

Pervasive, 2011), and the exploration of tools to inform consumers about the environmental impact 
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of their decisions (Tomlinson, 2008), to name a few. Such an upsurge in interest reflects both recent 

commensurate societal interest in environmental sustainability as well a movement within the 

research community itself to address high-value social topics through the lens of HCI (e.g., aging in 

place applications and healthy living applications). Dourish (2010) summarizes this movement in the 

introduction to his DIS 2010 paper, which serves as a critical inquiry into Sustainable HCI: 

Environmental sustainability has been one of the fastest growing areas of activity in HCI 

research in recent years. In part, this reflects the observation that pervasive information 

technologies provides a platform for reflection and intervention that may have positive social 

benefits. This observation has driven research in the use of information technology to 

promote personal health and wellness (e.g., Consolvo et al., 2008; Lin et al., 2006), as well, 

more broadly, as what some have termed “persuasive technologies” (Fogg, 2002). HCI 

research on sustainability is founded on the premise that global or environmental health and 

wellness might also be a site for similar technological interventions. 

The infancy of the Sustainable HCI field as well as its rapid growth has given rise to a number of 

papers, like Dourish’s quoted above, that attempt to step back and critically reflect on where the 

field is going and where it has already been. In the first Special Interest Group (SIG) meeting on 

Sustainable HCI at the ACM Conference on Human Factors in Computing Systems, Mankoff et al. 

(2007a) uncovered two emergent categories of sustainability research in HCI: sustainability in design 

(i.e., mitigating the material effects of software/hardware) and sustainability through design (i.e., 

influencing sustainable lifestyles or decision making). This dissertation largely focuses on the latter 

category: achieving sustainability by creating awareness, informing decisions, and promoting 

proenvironmental behavior. 

In a more comprehensive analysis of the Sustainable HCI literature, Goodman (2009), found that the 

vast majority of research fits under Blevis’ definition of sustainable interaction design. However, she 

also identified two other research trajectories: (1) re-visioning consumption, which uses probes or 

critical art installations to examine how humans perceive their relationship with the world (e.g., 

Bohlen, 2004; Paulos and Jenkins, 2006; Pierce and Paulos, 2010; Kuznetsov et al., 2011); and (2) 

citizen sensing, which attempts to open and democratize science by allowing contributions through 

the use of mobile phones, sensors, and other emerging pervasive technologies. Eric Paulos and his 

Living Environments Lab at Carnegie Mellon University has been one of the more outspoken and 

prolific researchers in this area (see Paulos et al., 2008b for an overview). 
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Partially inspired by Goodman’s 2009 work, DiSalvo et al. (2010) also conducted a review of HCI 

sustainability research in attempt to “catalog the approaches and orientations that are being taken 

and to map out the differing intellectual commitments that underlie the area.” From a literature 

review of 83 Sustainable HCI related papers, the authors identified five emergent, non-mutually 

exclusive genres, which are listed in Table 2.1. Of particular relevance here is the fact that DiSalvo et 

al. rescope the definition of sustainable interaction design to more accurately reflect the definition 

that has emerged in the HCI community since Blevis’ original 2007 paper. Here, DiSalvo et al. use 

sustainable interaction design to mean “papers oriented around using sustainability as a critical lens 

to rethink the role and outcomes of design.” This more limited definition not only better reflects the 

focus of Blevis’ original paper (and those that cite it) but also enables the extraction/elevation of 

two other sustainability research areas ordinarily subsumed by Blevis’ initial definition: persuasive 

technology (45% of papers) and ambient awareness (25% of papers). This distinction is of particular 

relevance to this dissertation because it more finely categorizes our own Sustainable HCI research 

pursuits, which fall under four of the five genres: persuasive technology (Chapters 3, 4, 5 and 9), 

ambient awareness (Chapter 5 and 9), formative user studies (Chapter 5, 6, and 9), and pervasive 

and participatory sensing (Chapter 5, 7 and 8). 

Genre 
Approximate  
Percentage of 
Corpus (N=83) 

Description and Example Papers 

Persuasive 
technology 

45% 
Persuasive technology is technology that is designed to persuade users to behave in a more sustainable 
way using either strong persuasion (e.g., Bang et al., 2006) or passive persuasion (e.g., Gustafsson and 
Gyllenswärd, 2005; Gyllenswärd et al., 2006). 

Ambient 
awareness 

25% 

Ambient awareness systems draw upon notions of calm computing (Weiser, 1991) and ambient displays 
(Mankoff et al., 2003) to make users aware of their behavior or qualities of the environment associated 
with issues of sustainability. The forms of these systems include: devices and physical artifacts (e.g., 
Gustafsson and Gyllenswärd, 2005; Gyllenswärd, 2006), visualizations (e.g., Holmes, 2007), instrumented 
environments (Bonnani, 2004), and intelligent agents (Al Mahmud, 2007). 

Sustainable 
interaction 

design 
10% 

Describes papers oriented around using sustainability as a “critical lens” (Hanks, 2008) to rethink the 
role and outcomes of design; these works have often emerged from design research literature and are 
frequently philosophically and critically oriented (e.g., Woolley, 2003; Blevis, 2007, Pierce, 2009) 

Formative 
user studies 

15% 
Consists of studies to understand users’ attitudes to the environment or to sustainable or unsustainable 
design. Methods include large-scale quantitative studies (Hanks et al., 2008), qualitative interviews 
(Huang et al., 2009) and ethnography (Chetty et al., 2008; Woodruff et al., 2008). 

Pervasive & 
participatory 

sensing 
22% 

Work that involves sensors to monitor and report on environmental conditions with the implicit goal of 
using the data collected to change these conditions. Examples include systems to monitor food 
perishability in distribution networks (Ilic et al., 2009), systems to monitor air pollution in homes (Kim 
and Paulos, 2009), or citizen science oriented works (e.g., Foth et al., 2008, Paulos et al., 2008a; Paulos 
et al., 2008b). 

Table 2.1: A summary of DiSalvo et al.’s (2010) genre analysis of sustainable HCI topics. The work presented in 

this dissertation encompasses four of the five genres including persuasive technology, ambient awareness, 

formative user studies and pervasive and participatory sensing. 

While the definitions and various categorizations of Sustainable HCI research offered by Blevis, 

Goodman, and DiSalvo et al. allow us think about and reflect on past, present, and future research 



23 

  

agendas involving the environment and HCI, this is an evolving discourse of which my own work has 

played a role. Chapter 3 contributes specifically in terms of the role of HCI in the design and 

evaluation of eco-feedback technology. Before describing sensing and feedback work that 

specifically relates to the two core areas of this dissertation (transportation and water), the next 

subsection discusses how eco-feedback partially intersects with (and extends from) work in 

information visualization. 

2.2 RELATING ECO-FEEDBACK TO INFORMATION VISUALIZATION 

Eco-feedback systems are visualization systems. They visualize information about behavior that is 

otherwise latent or inaccessible. Card et al. (1999) define visualization as “… the use of computer-

supported, interactive, visual representations of data to amplify cognition.” We would argue that 

even eco-feedback systems that are text only (such as the Kill-A-Watt) are still visualization systems 

though they may not perfectly fit the Card et al. definition. 

Historically, visualizations have been split into two major areas: “scientific visualization” and 

“information visualization” (infovis). The categorization of a visualization into one of these two areas 

is largely based on whether the application area is scientific or non-scientific, whether the data is 

physically based or abstract, or whether the spatialization7 of the data is intrinsic or applied (Tory, 

2004). Given this definition, eco-feedback systems would fall somewhere in the middle; the 

application area is primarily non-scientific in that the intended audience are everyday people 

without, necessarily, a technical background and yet the data is both physically based and has some 

underlying spatial component (making eco-feedback a candidate for scientific visualization). 

Recognizing the emergence of new types of visualizations such as eco-feedback that do not fall 

directly under either pre-existing category, Pousman et al. (2007) defined a new subdomain of 

infovis called: Casual Information Visualization (or Casual Infovis).  

Casual Infovis is defined as “the use of computer mediated tools to depict personally meaningful 

information in visual ways that support everyday users in both everyday work and non-work 

situations” (Pousman et al., 2007). Here, the purpose of infovis shifts beyond expert user 

populations and complicated interactive visualizations to everyday uses and user populations. In 

particular, Pousman et al. note four differences between traditional infovis and casual infovis: 

                                                           
7 Spatialization refers to the spatial layout of data. Some data has an inherent spatial dimension such as that from 

Geographic Information System (GIS) or three-dimensional medical images. Other, more abstract data (e.g., text 

documents) is not related spatially; however, spatialization (e.g., graph layouts) can still be used to cluster and organize data.  
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 User Population: The user population is enlarged to include a broad spectrum of users from 

novices to experts. Users are not necessarily experts in analytic thinking or in reading 

visualizations. 

 Usage Patterns: Usage extends past work to encompass all parts of life. The visualizations 

can be designed for momentary and repeatable usage (over weeks, months or years) or 

contemplative (long, thoughtful interactions). 

 Data Type: The data is typically personally important and relevant as opposed to work-

related, which means that a user’s relationship with the data is often more tightly coupled. 

 Insight: Card et al. (1999) define infovis as visualizations that intend to amplify cognition and 

provide insight. Pousman et al. (2007) argue that casual infovis systems provide insights that 

are different in kind and purpose from traditional systems. These insights include analytic 

insight, awareness insight, social insight, and reflective insight. Each of these insights are 

possible with eco-feedback systems. 

Casual Infovis is useful to the design of eco-feedback because it, first, links eco-feedback to the 

discipline of information visualization and, as such, provides a useful vocabulary and research 

history with which to draw upon and, second, because it helps provide a design framework with 

which to approach the eco-feedback design process.  We examine the eco-feedback design and 

evaluation process in more detail in Chapters 3 and 4, both of which also refer to work conducted in 

information visualization. 

We now turn towards examining related work specific to the areas of sensing and feedback for 

personal transportation and for water usage. As water takes on a larger role in this dissertation, 

these sections reflect this emphasis proportionally. We also note that a more general review of eco-

feedback in HCI and in environmental psychology can be found in Chapters 3 and 4.  

2.3 TRANSIT SENSING AND FEEDBACK 

We now transition to describing the related work for the sensing and feedback artifacts we created 

and present in Chapters 5, 7, 8 and 9. The work described in this section is directly relevant to 

UbiGreen, the sensing and feedback system for personal transit routines presented in Chapter 6. 

The next section (Section 2.4) describes work relevant to water usage sensing and feedback systems. 

2.3.1 Transit Sensing 

Sensing and inferring human context such as activity, location and movement has long been a goal 

of Ubicomp research. Sensing and inferring transportation modes intersects with all three of these 

in that location and movement are often used to derive the user’s transit activity. Given that this 

dissertation is not offering transportation sensing as a primary contribution, this related work 
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section will be brief in comparison to the water sensing section. In addition, although algorithmically 

our approach to inferring a user’s transit mode is rather simple, the key differentiator from past 

work is the way in which we integrate multiple sources of data from a wearable sensor, cell towers, 

and user self-report. Our focus here, then, is predominantly on sensing methods for inferring 

transportation modes rather than a deep review of the classification algorithms used to do so. 

There have been two primary application drivers for sensing and inferring transportation modes: 

physical activity monitoring (e.g., Consolvo, 2008) and eco-feedback systems (e.g., Mun et al., 2009). 

As Reddy et al. (2010) note, both of these areas require high accuracy from the underlying transit 

mode classification system. For example, in an application such as UbiFit, designed to track and 

encourage fitness activities (Consolvo et al., 2008), automatically classifying a run as a bicycle ride or 

motorized transport could significantly affect caloric expenditure estimates and undermine user 

confidence in the application. Similarly, for eco-feedback applications, offering CO2 emission 

estimates and recommending appropriate alternative transit is contingent on the underlying sensing 

and inference system being able to track vehicle usage versus alternative, more environmentally 

friendly forms of travel. Defining “high accuracy” in these contexts is an open research area and is 

dependent on a specific application’s needs. Reddy et al. (2010) stipulate that in order for their 

Personal Environmental Impact Report (PEIR) system to perform appropriately, transit mode 

classification accuracy has to be above 90% (Mun et al., 2009). For UbiGreen, we did not empirically 

test and validate the accuracy of our hybrid sensing approach (though our techniques were primarily 

based on vetted algorithms from Lester et al., 2006 and Sohn et al., 2006). Instead, we simply 

allowed the user to self-report transit activities to compensate for inaccurate or unavailable transit 

inference. 

Four sensing techniques are commonly used to sense a user’s transit mode: (i) beacon-based 

sensing (LaMarca et al., 2005); (ii) GPS-based sensing (Zheng et al., 2008); (iii) body-worn or 

“wearable” sensing (Parkka et al., 2006);  or a (iv) hybrid approach that incorporates more than one 

of the previous three techniques simultaneously (Lester et al., 2008). Each of these approaches 

varies in complexity, power requirements, and user burden (e.g., wearable sensors require that the 

user remembers to wear the sensor and that s/he is able to properly place it on his/her body). 

UbiGreen employs a hybrid approach to tracking users’ transportation modes. This includes a 

wearable sensing system, the Intel Mobile Sensing Platform (MSP) (Lester et al., 2005; Choudhury et 

al., 2008), for inferring physical activities such as walking, running, and bicycling as well as beacon-
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based sensing and user self-report to track vehicle driving, bus riding, and train riding. It is important 

to note that UbiGreen was developed and evaluated in 2007 and 2008. At the time, there were few 

published works on automatically identifying and discriminating a user’s transit mode, and even 

then, most of this research was evaluated on a relatively small scale. In addition, although the 

mobile phone has long been touted as the ideal platform for sensing and inferring physical human 

activity, only recently have mobile phones begun to integrate sensors such as accelerometers, GPS, 

and gyroscopes, which are important to activity inference systems. In 2007, these sensors were not 

available within the mobile phone itself and thus required an external wearable sensing platform. 

Below, we review the transit sensing and inference literature organized around the three 

approaches: (i) beacon-based sensing; (ii) GPS-based sensing; (iii) wearable sensing. 

2.3.1.1 Beacon-Based Sensing 

Beacon-based location sensing systems rely on fingerprinting ambient radio signals to infer a user’s 

location (Bahl and Padmanabhan, 2000; Krumm et al. 2003; LaMarca et al., 2005, Varshavsky et al., 

2007). Unlike GPS-based sensing, which provides geographic coordinates (e.g., latitude and 

longitude) to locate a user’s position, beacon-based sensing systems must use a pre-existing lookup 

table to translate the sensed radio signals (“fingerprints”) into geographic coordinates. For example, 

in Placelab (LaMarca, 2005), WiFi Service Set Identifier (SSID) codes along with signal strengths are 

used by clients to lookup the location of these beacons in a locally cached map and estimate their 

own position. This process, of course, requires that fingerprints for these beacons exist in the lookup 

table and that the beacons’ physical, geographic locations are known. If geographic coordinates do 

not exist for those fingerprints in the lookup table, the user’s location is returned as unknown. In the 

past, these lookup tables were constructed by “war-drivers” who would drive around cities with GPS 

receivers and upload the coordinates of the radio fingerprints. Now, with the widespread availability 

of GPS in phones and other devices, these lookup tables are often built automatically and 

dynamically over time.  

Before large-scale adoption of GPS in mobile phone devices, beacon-based sensing was cast as the 

cheapest and easiest way to determine a user’s position (LaMarca et al., 2005). However, even in 

modern smartphones, beacon-based sensing is still used because of its ability to work indoors, in 

urban canyons, and because it can use less power than GPS. Companies such as Skyhook Wireless8 

provide commercial APIs for translating sensed WiFi beacons (SSID codes and signal strengths) and 

                                                           
8 http://www.skyhookwireless.com/ 

http://www.skyhookwireless.com/
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cell tower beacons (a GSM cell id and signal strengths) into location data. These sorts of services are 

used in Apple iPhone and Google Android devices to provide a layered, hierarchical location system 

that relies on a combination of GPS, WiFi, and cell tower signals to achieve the greatest location 

accuracy depending on signal availability. 

In addition, depending on what type of human activity/location inference is required, geographic 

coordinates can be unnecessary. For example, beacons can be used to track time spent in a location 

or to recognize when a user arrives at a location that s/he has been at before (Hightower et al., 

2005). Note that “location” here does not mean geographic location but rather a unique radio signal 

fingerprint location (a “virtual” location in the physical world). Along similar lines, beacon-based 

sensing has also been used to infer a user’s motion (Krumm, 2004) and even transportation modes 

(Sohn, 2006). UbiGreen builds off work by Sohn et al. (2006) by utilizing cell tower radio information 

to infer the user’s transit mode. However, whereas Sohn et al. relied solely on cell tower signals, we 

also incorporated data from a wearable sensor (the MSP) and user self-report. In addition, 

algorithmically, Sohn et al. utilized cell tower ids and differences in signal strengths to classify 

motion into four discrete categories: stationary, walking, fast walking and vehicle transit. In our 

case, because the MSP provided activity classification estimates for stationary, walking, running and 

bicycling, we relied on the cell tower signals to distinguish vehicle-based transit (i.e., fast motion) 

from these slower modes of movement. In addition, rather than focusing simply on the differences 

in cell tower strengths over time, we also specifically incorporated the rate-of-change of the seven 

visible cell towers seen by the phone into our classification algorithm. A similar approach was taken 

by Mun et al. (2008) but they monitored the rate-of-change of only a single connected cell and 

complemented this with WiFi beacon data. 

2.3.1.2 GPS-Based Sensing 

With the increasing prevalence of GPS in mobile phones and consumer electronics, GPS-based 

activity recognition has received considerable research attention including using GPS streams to 

extract and identify an individual’s significant places (e.g., their home, their work) (Ashbrook and 

Starner, 2003; Liao et al., 2005), to predict a person’s movement or destination (Patterson et al., 

2003; Krumm, 2006; Froehlich and Krumm, 2008) and to model and infer a user’s transportation 

mode (Patterson et al., 2003; Liao et al., 2004; Zheng, 2008). For example, Patterson et al. (2003) 

used GPS tracks to classify a user’s mode of transportation as either “bus”, “foot”, or “car”, and to 
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predict his or her most likely route. However, GPS was not available as an embedded sensor within 

mobile phones at the time we created UbiGreen and thus not used by our system.  

2.3.1.3 Wearable Sensors 

In contrast to beacon-based or GPS-based sensing approaches which are often mediated through a 

mobile device such as a phone, wearable sensors require that the user “wear” a sensor (or sensors) 

to infer human activity. Although potentially burdensome to the user, the benefit is often higher 

classification accuracies and more fine grain sensing than the previous two approaches. In UbiGreen, 

users wore the MSP on their waist. The MSP is a pager-sized device that combines an Intel XScale 

processor with an accelerometer, barometric pressure sensor, light sensors, humidity sensors, and 

microphone (audio was not used in UbiGreen) to infer a set of trained human activities such as 

walking, stair climbing, or running. In laboratory studies, the MSP was capable of classifying sitting, 

walking and jogging and riding a bicycle at rates of above 90% when trained on a total of ten 

activities (Lester et al., 2005). For UbiGreen, we trained the MSP to recognize stationary, walking, 

running and bicycling activities. In addition to UbiGreen, the MSP has also been used in projects 

tracking and supporting health and wellness (Consolvo et al., 2004; Consolvo et al., 2008; Denning et 

al., 2009) and to categorize how human activities relate to space (Lester et al., 2008).  

Other relevant wearable sensing work for determining human transit activities includes Farringdon 

et al. (1999) and Randell and Muller (2000), who have created systems that use a single 

accelerometer to infer stationary, walking, and running activities. Researchers have also looked at 

using multiple sensors placed at different positions on the body to improve recognition accuracies 

(e.g., Bao and Intille, 2004; Saponas et al., 2008). Recently, specialized commercial devices are 

emerging for sports and fitness tracking. The FitBit9 and Phillips DigitalLife10 sensors incorporate 

multi-axis accelerometers to provide a convenient (orientation agnostic) method to infer coarse-

grained activity levels (e.g., sedentary, active, vigorous). Although these commercial offerings are 

cheap and convenient, they do not attempt to infer a user’s particular activity or transit mode. 

2.3.2 Transit Feedback 

Although there has been considerable research attention applied to activity recognition and transit 

mode inference, much less work exists around building actual applications on top of these inference 

systems. This both speaks to the remaining challenges in reaching high classification accuracy levels 

                                                           
9 http://www.fitbit.com/ 
10 http://www.directlife.philips.com/ 

http://www.fitbit.com/
http://www.directlife.philips.com/
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to enable these applications (as noted by Reddy et al., 2010) as well as the difficulty in building and 

evaluating these applications in the field. More than 2.5 years have passed since the publication of 

UbiGreen (Chapter 5), and, to our knowledge, no other systems have emerged that track and 

feedback information about a user’s various transit routines from walking to vehicle-based transit. 

However, UbiGreen is just one of a long line of information technologies built to support alternative 

transit decision making. We review these tools below. 

OneBusAway (Ferris, 2010) is a web- and phone-based transit tool that provides real-time arrival 

information for bus riders. Ferris et al. showed that OneBusAway users were more satisfied with 

public transit, experienced decreased waiting times, and had increased feelings of safety while 

waiting for the bus. WalkScore is a website that calculates the “walkability” of cities and 

neighborhoods based on proximity to amenities in nine different categories including grocery stores, 

restaurants, parks, schools, cafes, and libraries. Whereas OneBusAway is meant to provide real-time 

bus transit information to city residents in order to inform their transit choices in situ, WalkScore is 

meant as a planning tool to help people decide where to live and for city planners and governments 

to make improvements on land use. Tools like OneBusAway and WalkScore are complementary to 

UbiGreen; UbiGreen could be improved, for example, by having better decision support to help 

people make greener choices. UbiGreen could recognize that a bus route exists for a user’s 

commute route and explain the costs/benefits of taking the bus versus driving in terms of time, 

money, and the environment. 

While the tools above are useful to inform and support greener transit decisions, they are not 

particularly useful once the user has already decided to drive or is already in the car. A large body of 

research exists around feedback interfaces to support “eco-driving”—that is, driving that is non-

aggressive, smooth, and avoids rapid acceleration. Past work has shown that drivers could reduce 

fuel consumption by ~15% without increasing trip time simply by reducing acceleration levels and 

driving more gently (Evans 1979; Waters and Laker, 1980). Van der Voort et al. (2001) applied these 

findings to create one of the first systems that automatically measured driver behavior and fed back 

information and suggestions to encourage more fuel efficient driving. Since then, a number of 

researchers in HCI and transportation research have investigated in-car dashboard displays to 

change driving behavior in order to increase fuel efficiency (Adell, 2008; Graving et al., 2010; Kim, 

2011; Larsson, 2009). Many elements of these systems are now in modern vehicles such as the 

Toyota Prius, Ford Smart Gauge, and Mercedes-Benz BlueEfficiency fuel economy display. For a full 
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review, see these two reports by the Department of Transportation: Fuel Economy Driver Interfaces: 

Design Range and Driver Opinions by Jenness et al. (2009) and Fuel Economy Driver Interfaces: 

Develop Interface Recommendations by Manser et al. (2010). A slightly different approach was taken 

by Ganti et al. (2010), who created a system called GreenGPS that recommended the most fuel 

efficient routes to a particular destination (based on user contributed onboard diagnostic OBD-II 

data). GreenGPS and the interfaces focused on influencing more fuel efficient driving behaviors 

could work in tandem. 

In summary, to our knowledge, no tools exist that sense and feedback information about transit 

routines in order to promote greener decisions. However, the other tools covered in this section 

could be integrated into future UbiGreen designs (e.g., by integrating personalized suggestions 

about alternative transit opportunities based on sensed routines). 

2.4 WATER 

We transition now from work related to sensing and feedback for personal transportation to water. 

Before we discuss specific relevant water sensing and feedback techniques in particular, we first 

provide background on water as a resource, the hydrologic cycle and existing approaches to water 

demand management. Although such work falls outside the scope of traditional HCI and Ubicomp 

research, it is directly relevant to the design of water-based eco-feedback systems as it provides 

motivation, scope, and context. As we have argued previously (Froehlich et al., 2010), it is critically 

important for eco-feedback designers/researchers to educate themselves in the environmental 

domain related to their target behaviors.  

2.4.1 Water Consumption Background 

Water is the most common substance on earth—two-thirds of the earth’s surface is covered by 

water. Less than one percent of this, however, is drinkable: roughly 96.5% is ocean water, 1.7% is 

frozen in polar ice, and 1% is too brackish to drink, which leaves 0.8% in lakes, rivers, wetlands, in 

the ground and in the atmosphere (Glennon, 2009).  Although these percentages can change, the 

total amount of water on earth is fixed—neither growing nor shrinking (Gleick, 2009). As Glennon 

notes, “We are drinking the same water that dinosaurs did” (2009). The amount of water on earth is 

not changing, but its location, quality and amount per person is changing. As populations grow, per-

capita water availability is declining. And, as the world’s climate changes, so too do precipitation 

patterns, glacial and ice snowpack, and the availability of surface water, which will greatly impact 
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traditional water supply sources and further increase the cost of finding new ones (Gleick, 2009). 

Moreover, while water scarcity is a global problem, it is felt most acutely on the regional level. This 

is because water, unlike energy, is difficult to transport. Thus, those cities that are experiencing 

rapid population influxes and growth in industries are often struggling to meet new water demand. 

And, what’s worse, many of these newly thriving regions have traditionally had limited access to 

freshwater: cities like Las Vegas, NV and Beijing, China. 

2.4.1.1 Water as a Resource 

Before discussing where water comes from, where it goes, and the role that residential consumption 

plays in this hydrologic cycle, it is worth delineating the ways in which water is a unique resource. 

This differentiation is useful both to emphasize its value to us as humans as well as to highlight 

particular characteristics not found in other home resources such as electricity and gas, which have 

largely been the focus of much past eco-feedback research (as we note in Chapter 3 more 

specifically).  

Water is a unique natural resource with a combination of characteristics that differentiate it from 

any other good. (1) Water is essential. Water is a fundamental ingredient of life—without water, 

there is no environment, there is no life. As Savenije (2002) notes, “there is no human activity that 

does not depend on water.” (2) Water has no substitutes or replacements. Unlike the energy 

supplied to our homes, which can be derived from multiple sources (e.g., solar, nuclear, coal, 

hydroelectric), there is only one water. (3) Water cannot be produced or manufactured. Currently, 

there are no economically viable methods to produce water. Desalination, which is often cited as a 

way to “manufacture” water, does not produce new water but rather converts salt water to fresh. 

However, desalination is extremely energy intensive and expensive and currently constitutes less 

than three one-thousandths of the US water supply (Glennon, 2009). (4) Water is difficult to 

transport and convey making it expensive to geographically shift large quantities. (5) Water moves—

unlike other resources, water flows and is unequally spread in space and time, making water 

plentiful in some regions and scarce in others. In addition, this movement makes water difficult to 

divide for equitable use as it flows across geo-political boundaries (Clarke, 1991). Finally, (6) unlike 

other resources such as electricity and gas, the water supplied to buildings is not consumed—just 

transformed and contaminated, which requires its own infrastructure to move away from buildings 

and treat. The preceding list was largely compiled from Grimble (1999), Savenije (2002) and 

Blanksby (2006) (exceptions noted with particular citations). 
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2.4.1.2 Consumptive versus Non-Consumptive Use 

An additional difference not noted above, which deserves its own subsection both because of its 

complexity as well as its relation to residential consumption, is that water is, rather remarkably, 

both a “renewable” and “non-renewable” resource. We do not destroy water when we use it; we 

simply change its character and its location (Glennon, 2009). When farmers water their fields, the 

crop absorbs some water, some water evaporates into the atmosphere, some of the crop’s leaves 

emit water into the atmosphere via transpiration, and some percolates into the ground eventually 

reaching aquifers (Glennon, 2009). As Glennon (2009) states, “This hydrologic cycle begs an 

important question: if our water supply is fixed and we can neither make nor destroy water, how 

can we run out of it?” The answer lies in what water scientists distinguish as “consumptive” vs. 

“non-consumptive” use. 

A consumptive use of a resource is one that expends or transforms a resource such that it can no 

longer be used. Practically every use of petroleum, for example, is consumptive; once the energy is 

extracted and consumed, it is no longer usable (Gleick, 2010). Water is different. Consumptive uses 

of water make water unavailable for immediate or short-term reuse—for example, within the same 

watershed. Consumptive uses of water include that which has been evaporated, transpired, 

incorporated into products or crops, heavily polluted, or consumed by humans or animals (Gleick, 

2010). In the domestic sector, outdoor water usage is largely consumptive as is the water used for 

drinking and cooking (Gleick et al., 2008; Vickers, 2001). In all, about 100 billion gallons of water are 

used consumptively by irrigation, industry, and residential sectors each day (Gleick, 2001a). 

There are also many non-consumptive uses of water. The water used for cooling in the 

thermoelectric power industry, for example, is mostly non-consumptive. In the domestic sector, 

water that flows down the drain—e.g., water used for washing or flushing—is  non-consumptive but 

only if the sewage water is properly collected and treated (Gleick, 2010). In addition, depending on 

the source and location of the water supply, even non-consumptive uses of water can become 

consumptive. Glennon (2009) provides the example of municipalities near coastal areas that pump 

groundwater, deliver it to residents, treat the resulting sewage, and dump the treated water into 

the ocean. This once potable freshwater then becomes unavailable for use until it evaporates off the 

ocean, infiltrates the ground, and percolates into an aquifer, where it can be pumped back into the 

water supply by the municipality (this process may take from years to centuries (Winter et al., 

1998)). Thus, water scarcity is often a function of timing and location, which is compounded by 
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growing population and demographic shifts (Glennon, 2009). Given this distinction, where does our 

water come from, where does it go, why is it abundant in some places and scarce in others, and 

what role does residential water consumption play? 

2.4.1.3 Where Does Our Water Come From and Where Does it Go?  

In the United States, freshwater makes up 85% of all water withdrawals—the remaining 15% is 

saline water mostly used to cool thermoelectric power plants (U.S. Geological Survey, 2011). Of all 

the freshwater in the world, 68.7% is locked up in glaciers and icecaps, 30.1% is ground water and 

just 0.3% is from surface water such as lakes and rivers (U.S. Geological Survey, 2011). Most of the 

water we drink comes from these surface water sources—which can be overdrawn or polluted 

leading to water scarcity.  

On average, about 410 billion gallons of water per day (Bgal/d) are withdrawn for use in the United 

States. As shown in Figure 2.1, the top three water use categories comprise 91% of this daily 

average: thermoelectric power (49%), irrigation (31%) and public supply (11%). However, water use 

by thermoelectric power plants is for cooling and is largely non-consumptive, since nearly all of the 

large volumes of water withdrawn are returned to the source (albeit with some environmental 

consequences, e.g., thermal pollution). Agriculture comprises 31% of water withdrawals in the US 

(behind thermoelectric), but it is the number one consumer of water worldwide (Gleick, 2001b). 



34 

 

 
Figure 2.1: Water withdrawals by category in the United States. The US Public Supply accounts for 11% of total 

use, 56% of this is domestic. Self-supplied domestic (i.e., well water) is its own category and accounts for 1% of 

total water withdrawals. Altogether, domestic water accounts for the third highest use in America (~7%). 

 

The focus of this dissertation is largely on domestic or residential use, which falls under two 

categories: public and self-supplied domestic (e.g., well water). Approximately 258 million people 

rely on public water supply for their household use (86% of the US population); the remaining 14% 

(42.9 million people) supply their own water (e.g., via wells) (Kenny et al., 2009). The domestic 

sector is not the only user of public supply water, but it is the largest user (56%). These percentages 

vary from state to state based on local economies and population demographics. For example, 

Iowa’s domestic sector accounts for only 40% of publically supplied water (the minimum amount 

across the US) while Maryland’s domestic sector uses 79% (the maximum). Following the domestic 

sector, the industrial, public use11 and commercial sectors comprise 12%, 15%, 17% respectively of 

total public supply use. Overall, public supply water represents about 13 percent of total freshwater 

withdrawals in the US and 21 percent of all withdrawals not including thermoelectric power (Kenny 

et al., 2009). 

                                                           
11 Public use should not to be confused with public supply. Public use is a type of public supply use, which encompasses 

water use from pools, parks, and municipal buildings as well as water used in wastewater treatment.  
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The above data is heavily focused on water use patterns in the US. Water use is highly regionalized 

and depends on socioeconomics factors, population densities, amount of available arable land, local 

industry and countless other factors (see Chapter 6). In Europe, for example, the residential sector 

accounts for a significant portion of freshwater withdrawals from surface and ground water sources. 

Domestic water use accounts for an average of 25.3% of freshwater withdrawals with variation 

ranging from 3% in Bulgaria to 78% in Lithuania (Gleick et al., 2008). In Nigeria, residential water 

consumption accounts for 80-93% of total water consumption (Jeffrey and Geary, 2006). 

According to the USGS (Kenny et al., 2009), overall water usage in the US has actually declined from 

peak levels in the late 1970s and early 1980s. Most of this decline has come from thermoelectric 

power and irrigation, the two largest uses of water, which have largely stabilized or decreased since 

1980. The reduction in thermoelectric and irrigation use is likely due to increased costs of water, 

reduced water availability, and changes in technology, which have improved water efficiency. 

However, withdrawals for public-supply and domestic uses have steadily increased since the USGS 

started collecting data in 1950.  

2.4.2 Why Residential Water Use? 

Although domestic water consumption is a relatively small portion of overall water use in the US 

(Kenny et al., 2009), water research scientists argue that it warrants close attention. Peter Gleick, 

one of the world’s preeminent scientists working on global water issues and a MacArthur Fellowship 

award winner, is also the author of a respected biennial report on water called The World’s Water 

(Gleick et al., 2006; Gleick, et al., 2008). In the 2006-2008 edition, Gleick et al. (2006) note that 

municipal water supplies are critically important because they are traditionally the primary drivers 

for new water acquisitions and require significant capital expenditures to build and maintain water 

infrastructure. Gleick et al. also note that in the western United States, where water is scarce and 

largely allocated, new sources of water can be difficult to obtain for domestic use and those that can 

be obtained have high costs—both economically and environmentally. Consequently, he 

recommends, municipalities need to identify ways of using existing water resources more effectively 

rather than finding new supplies. Figure 2.2 shows the variations in domestic per capita water use 

by state—note the wide variation in use from Nevada (190 gallons) to Maine (54 gallons) and the 

concentrations of high use in the western and southern parts of the United States.   
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With overall increases in population and more homes being built, the demand for domestic water 

across the world is increasing (Strang, 2004). Global population will reach 7 billion sometime in 

2011, just 12 years after reaching 6 billion. Today's world population is double the population in 

1967 (Population Reference Bureau, 2011). Although the overall population growth rate has recently 

slowed, the population is still growing, and growth rates in some countries show little if any decline 

(Population Reference Bureau, 2011).  

Increased water demand from growing population is not the only problem; the concentration of 

populations in urban areas is exacerbating the issue. For example, between 1950 and 1990 the 

number of cities with populations of more than 1 million increased from 78 to 290 and this is 

expected to exceed 600 by 2025 (Serageldin, 1995). This population growth in cities is not simply 

due to lower mortality rates or higher birth rates. Instead, much of it is due to migration of the rural 

population to urban centers. In 2006, for the first time in history, the number of people living in 

cities surpassed the number of people living in rural areas (Barlow, 2007). And, unfortunately, many 

people are migrating from where there is water (e.g., the Midwestern United States) to where there 

isn’t (e.g., the Southwestern United States) (Glennon, 2009).  

The southwestern region is of particular concern in the United States. The growth rates are so high 

in many southwestern cities that projections indicate some areas will see demand exceed supply by 

2025 (Campbell et al., 2004). Between 1920 and 2000, for example, population growth in the seven 

states that share the Colorado River grew nearly 800%; today, the Colorado River basin is home to  

50 million people, 92% of which live in urban areas. This is expected to grow to 73 million people by 

2030 (Gober and Kirkwood, 2010). What’s worse, these areas tend to use the most water because 

their arid climates cannot support lawns and gardens from precipitation alone. Many regions across 

the world are facing similar scenarios.  
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Figure 2.2: Total domestic per capita water use in gallons per day by state (includes both self-supplied and public 

supply). Data from Kenny et al. (2009). 

China, for example, is home to 21 percent of the world’s population but has just 7 percent of the 

world’s water (Lippert and Efstathiou, 2009). Last year, the government in Beijing, a city long faced 

with water shortages, began melting snow with high-powered heaters to provide potable water to 

its population of nearly 20 million and growing (PhysOrg, 2009). Such drastic government 

involvement is not just common in developing countries. In 2008, Barcelona, Spain and its 

metropolitan region suffered one of the worst water crises of the last 50 years. Low rainfall in 2007 

had caused a dramatic decrease in the water stored in the local reservoir system (Domene and 
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Sauri, 2006). Consequently, the local government began importing water by tanker ship at a cost of 

$35 million per month to meet domestic water demand (which represents over 65% of total 

consumption in the area) (Corbella and Pujol, 2009; Crawford, 2008). 

The United States is not immune to such water shortages either—thirty-five of the lower forty-eight 

states are embroiled in water disputes (Glennon, 2009). Las Vegas, one of the fastest growing cities 

in the US, is built in the middle of a desert. Lake Mead, which supplies 40% of Las Vegas’ water, is 

estimated to drop below intake pipes in the next five years (Lippert and Efstathiou, 2009). The water 

authority in Las Vegas is going to unprecedented lengths to promote water conservation, including 

paying people to replace their lawns with desert-friendly landscape (i.e., xeriscaping) up to $300,000 

per year (City of North Las Vegas, 2011). And, although the Southwestern US is the most water 

stressed region, other parts have suffered from water shortages. In 2007, the town of Orme, 

Tennessee ran out of water due to drought (Glennon, 2009; Associated Press, 2007). The city of 

Orme began trucking its fresh water in from Alabama. The town was supplied with water between 6 

and 9 every evening. 

“You never get used to it,” says Cheryl Evans, a 55-year-old who has lived in town all her 

life. “When you’re used to having water and you ain’t got it, it’s strange. I can’t tell you 

how many times I’ve turned on the faucet before remembering the water’s been cut.” 

“You have to be in a rush,” she says. “At 6 pm, I start my supper, turn on my washer, fill all 

my water jugs, take my shower.” 

Thus, it is of critical importance that domestic water be used efficiently. Unfortunately, this is not 

often the case—people are typically unaware of their consumption patterns and the affects this 

consumption has on the environment. The following example provided by Hadhazy (2008) illustrates 

this rather well: In 2007, Atlanta was suffering from one of its worst droughts in a century; a large 

home owned by a wealthy businessman consumed 440,000 gallons of water in one month alone. 

After public outcry (including newspaper stories calling him out directly), the property reduced its 

monthly usage to 12,000 gallons a month—about what an average US family of four consumes 

during the same period. Although admittedly this is an extreme case, it demonstrates first that there 

is a lack of awareness about water usage and that water usage can be reduced with some form of 

intervention such as eco-feedback systems. 
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2.4.3 Water Management Programs and Strategies 

Historically, water management policies have focused on meeting demand through increased 

supply: build large-scale, government subsidized infrastructure to provide water to growing 

populations (Gleick, 2010). These policies were seen as necessary to support and encourage 

population expansion and economic growth, yet they tended to encourage infrastructure with 

excess supply and quality for many routine uses, such as toilet flushing and garden watering (Jeffrey 

and Geary, 2006). Vairavamoorthy (2006) and others (e.g., Gleick, 2010) cite this supply oriented 

approach as a reason why there has historically been limited innovations in demand management 

and water conservation. Attempts to restrain or qualify water use either through fiscal, legislative, 

or technological means, have usually only played a role in times of drought events (Jeffrey and 

Geary, 2006). However, as many of the most accessible water sources in cities have already been 

developed, the cost of developing new sources or expanding existing ones is increasing 

(Vairavmoorthy, 2006). This has resulted in large scale efforts by water suppliers and governments 

to introduce Demand Side Management (DSM) campaigns to curb excessive use and create a more 

efficient water delivery infrastructure. These campaigns usually involve a combination of 

approaches including economic incentives and disincentives, regulatory policies, education and 

voluntary action (Inman and Jeffery, 2006; Gleick et al., 2008, p106). 

Before reviewing these approaches in more detail, it is useful to provide some background on water 

usage rates in North American households. For example, what’s a reasonable amount of water 

usage per capita and what sort of target should water suppliers set for their efficiency goals? As we 

saw in the previous subsection, water usage is highly regionalized and dependent on a number of 

socioeconomic and cultural factors (these are reviewed in more detail in Chapter 6). However, 

setting these dependencies aside, scientists have attempted to calculate the minimum water usage 

requirements for humans including drinking, cooking, bathing and sanitation. Maude Barlow, the 

author of Blue Gold (Marlow and Clarke, 2002) and Blue Covenant (Barlow, 2007) and a staunch 

advocate of water as a political and social right, calculates a “water lifeline” at 6.5 gallons per day. 

Gleick (1998) argues that it takes a minimum of 13 gallons of water per day per person.  

To place these numbers in context, Las Vegas, NV uses 165 gallons per capita per day, Atlanta, GA, 

91 gallons, and Seattle, WA, 63 gallons (Figure 2.3). The national average is 101 (Vickers, 2001). We 

are not advocating that eco-feedback or other conservation management strategies should aspire to 

the minimum usage rages (e.g., 6.5 gallons per capita per day), but these numbers do serve to 
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highlight the disparity between necessity and comfort and, perhaps, the differences that are due 

both to context (e.g., local climate) and behavior. Vickers (2001) offers a more reasonable goal of 

43-45 gallons per capita per day for a water efficient household.  

 
Figure 2.3: Domestic per capita water use in gallons per day by city. Data for Las Vegas, Los Angeles/San Diego, 

Tucson, and Albuquerque from Cooley (2007); data for Seattle, Atlanta and “Potential Indoor Efficient Use” from 

Gleick et al. (2008); the rest of the data is from Glennon (2009, pages 174 and 230). 

With these estimates providing a target for efficient use, we now turn towards our brief review of 

DSM programs. These programs are split between non-pricing and pricing strategies. Eco-feedback 

would traditionally fall under the former category; however, it could also be used to provide 

residents with information on time-of-use pricing and other cost information, which intersects with 

the latter category. We discuss both strategies in turn. 

2.4.3.1 Non-Pricing Strategies 

Due to political opposition, equity concerns, legal limitations and a host of other reasons, water 

utilities are frequently reluctant to rely completely on price to control for demand (Kenney et al., 

2008). Thus, the following strategies are often implemented in conjunction to produce both 

temporary (e.g., drought-motivated) and permanent reductions in consumption. These strategies 

are generally grouped into three categories: educational, legislative, and technological—however, 

all three interact together in some way. 

Educational 

Research into educational programs and informational campaigns has found that they can be 

modestly successful, particularly in the short-term (Michelsen et al., 1999; Syme et al., 2000). These 

educational programs tend to be implemented via flyer inserts in bills, radio or television spots 
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(particularly during droughts), school visits, residential audits, or the use of other media (e.g., 

billboards) (Michelsen et al., 1999). In a literature review of the effects of informational campaigns 

to promote household water conservation, Syme et al. (2000) note that there are few formal 

evaluations of such campaigns on water use and most that do exist, are short-term evaluations used 

during drought situations. In both of their literature reviews, Michelsen et al. (1999) and Syme et al. 

(2000) show that educational/informational campaigns can be successful but that it is difficult to 

tease out statistical significance attributable to these campaigns because of confounding factors.  

As we note in Chapter 3 and 4, eco-feedback, in general, can educate the consumer by providing 

active feedback for usage amounts and patterns that are otherwise latent and inaccessible. An eco-

feedback system could also incorporate “tips” or educational materials more explicitly in the display, 

which could be personalized to the consumption habits sensed in the home (e.g., “it seems as 

though you regularly water the lawn during mid-day, it would be much more efficient if you watered 

in the morning or evenings”). In Chapter 9, we discuss how one emergent theme in reactions to our 

eco-feedback displays was oriented around their educational potential, particularly for children to 

learn about resources in the home and concepts around conservation.  

Legislative 

Legislation can be used to reduce water use through mandatory or voluntary restrictions, to 

mandate new plumbing codes, and to mandate new fixture/appliance efficiency measures. The 

literature is consistent in showing significant (sometimes 30% or more) savings from mandatory 

restrictions (e.g., outdoor lawn watering programs); however, findings from voluntary restrictions 

are much more variable. See Kenney, 2008 for a review. 

In the United States, the Energy Policy Act of 1992 (H.R.776, 1992) mandated improved water use 

efficiencies for fixtures such as toilets, faucets and showerheads. More recently, the US EPA has 

sponsored the WaterSense program12, which is not a regulatory program but rather a voluntary 

program for manufacturers to meet some threshold of water efficient performance. Manufacturers 

that meet these requirements are able to use the WaterSense label on their product (this is similar 

to the EPA’s Energy Star program for electronic device efficiency13). Such programs have been 

greatly successful in reducing use as we describe in the Technological Measures subsection next.  

                                                           
12 http://www.epa.gov/WaterSense/ 
13 http://www.energystar.gov/ 

http://www.epa.gov/WaterSense/
http://www.energystar.gov/
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Although eco-feedback has traditionally not been mentioned in legislation oriented around resource 

efficiency laws, this is beginning to change. Proposals in English legislation, for example, have 

recently discussed the link between smart meters, occupant behavior, and feedback in reducing 

electricity demand (Darby, 2008). Depending on the success of eco-feedback systems, one could 

imagine that consumer-oriented water, electricity and gas eco-feedback be a mandatory part of 

future building codes just as certain feedback displays are for vehicles (e.g., odometers).  

Technological Measures 

Technological (hardware) measures, or retrofit programs, have great potential in achieving long-

term water savings because they only require a one-time action and require no further effort to 

maintain water savings (Vickers, 2001). A low-flow toilet (1.6 gallons per flush), for example, 

installed to replace a traditional 3.5 gpf model could save around 71,000 gallons of water during its 

average 20 year lifespan (based on the North American average of 5.1 toilet flushes per day per 

person in the home as listed in Vickers, 2001). Gleick (2006) estimates that by replacing all existing 

toilets with low-flow versions in California, the state could save 130 billion gallons of water per year. 

By replacing washing machines with more efficient models, California could save an additional 33 

billion gallons a year. This is approximately enough water for the annual needs of 3 million 

Californians (Glennon, 2009, p 177). Renwick and Archibald (1998) found that installing low flow 

toilets reduced consumption by 10% per low-flow toilet, low-flow showerheads by 10%, and water 

efficient irrigation technology by 11%. According to Vickers (2001), since the early 1990s, NYC has 

saved more than 250 million gallons per day in water and sewer flows through a conservation 

program that included an aggressive low-volume toilet rebate program involving more than 1 

million fixture replacements. 

One challenge with technological measures, however, is that they require time, effort and 

investment on the part of the homeowner—though certainly legislation such as the Energy Policy 

Act of 1992 accelerates the adoption of such technologies, particularly for new homes. For old 

homes, Sarac et al. (2002) note that public response to retrofit programs are typically positive if (a) 

the equipment is offered for free and (b) if the program is high-profile and aggressively managed by 

the water district. However, such retrofit programs may also be rejected on aesthetic grounds or 

due to lack of knowledge or skill in installing a low-flow fixture. In addition, even if households are 

interested in adopting low-flow fixtures, external constraints such as the availability or price of the 

product may prevent them from following through (Jeffrey and Geary, 2006). As such, many water 
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suppliers will offer rebates for low-flow toilets, smart controllers for irrigation, low-flow 

showerheads and appliances, and pool covers. In some cases, water utilities will give away low-flow 

fixtures, such as toilets, particularly to multi-family properties such as apartments or condominiums. 

Eco-feedback systems for water could analyze water usage patterns and offer personalized 

recommendations to home occupants about water efficiency upgrades that would require the least 

effort for the most water savings. In addition, eco-feedback could also be used to identify and locate 

leaks in the home (e.g., a leaky flapper valve on a toilet). We revisit this potential, in particular, in 

Chapter 9. 

2.4.3.2 Water Pricing 

In contrast to the strategies above, water pricing focuses specifically on using market instruments to 

control demand. Setting the price of water, however, involves issues of monopolies, basic human 

rights, equity issues, and, as such, is a research area entirely within itself. Here, we only briefly 

review how water pricing has been used to affect water use.  

In general, water rates are designed to meet multiple objectives and must strike a balance between 

the economic efficiency of a region and the revenue and stability of the water supplier (Hall, 2009). 

Overall, the cost of water in the US is increasing and will continue to increase as water sources 

become increasingly scarce. In the 1980s, water rates increased by about 7% per year, which is 

double the rate of inflation (Jordan, 1999).  

With that said, water remains surprisingly cheap given its essential value to humans. In 2002, the 

average American family spent $474 on water and sewage charges (EPA, 2009), which accounts for 

about 1.1% of the median household income in the US14. Nationwide, Americans pay an average of 

$2.50 per 1,000 gallons ($0.0025 per gallon) (Glennon, 2009, p224). This is less than all other 

developed countries except for Canada where water resources are abundant in comparison 

(Glennon, 2009). Water is actually cheaper than these numbers indicate. In fact, many of us do not 

actually pay for water itself but rather the costs of delivering the water. That is, the water is free 

(Glennon, 2009).  

Interestingly, eco-feedback would only make these low-rates more visible, which could, 

paradoxically, serve to encourage more use rather than less. However, as water rates continue to 

                                                           
14 Calculated based on a median household income of $42,409 in 2002, as quoted by U.S. Census Bureau. Retrieved 2009-

02-28 from http://www.census.gov/hhes/www/income/histinc/h06AR.html 



44 

 

increase and suppliers increasingly rely on price to control for demand, this point will largely be 

mitigated. Below, we review the use and effectiveness of pricing water for conservation.  

Pricing Water for Conservation 

Charging for water on a per unit basis—that is, with payment tied to volumetric use—is generally 

accepted as one of the most effective methods to encourage conservation (Arlosoroff, 1999). For 

example, Glennon (2009) reports on the largest study ever undertaken of how water rates affect 

single-family residential water use in America, which found that water use decreased with water 

price increases. A consistent point of focus in the literature is the attempt to quantify the price 

elasticity of water demand—that is, the economic measure of how demand for water shifts in 

response to price changes (Kenney et al., 2008). Although estimates of price elasticity vary, a review 

by Brookshire et al., (2002) suggests a typical value of -0.5, which means that a 10% increase in 

water price leads to a 5% decrease in consumption. 

While there are many common rate structures used to charge for water, some rate structures have 

been developed specifically to target conservation. Inclining block rates (also referred to as inverted 

block rates or tiered pricing) increase cost with water consumption. Excess use rates, which are an 

extreme form of inclining block rates, trigger an “abusive use” rate that sends a strong price signal to 

the customer to discourage excessive use (Vickers, 2001). Seasonal rates, as the name suggests, vary 

during different periods of the year and are typically higher in the summer to discourage inefficient 

outdoor use. Finally, marginal cost pricing has been a primary topic of research in rate-setting theory 

and water resource management over the last 25 years (American Water Works Association, 2000). 

In contrast to average cost-of-service rates, which charge for the treatment, storage, and delivery of 

water, marginal cost rates incorporate the added cost of producing or acquiring new water supply or 

capacity. These costs are typically higher than the average embedded costs of water and therefore 

often deter excessive water use. 

Despite multiple options for conservation pricing, however, a survey in the year 2000 of water and 

waste water services of more than 2,200 utilities in the US and Canada found that most utilities used 

rate structures that are not conservation pricing scheme: 36% had a uniform pricing structure, 35% 

had a declining block structure where water actually gets cheaper with more use, and only 29% had 

an inclining block structure (Raftelis Environmental Consulting Group, Inc., 2000). There are two 

main challenges with using price and rate structures to control demand: (1) many individuals lack a 

clear understanding of their rate structure and water bill raising difficult questions about which price 
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signals customers actually respond to (e.g., see Billings and Agthe, 1980; Shin, 1985; Jordan, 1999) 

and (2) few customers, if any, receive real-time feedback about their current level of consumption 

and the current rate charged at that level (if on a block rate scheme). Both of these challenges serve 

to further motivate the need for more granular water sensing and feedback systems in the home 

that provide better information on water usage and water cost to the consumer. 

One rate structure not mentioned above, which is particularly dependent on providing real-time 

feedback to customers, is time-of-use pricing. Although seasonal rate structures are a type of time-

of-use pricing, the term “time-of-use pricing” is most often used to refer to pricing that changes 

hourly (or more) to reflect changing supply/demand curves at the utility. Much research exists 

around the benefits of time-of-use pricing for electricity (e.g., Sexton et al., 1987; Borenstein, 2005; 

Newsham and Bowker, 2010) but there are no publications, to our knowledge, that study the effect 

of time-of-use pricing on water usage. The Australian government15 is currently funding a number of 

projects investigating time-of-use pricing for water (e.g., Turner, 2010). Although both energy and 

water have predictable spikes of usage during the day (e.g., peak water usage in residential areas 

occurs in the early mornings), the problem of peak use for energy has traditionally been more 

severe because utilities must import additional capacity (often at a much higher cost) or switch on 

peak capacity generators (e.g., backup coal power plants). More research is necessary to examine 

time-of-use pricing on water but, as Turner (2010) note, such a pricing scheme is contingent on 

feedback systems in the home that can inform occupants about current rates. 

Water Metering 

In order to implement any of the rate structures presented above, water use must be measured. 

Without metering, water suppliers cannot charge based on consumption. In addition to enabling 

pay-per-use, water metering provides both the consumer and the water utility with feedback about 

consumption. Consumers are able to track their usage over time and potentially identify areas of 

overuse and utilities can identify leaks and profligate users.  

There is much evidence to support the impact that water metering has on driving down consumer 

water demand; however, because metering is inextricably tied to billing it’s not possible to isolate 

the role of feedback vs. the role of charging for use in effecting demand. In a review of the effect of 

                                                           
15 Australia is the driest inhabited continent in the world and has experienced a 25% growth rate in the last two decades 

alone (Gregory and Leo, 2003). As such, the Australian government and water researchers therein have been particularly 

aggressive in exploring experimental behavior-based techniques in reducing water demand. 
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household metering on water consumption in Europe and North America, Inman and Jeffrey (2006) 

found savings between 0-56% (the mean reported savings from US programs was 20%). In the UK, 

water metering is far less prevalent than in the US—in 1997, only 10% of homes and 80% of 

businesses were metered.  Thames Water, which supplies potable water to Londoners, had 23% of 

its customer base metered (Thames Water Utilities Limited, 2007). A massive government 

sponsored four year trial of water meters in the early 1990s found that UK households installed with 

meters used 11% less water than those without. This difference was particularly marked on peak 

demand (30% reductions during peak seasons and peak times of day) (Ofwat, 1999; Jeffrey and 

Geary, 2006). 

Although metering is common for single-family households in the US, this is not the case for multi-

family dwelling units such as condominiums and apartments. Because individual units are not 

metered, the building owner pays the water and sewage services directly and a flat fee is 

incorporated into the rent (or building management fees). Mayer et al. (2004b) found that sub-

metering (i.e., metering at individual units) led to a 15.6% reduction in per capita demand.  

The Complexities of Charging for Water 

Given the effectiveness of metering and charging for use, international organizations such as the 

OECD and the European Union have championed the application of market instruments to efficiently 

manage demand (Corbella, 2009). The problem, however, is that many people do not think that 

water should be treated as a pure economic good. In a telephone survey of 2,179 Australian 

households investigating attitudes to conservation and water consumption, Randolph and Troy 

(2008) found that although respondents supported differential pricing based on water consumption, 

a majority (60%) did not think that water prices should be increased to lower water use. 

One issue is that higher water bills, which can curb usage, are less affordable to households that 

have lower incomes. Furthermore, lower-income households may have less ability to reduce 

consumption because of higher household density, lack of capital to purchase and install water-

efficiency devices, and less discretionary use (e.g., lower outdoor consumption) (Beecher et al., 

2001). “Some of the highest water users are young families with a large number of children, or 

people with chronic medical conditions” (Strang, 2004) and, in these cases, there is a converse 

relationship between levels of use and the ability to pay higher bills.  Other concerns involve issues 

of competing motivations on behalf of the water supplier to raise prices—in other words, the 

tension between profit and demand management (e.g., see Duke et al., 2002). 
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In her book, The Meanings of Water, Strang (2004) interviews UK residents and water managers 

about the growing movement to meter households. She quotes a Wessex Water executive who 

states:  

Metering is a very emotive issue, and people don’t like to think that they are paying for 

something which is a free resource, which falls out of the sky and just ‘miraculously’ ends up 

in their tap through umpteen kilometers of pipe work and treatment plants in a condition 

which is not harmful to public health. 

Given this reaction, the Water Industry Act of 1999 in the UK prohibits compulsory metering of 

households except in new homes, in water stressed areas, or during a change in occupancy 

(Howarth, 2006). 

As Michelson et al., 1999 note that although consumers respond to price, the price increases 

necessary to obtain significant reductions are in debate. In addition, associated increases in revenue 

are problematic for water suppliers because of regulatory constraints on not-for-profit organizations 

earning excess revenue. 

2.4.4 Water Sensing 

Automatic identification of home water usage events has largely been pursued by two non-

overlapping efforts: (i) utilities and water resource management scientists and (ii) computing 

researchers; see Table 2.2 for a summary. Utilities and water resource management scientists have 

investigated disaggregation to inform government policy (Mayer et al., 2003), plumbing codes 

(Navigant Consulting, 2010), and to study the effectiveness of conservation programs (Mead and 

Aravinthan, 2009) and low-flow fixtures (Mayer et al., 2002; Mayer et al., 2003). In contrast, 

computing researchers have focused on human activity inference (e.g., Fogarty et al., 2006; Tapia et 

al., 2004) and sustainability applications (e.g., Kim et al., 2008) or both (e.g., Chapters 7 and 8 in this 

dissertation). We draw upon literature across both fields with a focus on four high-level areas: (1) 

sensing and inferring human activity in the home, (2) sensing water flow, (3) automatically 

identifying water usage events, and (4) disaggregating between hot and cold water usage. We 

address each of these related areas in turn. 
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Study 
(year) 

Goal 
Flow 

Measurement? 
Hot/Cold 

Disaggregation 
Class. 

Method 
Classification 

Level 
Sensing 

Ladd and Harrison 
(1985) 

Study residential end uses 
of hot water 

Hot water only, 
inline 

Yes, sub-metered at 
water heater 

Direct 
sensing 

Hot valves only 

Inline flow meters  
(at washer & hot water 

tank) 
Elec. current sensors 

Weihl and Kempton 
(1985) 

Study residential end uses 
of hot water 

Hot water only, 
inline 

Yes, sub-metered at 
water heater 

Direct 
sensing 

Hot valves only 
Inline flow meter  

(at hot water tank) 
Temperature sensors 

Parliamentary 
Office of Science 
and Technology 

(2000).  

Study of residential end 
uses of water. Lead to 

SodCon report.  

Inline meters 
at every fixture 

Unclear 
Direct 

sensing 
Hot and cold 

valves 

Aggregate consumption 
measured in 3,000 homes 

plus every 
appliance/fixture 

monitored via inline 
sensors in 100 homes 

Lowenstein and 
Hiller 
(1996) 

Study residential end uses 
of hot water 

Hot water only, 
inline 

Yes, sub-metered at 
water heater 

Flow-trace 
analysis 

Hot valves only 
Inline flow meter at hot 

water tank 

Mayer, et. al. 
(1999) 

Study residential end uses 
of water. Lead to REUWS 

report. 
Yes, inline No 

Flow-trace 
analysis 

Fixture category 
Inline flow meter with 

magnometer to digitize 
signal 

DeOreo and Mayer 
(2000) 

Study residential end uses 
of hot and cold water 

Yes, inline 
Yes, sub-metered at 

water heater 
Flow-trace 

analysis 
Fixture category 

Dual inline flow meter 
(whole home meter plus 

hot water tank meter) 

Fogarty, et al. 
(2006) 

Activity inference (e.g., for 
elder care applications) 

No No 
Machine 
learning 

Fixture category 
Acoustic sensors on 

intake pipes and drain 
pipes 

Kim, et al. 
(2008) 

Eco-feedback Yes, inline Yes, direct 
Direct 

sensing 
Untested 

(lab study only) 
Inline meter 

accelerometers on pipe 

Chapter 7 
Activity Inference  
/ Eco-feedback 

Yes, calibrated 
from pressure 

Yes 
Machine 
learning 

Valve Single pressure sensor 

Chapter 8 
Activity Inference  
/ Eco-feedback 

Yes, calibrated 
from pressure 

Yes 
Machine 
learning 

Valve 

Tested single pressure 
sensor, dual pressure 

sensor and used custom 
ground truth collection 
system for evaluation 

Chen et al. 
(2011) 

Eco-feedback 
Yes, 15 min 
resolution 

No 
Machine 
learning 

Fixture category 
Inline smart meter (15 

min interval data) 

Table 2.2: A history of residential water sensing for disaggregation purposes sorted by year. 

2.4.4.1 Sensing Human Activity in the Home 

Prior work has demonstrated at least three approaches to the fundamental challenge of sensing 

human activity in the physical world: mobile and wearable sensing, distributed direct environmental 

sensing, and infrastructure-mediated environmental sensing. Promising mobile and wearable 

activity sensing methods include accelerometer-based activity recognition (Bao and Intille, 2004, 

Lester, et al., 2005) and the detection of interaction with tagged objects via a wearable RFID reader 

(Philipose et al., 2004). There are many compelling applications of mobile and wearable methods, 

but they share a common need for a person to be willing to wear or carry the necessary device.  

Environmental sensing systems take a complementary perspective, instrumenting an environment 

to detect activity within it. In the home, distributed direct sensing can be based on computer vision 

(Brunnitt et al., 2000), microphones within the living environment (Chen et al., 2005), many simple 

sensors throughout the home (e.g., reed switches on cabinet doors, accelerometer-based object 



49 

  

manipulation sensors, infrared motion and break-beam sensors: Tapia et al., 2004; Tapia et al., 

2006; Wilson and Atkeson, 2005), or a smaller number of targeted direct sensors (e.g., strain sensors 

under floorboards at strategic locations, Rowan and Mynatt, 2005). Direct sensing provides valuable 

insight into home activities, but comes with practical costs. Installation and maintenance can be 

cost-prohibitive, direct sensing can create privacy concerns and a feeling of stigmatization 

(especially with cameras or microphones), and a littering of sensors throughout a home can be 

problematic with children and pets (Beckmann et al., 2005; Hirsch et al., 2000).  

Infrastructure-mediated sensing has therefore evolved to help address many practical obstacles to 

everyday deployment of home activity sensing, but is inherently limited by what information can be 

practically and reliably extracted from a home’s infrastructure. The limitations of existing 

approaches are especially salient for water. Fogarty et al. used microphones pressed against the 

exterior of a home’s major water pipes (cold water inlet, hot water inlet, waste water exit) to 

demonstrate recognition based on temporal patterns of water use (e.g., the series of fill cycles 

associated with a dishwasher, Fogarty et al., 2006). However, Fogarty et al. (2006) found they could 

not reliably differentiate among multiple instances of similar fixtures (e.g., multiple sinks or toilets 

within a home), could not reliably identify concurrent activities (e.g., a toilet flush while a person is 

showering), and did not attempt to estimate the volume of water being used. They also reported 

difficulties with ambient noise and audio-based sensors (e.g., an air conditioning unit in close 

proximity to a sensor placed on a home’s hot water heater). By addressing these shortcomings, 

HydroSense significantly advances the state-of-the-art for water-mediated home activity sensing. 

2.4.4.2 Sensing Water Flow 

There are two basic approaches for measuring water flow: inline direct flow measurement and non-

intrusive flow estimation. Inline systems typically use either positive displacement or velocity 

measurements to calculate flow. Positive displacement relies on water to physically displace the 

measuring element (e.g., an oscillating piston or rotating disc) in proportion to water flow volume. 

Most residential meters use positive displacement because it is generally accurate at the low to 

moderate flow rates found in the residential sector (Satterfield and Bhardwai, 2004).  

Meters that do not require physical contact with water flow are called non-intrusive. These methods 

are attractive because they do not require pipe modification for installation, which can be costly and 

requires the expertise of a plumber. Non-intrusive flow estimation techniques use either active or 

passive sensing approaches. Many active sensing systems use a non-intrusive actuation probe that is 
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distorted by water flow and perceived by an associated sensor. For example, Ultrasonic Doppler 

Velocimetry (UDV) uses the sound transit time and Doppler shift from pulsating ultrasonic waves 

emitted into the fluid flow to determine velocity (Takeda, 1995). Similar methods have been 

developed using lasers (e.g., Laser Doppler Velocimetry, Foreman et al., 1965). A more recent 

technique, called Particle Image Velocimetry, uses computer vision to record the position of tracer 

particles injected into the stream over time (Adrian, 2004). Although each of these techniques are 

often extremely accurate and can be used to measure flow of dangerous liquids (e.g., hot metallic 

melts), they are intended for industrial applications (e.g., manufacturing plants or large-scale 

irrigation systems) and thus are prohibitively expensive for typical residential users (with units 

ranging in price from $2,000–8,000). 

Lower-cost non-intrusive techniques have been proposed and investigated that use passive sensing. 

Evans et al. showed in a laboratory environment that accelerometers mounted on the exterior of 

water pipes have a strong deterministic relationship to water flow rate (Evans et al., 2004), but this 

is highly sensitive to pipe diameter, material, and configuration. Kim et al. demonstrated the use of 

an aggregate water flow meter together with a network of accelerometers on pipes to infer flow 

rates throughout a home (Kim et al., 2008). Both of these approaches require placement of multiple 

sensors along water pipe pathways that are uniquely associated with each fixture of interest (i.e., 

they are distributed direct sensing methods). 

The next generation of resource measurement systems (often referred to as “smart meters”) will 

soon provide real-time (or near real-time) data on electricity, gas, and water usage in homes and 

businesses. It is unclear, however, if this data will be open or closed (i.e., proprietary) and what 

temporal resolution will be available (most smart meters advertise fifteen minute interval data). For 

those water meters not yet upgraded to their smart meter counterparts, a popular and low-cost 

non-intrusive retrofit has emerged using magnetic sensors. Most residential meters use magnetic 

coupling to transfer data between the rotating disc, which spins proportional to flow rate, and the 

counter unit, which converts this spin rate to flow. Magnetic sensors, such as a hall effect sensor, 

can be placed at the top or bottom of a residential water meter to sense this spinning magnetic field 

and convert the spin rate to flow (e.g., Cheung, 2009; Mayer et al., 1999). AquaCraft16 has used this 

                                                           
16 Aquacraft Corporation: http://www.aquacraft.com. While AquaCraft uses the Meter-Master Model 100EL flow recorder by 

the F.S. Brainard Company to record flow traces on meters, much cheaper solutions are available. DIY’ers such as Ed 

Cheung have created Hall effect based flow trace units for sub $100 (Cheung, 2009).   

http://www.aquacraft.com/
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approach since 1996 to digitize traditional inline water meters and perform flow-trace analysis, a 

technique used to automatically identify water usage events. 

2.4.4.3 Identifying Water Usage Events 

The goal of automatically identifying water usage events in the home has been pursued by utilities 

and water resource management scientists to better understand residential end uses of water. Only 

recently, with advances in technology and reductions in cost, has the ability to measure water at a 

disaggregated level from a single installation point been possible. In 1992, Dziegielewski, et al. 

(1992) proposed what is now the standard water usage event identification technique in the water 

research industry called flow-trace analysis. Flow-trace analysis works by analyzing the aggregate 

flow trace patterns off of an inline water meter to determine the source of the water usage event. 

Flow-trace analysis relies on the fact that most residential water uses exhibit highly consistent 

behavior over time (i.e., a specific toilet will flush with the same volume and flow; similarly a specific 

dishwasher will exhibit the same series of flow patterns each time it is run, Mayer et al., 1999).  

Flow-trace analysis has since been used in a number of government- and utility- sponsored studies 

of residential end uses of water (DeOreo et al., 1994; DeOreo et al., 1996a; Lowenstein and Hiller, 

1996; Mayer, 1995; see also Table 2.2). The most popular of which is a study conducted by the 

American Water Works Association Research Foundation (AWWARF), which used AquaCraft’s flow-

trace analysis toolkit called Trace Wizard to study residential end uses of water in 1,188 households 

across 12 study sites in America and Canada (Mayer et al., 1999). The water data was collected using 

the aforementioned magnetic sensing retrofit solution. The data collection took place in the winter 

and the summer months from 1996 to 1998 and resulted in 1.9 million water usage events. A total 

of four weeks of water data per home was collected in separate two-week intervals. This study 

provided the canonical dataset upon which most US government statistics of residential end uses of 

water are based (Vickers, 2001). That said, as far as we are aware, the accuracy of flow-trace 

analysis has not been comprehensively studied. In the AWWARF study, the authors speculate that 

their system is 90 percent accurate in correctly identifying water usage events (p47 in Mayer et al., 

1999); however, they were not able to offer concrete accuracy statistics as they did not collect 

ground truth data.  

In the only known empirical investigation, Wilkes et al. conducted staged experiments of water 

usage over a five day period in one home. Flow-trace analysis correctly categorized 83% of the 

isolated water usage events at the fixture category level. When water usage overlapped (i.e., what 
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we term compound events), performance dropped dramatically to 24% when two water fixtures 

were used in compound and 0% when three or more were used (Wilkes et al., 2005). Moreover, it is 

important to note that although flow-trace analysis is capable of classifying at the fixture category 

level, it cannot be used to determine the specific fixture or valve that was used (i.e., it can sense that 

a toilet was flushed, but not which toilet was flushed). In contrast, HydroSense can identify water 

usage events at the valve level. 

Finally, in its current form, flow-trace analysis is not completely automated. Usage of AquaCraft’s 

Trace Wizard, for example, is a multi-step, iterative process. The program uses the following set of 

statistics to help classify water usage events: start time, stop time, duration, volume (gallons17), 

peak flow rate in gallons per minute (gpm18), the most common flow rate (gpm), and how often this 

most common flow rate occurs during the duration of the event. Events are classified according to 

their similarity with a pre-defined set of manually entered and tuned per-home parameters. For 

example, a toilet may be defined as using between 3.25 and 3.75 gallons per flush, the peak re-fill 

flow rate as between 4.2 and 4.6 gpm, the duration of the flush event between 30 and 50 seconds, 

and the mode flow rate between 4 and 4.5 gpm (Mayer et al., 1999). AquaCraft estimates that it 

takes their trained analysts approximately one hour per week of data from a home to complete a 

flow trace analysis; less time after the parameter file has been properly tuned (Mayer et al., 1999). 

2.4.4.4 Disambiguating Hot Water vs. Cold Water Usage 

The lack of precise measurements about the quantities of hot water used in residences has been an 

obstacle in the design of hot water systems (e.g., measuring how much hot water homes require at 

peak use: DeOreo et al., 2000; Hiller, 1998) and in the analysis of conservation programs (e.g., 

measuring hot water savings from a low-flow shower head: Dziegielewski, 1992). Hot water usage 

also highlights the strong interconnection between energy and water conservation efforts in the 

home. According to the US Department of Energy, hot water heating is the fourth most energy 

consuming activity in the home behind air conditioning, refrigeration, and space heating (U.S. 

Department of Energy, 2001); however, what hot water usage activities contribute to this 

consumption are much less understood (Henze et al., 2002). 

The measurement and analysis of domestic hot water consumption is typically accomplished using 

one of two methods: a temperature-based inference method or a flow-trace analysis method 

                                                           
17 1 US gallon ≈ 3.785 L 
18 1 gpm ≈ 0.063 liters / sec 



53 

  

(where the inline meters are installed at the hot water heater intake line: Aguilar et al., 2005). In 

1985, Weihl and Kempton conducted the first quantitative study of hot water usage using automatic 

means (Weihl and Kempton, 1985). They installed an inline flow meter and a temperature probe at 

the hot water tank as well as temperature probes at the hot water pipes leading to each fixture. 

Flow rate and temperature were recorded to a computerized data logger once per minute. From 

this data, the authors were able to deduce which fixtures were using water, how much hot water 

was being used, and also calculate pipe heat loss. Ladd and Harrison used a similar distributed 

sensing approach; instead of temperature probes, however, they used power consumption monitors 

on the dishwasher and clothes washer, an inline flow meter installed at the clothes washer, and an 

inline flow meter at the hot water tank (Ladd and Harrison, 1985). 

Lowenstein and Hiller (1996) simplified the above approaches by eliminating the need for multiple 

sensors. They collected flow trace data at 15 second intervals at an inline meter installed at the hot 

water tank feed line. The volume of flow and the average flow rate for each hot water draw were 

used to classify the hot water usage events into their end use-category, a technique they referred to 

as “bin analysis,” but is simply a reduced form of flow-trace analysis with fewer parameters (e.g., 

without time of day, event duration). Although this technique was used successfully in a year-long 

study of seventeen sites (and repeated by DeOreo and Mayer (2000) in a study of 14 Seattle homes), 

it was noted by the authors in a follow-up paper (Lowenstein et al., 1998) to have two major 

limitations: (1) they were not able to discriminate between end uses when multiple hot water 

activities occurred at the same time and (2) hot water draws for different end-uses can have the 

same flow rate and total flow volume, making it difficult to unambiguously associate specific end-

uses. Thus, in their follow-up study, they attached thermocouples 1-3 inches19 downstream from 

where the hot water line branched, up to three thermocouples per home (depending on its 

plumbing layout) to mitigate these limitations.  

The water sensing system in this dissertation, HydroSense (Chapters 7 and 8), presents a unique 

opportunity for discriminating between hot and cold water usage because it is much easier to install 

than the above approaches. Pressure waves are shaped not just by the valve type but also by their 

propagation pathway through the pipe system, allowing HydroSense to disambiguate hot water 

events from cold water events (even though the hot and cold water valves are right next to each 

other at a faucet, their pipe pathway through the home is quite different). 

                                                           
19 1 inch ≈ 2.54 cm 
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2.4.4.5 Summary of Water Sensing 

Although past research has explored disaggregation approaches using only one or a few sensors, no 

work exists on automatically identifying water usage down to the individual fixture or valve. 

Similarly, although a number of researchers have explored sensing techniques for hot water 

consumption in the home, no current method exists for disambiguating hot vs. cold water use from 

a single sensor. In this dissertation (Chapters 7 and 8 specifically), we explore the use of pressure-

based sensing to do both. 

2.4.5 Water Feedback 

Similar to the water sensing research above, the water feedback work has largely been pursued by 

three fairly disparate communities: (i) utilities and water resource management scientists; (ii) 

HCI/Ubicomp researchers; (iii) environmental psychologists. In this section, we review the water 

feedback literature with a focus on both the design and the evaluation of the water feedback 

system. We note that our literature search was unable to find any past or current work that focuses 

on disaggregated water usage data, which is the focus of Chapter 9. Thus, the related work 

presented below is exclusively focused on either point-of-consumption water sensing and feedback 

systems (e.g., Kuznetsov and Paulos, 2010) or systems that present aggregate water usage 

information (e.g., Naphade, 2011).  

2.4.5.1 The Design of Eco-Feedback Systems for Water 

In terms of the water feedback designs, we can use the eco-feedback design space presented in 

Chapter 4 to help structure our discussion. The more primitive design dimensions include: data 

granularity, update frequency, display medium, and the location of feedback. These are tightly 

bound together, particularly for the HCI water feedback systems because most are point-of-

consumption sensing and feedback systems—in other words, they measure water usage directly at 

the faucet (or showerhead) and provide immediate feedback about that usage via an ambient 

display. This is likely a reflection of the difficulty in building eco-feedback systems for water where 

the sensor is independent (physically disjoint) from the feedback system. This limitation should be 

alleviated in some fashion by the recent introduction and proliferation of water-based smart meters 

(although these are still far less common than for electricity). Even still, as previously mentioned, 

these systems only provide aggregate consumption information at intervals less frequently than 

real-time. In addition, it is unclear if smart meter data will even be open and accessible to 

researchers or hobbyists to build their own feedback systems.  
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Kuznetsov and Paulos (2010), for example, created UpStream, a custom-designed orb display that 

lights up in green, orange, and red colors depending on the length of time a faucet or shower is 

used; an LED graph accompanies this display to relate total usage at that fixture so far for the day 

(Figure 2.4j and k). Similarly, the show-me display by Kappel and Grechenig (2009) uses a string of 

LED lights, which illuminate in a progress-bar like fashion as water flows from a showerhead (Figure 

2.4i). The design community has also predominantly explored point-of-consumption feedback 

(Figure 2.4a through f), even though their prototype sketches are not bound by the same pragmatic 

constraints as the HCI researchers who typically implement and evaluate their systems. It is unclear, 

in these cases, why point-of-consumption feedback has received so much attention. 

Although point-of-consumption feedback can potentially reduce usage at the installed fixture (Willis 

et al., 2010; Staake et al., 2011), it is limited in its ability to convey broader patterns of use or to 

easily compare usage across fixtures. These systems have also disproportionately focused on faucet 

and shower usage, which account for only 22% of water use in the average North American home 

(Vickers, 2001). Also, because these systems require installation at each fixture (i.e., they use a 

direct sensing approach), there are pragmatic issues around adoption that are rarely addressed such 

as increased maintenance, power requirements at each water outlet, and a change in the aesthetic 

of the fixture. This latter point is already an issue affecting the adoption of low-flow fixtures (Jeffrey 

and Geary, 2006). In contrast, our displays are designed for sensing systems that need not be 

collocated with a fixture and can therefore support a wider range of visualizations (e.g., comparison 

of all fixtures usages within one display). 
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Figure 2.4: Thus far, most water-based eco-feedback systems have been designed to sense and feedback water 

usage at the point-of-consumption. The top two rows are design sketches/conceptions created by industrial 

designers while the bottom two rows are actual systems built and evaluated by HCI researchers. Starting from the 

top-left: (a) Squirt by Meghana Vaidyanathan (Lockton, 2007) is aimed at children aged 3 to 6. (b) In-Formed by 

Nadeen Haidary redirects a small portion of water to a glass chamber, which acts as a bar graph tracking current 

usage. (c) Insight/Inmind by Adam Kereliuk (Morell, 2007) uses a backlit LCD display to show how much water 

usage a faucet/shower has used by day, week or month; the next three designs are similar: (d) TapMeter by Henry 

Ellis-Paul, (e) Domestic Water Meter by Viktor Legin, (f) iSave by Yu Guogun (Morell, 2007). (g) HeatSink (Arroyo 

et al., 2005) illuminates water according to temperature while (h) WaterBot (Arroyo et al., 2005) offers continuous 

feedback via visual and auditory cues. (i) The Show-Me shower display by Kappel and Grechenig (2009) 

illuminates a string of LEDs according to usage. (j) and (k) show various UpStream prototypes for faucets and 

showers by Kuznetsov and Paulos (2010). (l) The Shower Calendar by Laschke et al.(2011) uses a projected display 

on a shower curtain to show shower usage amounts over time (colors represent people; larger dots mean less 

water usage during that shower). 
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2.4.5.2 Evaluating Water-Based Eco-Feedback Systems 

The environmental psychologists and water resource management scientists have largely focused 

on large-scale studies with simple feedback technology—in some cases handwritten notecards—to 

study how and in what ways feedback on water usage may change behavior (e.g., Geller et al., 1983; 

Aitken et al., 1994; Willis et al., 2010). In contrast, the HCI community has focused on creating novel 

water feedback prototypes and evaluating these via informal user studies. In this case, the 

visualization system—its understandability, its interactivity, its aesthetic—is typically the focus of 

the research rather than the effect of the system on behavior. Although a few HCI studies do 

attempt to deploy and run intervention-based studies of their technology (e.g., Kappel and 

Grechenig, 2009; Kuznetsov, 2010; Laschke et al., 2011); these are small-scale and not always 

methodologically rigorous. Indeed, they are often meant to point to the potential of the feedback 

system rather than to prove or scientifically demonstrate its effectiveness. This methodological 

difference between the two disciplines is explored further in Chapter 3.  

A review of the various water feedback artifacts and their evaluations is presented in Table 2.3. Four 

of the studies reviewed provide feedback on aggregate water consumption, which refers to the total 

water usage in a building rather than at the point-of-consumption for a particular fixture or 

appliance (as previously noted no studies exist investigating the effect of disaggregated water usage 

data on consumption behaviors). In the two environmental psychology studies (Geller et al., 1983 

and Aitken et al., 1994), hand-delivered notecards provided feedback on the previous day’s (Geller 

et al., 1983) or week’s (Aitken et al., 1994) water usage to households. The Aitken et al. study ran for 

nine weeks with a three-week baseline data collection period, a three-week intervention period, and 

a three-week post-intervention period. The researchers found that the high-consuming households 

receiving feedback plus a cognitive dissonance treatment significantly reduced their water 

consumption. In the Geller et al. study, feedback was not found to affect consumption. The authors 

argue that the limited effectiveness of feedback “was most likely a function of resource cost (i.e., 

water prices) and the lack of economic incentives for reducing consumption.” They argue further 

that “in previous energy research, feedback strategies implemented in areas where electricity was 

relatively inexpensive had much less of an impact than did feedback interventions applied in areas 

where electricity was expensive (Geller et al., 1982; Winkler & Winett, 1982).” Winkler (1982) 

reported that where water prices are low behavioral interventions can be expected to have minimal 

or no influence.  
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Authors Publication 
Venue 

Year Feedback Description Motivation 
Technique(s) 

Feedback 
Granularity 

Feedbackf 
Freq. 

Implemented Feedback Study Feedback Results 

Geller et al. Journal of 
Population 
and 
Environment 

1983 Hand-delivered postcards were delivered to the 
feedback residences with yesterday’s consumption 
amount in gallons, % increase / decrease from previous 
postcard, and % increase / decrease from baseline. 
Smiley/frowning faces were provided for each of the 
percentages included. 

Feedback, 
Comparison, Rewards, 
Penalties 

Aggregate 
(building 
level) 

Daily Yes Total households N=129; 
Feedback intervention group 
N=66; Four weeks of baseline 
data collection; intervention 
period lasted for five weeks.  

Feedback group resulted in no significant reductions 
over baseline group.   

Aitken et al. Journal of 
Applied Social 
Psychology 

1994 Hand-delivered postcards with a commitment statement, 
feedback amount from past week, and comparison with 
households of same size made artificially low to 
“increase potential to be influenced by treatment.” 

Feedback, 
Commitment, Social 
Comparison 

Aggregate 
(building 
level) 

Weekly Yes Total households N=226; 3-study 
conditions; Feedback 
Intervention group N=107;  
Baseline=3 weeks; 
Intervention=3 weeks; post-
intervention period=3 weeks 

Feedback only group did not result in significant 
reductions over control. Feedback+cognitive 
dissonance group resulted in 4.3% reduction in use 
across highest consumers.  

Arroyo et al. CHI 2005 Waterbot is a point of consumption sensor and feedback 
display for water consumption. Two LED bars represent 
current use and average household use. “Positive” 
auditory cues are used every time tap is closed to “act as 
positive reinforcers for turning off water.” 

Feedback, Rewards, 
Social Comparison 

Point-of-
consumption 
at faucet 

Real-time Yes, prototype Two informal pilot 
studies (N=10, N=15)conducted 
in laboratory focused on 
understandability and aesthetics 
of system. 

Not a behavioral study. Qualitative findings include: 
bar graphs, temperature feedback, and “just-in time” 
messages were intuitively understood. 

Petersen et al. Journal of 
Sustainability 
in Higher 
Education 

2007 Website (and some kiosks) accessible by students on 
campus provided dorm-level feedback of electricity and 
water consumption 

Feedback, Social-
Comparison, 
Competition 

Aggregate 
(building 
level) 

Real-time Yes, now 
commercial 
product via 
Lucid Design. 

Two dormitories; 3-week 
baseline period; 2-week 
competition period; 2-week post-
competition period 

32% reduction in electricity usage and a 3% reduction 
in water usage. 

Kappel & 
Grechenig 

Persuasive 2009 Water shower monitor and ambient feedback display 
that uses a vertical row of LEDs that light up in 
proportion to the amount of water used (like a bar 
graph). 

Feedback Point-of-
consumption 
at shower 

Real-time Yes, prototype Pilot study: N=4 households; no 
baseline data; intervention 
period=3 weeks 

Paper says “mean water consumption decreased by 10 
liters.” Unclear if this is overall or per-shower. Also, no 
control group or baseline data so unclear how this 
number was calculated. 

Ravandi, et al. HCI 
International 

2009 Display system for shower using fishtank and game 
design elements. Users login when they shower.  

Feedback, Self- & 
Social-Comparison 
Penalties, Rewards  

Point-of-
consumption 
at shower 

Real-time No, design only None No evaluation. 

Kuznetsov & 
Paulos 

CHI 2010 Low-cost point of consumption displays for faucets and 
showers. Two styles of displays were created for 
showers: (i) a numeric display with current and aver 
usage and (ii) an ambient visualization orb, which would 
grow green, orange, & red depending on shower length. 

Feedback, Penalties, 
Comparison 

Point-of-
consumption 
at shower 
and faucet 

Real-time Yes, prototype 3 pilot studies; one of faucet 
display and two of shower; 1st 
/2nd study: 1-3 days; 3rd study: 4-
7 days 

Mixed results. Public faucet display resulted in 
increased usage (perhaps because of novelty effects: 
participants were driven to use water more to see how 
display would change). Private displays reduced usage. 
Study durations prob. too short to generalize results. 

Laschke, et al. CHI Extended 
Abstracts 

2011 Shower design prototype that displays water usage for 
individual users (users login when they take a shower).  

Feedback, Self- & 
Social-Comparison, 

Point-of-
consumption 
at shower 

Real-time Yes, prototype Pilot study: 2 households for 1 
month 

Mixed results. Study primarily focused on qualitative 
reactions. Very small study; again difficult to generalize 
quantitative results. 

Willis et al. Journal of 
Resources, 
Conservation, 
& Recycling 

2010 Used Waitek shower monitors, which provide real-time 
usage on showering. Plays auditory alert when shower 
time passes 5 min threshold. 

Feedback, Penalties, 
Comparison 

Point-of-
consumption 
at shower 

Real-time Yes, commercial 
product 

Total households N=151; 
Feedback intervention N=44; 2 
week baseline winter 2008; 2 
week intervention winter 2009. 

27% reduction in mean shower event volumes in 
feedback group compared to control. 

Naphade et al. IBM Tech 
Report 

2011 Online web portal showing aggregate water usage over 
time and weekly printed reports. Households could also 
receive leak alerts, compare their usage to others, and 
participate in competitions/contests. 

Feedback, Self- & 
Social-Comparison, 
Rewards, 
Competition, Alerts 

Aggregate 
(building 
level) 

“Near real-
time” 

Yes, pilot 
commercial 
product 

Total households N=303; 
Feedback intervention N=151; 
Control=152; 9-week  

Average overall water savings of 6.6% per household. 
In addition, 8% reported leaks compared to 0.98% 
across rest of city. Active participation rate of 44%. 

Staake et al. ETH Zurich 
Tech Report 

2011 Point-of-consumption feedback system for shower. 
Report is sparse on design details.  

Feedback, other 
strategies unclear 

Point-of-
consumption  

Real-time Yes, pilot comm. 
Product 

200 households sent device; 91 
installed device. 5 mo. Study 
period w/ baseline collection. 

Average shower water consumption reduced 22.2% 
(compared to first 9 showers after device installed but 
no feedback given). 

Table 2.3: A review of water feedback displays in the HCI, environmental psychology, and water resource management literature sorted by year.  
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In a more recent study conducted by IBM Research, Naphade et al. (2011) designed and 

implemented a pilot feedback program using smart water meters in Dubuque, IA. Their study 

involved a 9-week behavioral study of 303 households (151 in experimental group, 152 in control 

group) studying effects of an online web portal (Figure 2.5) and printed weekly reports of water 

usage data. These interventions not only presented water usage patterns and trends but also 

automatically detected and reported leaks. They found an average overall savings of 6.6% per 

household compared to control group. In addition, pilot participants reported leaks at a rate of 8% 

compared to 0.98% city-wide (the authors estimate that 30% of households in the city had leaks). 

These findings point to the potential of new, emerging sensing and feedback systems in reducing 

water usage consumption. 

Finally, although not just about feedback, the effect of metering on water usage behavior is also 

relevant. Metering’s primary purpose is to allow water suppliers to charge based on usage. As a 

consequence, monthly or bi-monthly bills are provided to consumers with information on their 

aggregate water consumption for the billing period (these are also available online with increased 

frequency). Because metering is inextricably tied to billing, its effect on behavior is as much about 

economics and perceptions of cost as it is about feedback. In a review of the effect of household 

metering on water consumption in Europe and North America, Inman and Jeffrey (2006) found 

savings between 0-56% (the mean reported savings from US programs was 20%). As previously 

noted, however, charging for water via household metering is a contentious and emotive issue 

involving debates around water equity and water as a social good vs. a commodity. Thus, other 

strategies for feedback may deserve increased attention. 

2.4.5.3 Summary of Water Feedback 

A large portion of the water feedback related work has focused on point-of-consumption feedback. 

Although recently, this type of feedback has been evaluated in large behavioral studies and shown 

to be effective (e.g., Willis et al., 2010; Staake et al., 2011), these systems have also 

disproportionately focused on faucet and shower usage, which account for only a small portion of 

water use in the average North American home (Vickers, 2001). Inspired by our formative work in 

Chapter 6 and our sensing work in Chapters 7 and 8, we explore a range of eco-feedback designs of 

disaggregated usage data, which have not been evaluated before. 
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Figure 2.5: Three commercial eco-feedback systems for water: (a) The Shower Monitor by Waitek starts with a 

full “progress-bar” that decreases according to sensed flow rate and water temperature. After a preset amount of 

water has been used, a beeper alarm sounds (see Willis et al., 2010). (b) The start-up company Amphiro has 

recently pilot tested their miniaturized smart meters with wirelessly connected displays; however, little 

information exists on the design of their system (see Staake et al., 2011). (c) The IBM Smarter City Water Pilot 

(Naphade et al., 2011) is an online website for smart meter water data that was deployed to 151 households over a 

9-week period. These three designs were also evaluated in behavioral studies, see Table 2.3. 

2.5 CHAPTER SUMMARY 

In this chapter, we first traced the short history of Sustainable HCI research and positioned eco-

feedback research within the broader HCI/Ubicomp research communities. We also connected eco-

feedback research to the HCI and computer graphics sub-discipline of information visualization. In 

particular, we noted how eco-feedback could be seen as a relatively new, emerging area of infovis 

called Casual Information Visualization. This link is useful because it provides an existing vocabulary 

a. b. 

c. 
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with which to think about, discuss and critique eco-feedback designs as well as to draw upon infovis 

findings in the design of eco-feedback systems. 

We then transitioned to literature on sensing and feedback for personal transportation and water 

usage. Here, we noted that new mobile phone models released since our UbiGreen tool was 

developed (Chapter 5) may eliminate the need for a wearable sensor for activity inference. Perhaps 

more interestingly, however, we found that although new transit transportation mode inference 

techniques have emerged since our UbiGreen work was conducted, no new eco-feedback 

applications have been published that take advantage of those systems.  

For work related to eco-feedback for water usage, we first provided background on water usage in 

general to better contextualize our contributions. We included a short description of the hydrologic 

cycle, argued for the importance of conservation-related research around residential water usage, 

and reviewed water management programs and strategies, delineating non-pricing and pricing 

techniques to curb water use. Finally, we reviewed work related to sensing and feedback systems 

for water, including disaggregation methods, water flow sensing techniques, and hot vs. cold 

disambiguation. The water feedback literature demonstrated the promise of eco-feedback in 

reducing water usage as well as open opportunities. Namely, no past work has presented an 

automated sensing system for disaggregating water usage at the individual fixture level nor does 

any past work exist on how such granularities of data may be visualized to the user. 

Review and synthesis of related work continues in the next two chapters. Chapter 3 compares eco-

feedback work in HCI/Ubicomp to that in other disciplines, while Chapter 4 presents motivational 

theories and techniques useful for eco-feedback research, as well as a design space that 

incorporates much of the discussion in Chapters 2 and 3.  
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  Chapter 3

Investigating the Role of HCI in the Design 

and Evaluation of Eco-Feedback Technology 

Given the rapid rise of eco-feedback related research in HCI, as highlighted by Section 2.1 in the 

previous chapter, it is critical for the HCI community to reflect upon and define an approach and 

theoretical foundation for the design and evaluation of eco-feedback technology. This chapter and 

the next (Chapter 4) contribute specifically to this area of eco-feedback research. 

While the stated goal of eco-feedback technology is to provide feedback on individual or group 

behaviors to reduce environmental impact (adapted from: McCalley and Midden, 1998; Holmes, 

2007), few HCI eco-feedback studies have even attempted to measure behavior change. Although 

eco-feedback may be seen as an extension of research in persuasive technology (Fogg, 2002), 

studies of eco-feedback actually extend back more than 40 years in fields such as environmental 

psychology and applied social psychology. This gives rise to two interrelated questions: (1) What can 

HCI learn from environmental psychology and (2) what should be the role of the HCI community in 

contributing to eco-feedback research?  

Although some researchers in HCI and Ubicomp have applied findings from environmental 

psychology (e.g., Pierce et al., 2008 and Woodruff et al., 2008), all too often these findings have 

been ignored. As far back as the 1970s, studies have shown that eco-feedback technology can affect 

consumption behaviors. For example, in 1974 Kohlenberg et al. found that a light bulb, which 

illuminated when households were within 90% of their peak energy levels, changed energy usage 
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behaviors (study published in Kohlenberg et al., 1976). At that time, environmental psychology was 

an emerging discipline that had grown out of the realization that environmental conservation was a 

twofold problem: partly technical and partly human.  

The gap between eco-feedback research in HCI and in environmental psychology is unfortunate 

because it can lead to redundant efforts and, at worst, ineffective designs. This oversight not only 

affects researchers of eco-feedback technology but also practitioners, as commercial eco-feedback 

systems become more widely deployed and governments begin instituting the use of home resource 

feedback systems (e.g., see Darby, 2008). 

In this chapter, we bridge the gap between findings from environmental psychology and the design 

and evaluation of eco-feedback systems in HCI. We conduct a comparative survey of 44 papers 

studying eco-feedback technology in the HCI/Ubicomp literature and 12 papers within the 

environmental psychology literature. We use this survey to contrast the design and evaluation 

approaches taken in these disciplines and to identify areas in which HCI can make the strongest 

contribution. Finally, we close with a discussion of issues that warrant further attention in the HCI 

community including approaches to evaluation and the lifecycle of usefulness of eco-feedback 

systems. The next chapter (Chapter 4) provides a complementary perspective and shifts from 

comparing eco-feedback designs and evaluation methodologies between the two fields to 

integrating findings from environmental psychology (and other disciplines) into eco-feedback 

designs. We begin this chapter with a review of eco-feedback studies in environmental psychology. 

3.1 REVIEW OF ECO-FEEDBACK STUDIES IN ENVIRONMENTAL 

PSYCHOLOGY 

Research on the effects of feedback on consumption behaviors spans four decades and two 

important eras: the energy crisis of the 1970s and 80s and the climate change era beginning in 1995 

(Ehrhardt-Martinez et al., 2010).  Most of this research has focused on the effect of energy feedback 

on either electricity or natural gas consumption behaviors rather than the two topics explored in 

this dissertation: transportation and water. The major literature reviews of eco-feedback studies are 

by Katzev, 1987; Darby, 2000; Abrahamse et al. 2005; Fischer, 2008; EPRI, 2009; and Ehrhardt-

Martinez et al., 2010. The research reviewed in these papers is conducted by applied or 

environmental psychologists, governments or utility companies, and only two of the papers (EPRI, 

2009; Ehrhardt-Martinez et al., 2010) cite HCI literature: Chetty et al.’s (2008) fieldwork of 

understanding resource consumption in the home published at UbiComp 2008.This is both a 
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reflection of disciplinary boundaries and the recency with which HCI has engaged with eco-feedback 

research but also, perhaps, the ways in which these other fields perceive the relevancy of HCI work. 

Abrahamse et al. (2005) provided the first review of intervention studies aimed at reducing 

household energy consumption of the modern era. The authors investigated thirty-eight studies 

performed within the field of social and environmental psychology and categorized their results 

using Katzev and Johnson’s (1987) taxonomy of techniques for promoting energy conservation (see 

Chapter 4 for a detailed discussion): antecedent strategies (i.e., commitment, goal setting, 

information) or consequence strategies (i.e., feedback, rewards, penalties). Abrahamse et al. (2005) 

specifically explored: (1) to what extent did the intervention result in behavioral changes and/or 

reductions in energy usage; (2) what were the underlying behavioral determinants examined (e.g., 

knowledge, attitudes); (3) to what extent could effects be attributed to the interventions; (4) and 

were the effects maintained over long periods of time. The authors found that most studies focused 

on voluntary behavior change with methods that involved changing an individual’s knowledge 

and/or perceptions rather than by changing their surrounding contextual factors (i.e., pay rate 

structures for energy). In terms of the interventions themselves, Abrahamse et al. found that 

reward-based and feedback interventions effectively encouraged energy conservation (with varying 

degrees of success). Important findings include that information alone was sufficient in increasing 

knowledge levels but not necessarily in inducing behavior change (or energy savings). Results of 

studies using feedback suggest that increasing the frequency of feedback and combining feedback 

with goal setting were most successful; no conclusive results were found when comparing feedback 

in terms of monetary rather than environmental costs or in providing comparative feedback (e.g., 

comparing to social groups). 

Fischer (2008) reviewed approximately twenty studies and five compilation publications from 1987 

onward exploring the effects of feedback on electricity consumption and on consumer reactions, 

attitudes, and wishes concerning such feedback. She found that typical energy savings were 

between 5 and 12% (though the absolute range was between 0 – 20%). In a similar review of thirty-

eight feedback studies carried out over a period of 25 years, Darby (2006), found typical energy 

savings of 10-15%. Darby introduces a distinction between direct and indirect feedback; direct 

provides immediate information on an activity in real-time while indirect provides feedback 

sometime after the consumption occurs (e.g., like utility bills). Both Fischer and Darby point out the 

difficulty in synthesizing, comparing, and categorizing these studies as they range in sample size 
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(from 3 to 2,000), housing type, and feedback method (e.g., frequency of update, historical 

duration, visual design). Also, in some studies, other interventions such as financial incentives and 

goal-setting were used in addition to feedback, making direct comparisons across studies difficult. 

Despite such disclaimers, as Fischer argues, the sheer number of studies that reported savings is a 

good indicator for the general effectiveness of using feedback to change consumption behaviors.  

In 2009, the Electric Power Research Institute (EPRI, 2009) released a comprehensive follow-up to 

the above literature reviews with a specific focus on synthesizing feedback results, comparing two 

theoretical perspectives on how consumers make consumption decisions and the role of 

information in informing these decisions, and highlighting outstanding research questions. The EPRI 

report expanded Darby’s notion of indirect and direct feedback into six sub-categories; the first four 

are indirect: (1) standard billing, (2) enhanced billing, (3) estimated feedback, and (4) daily/weekly 

feedback while the other two are direct: (5) real-time feedback and (6) real-time plus feedback. 

These are described in more detail in Figure 3.1. 

 
Figure 3.1: The EPRI feedback delivery spectrum (adapted from EPRI, 2009). 

Finally, in the largest literature survey of residential feedback studies to date, Ehrhardt-Martinez et 

al. (2010) systematically reviewed 57 studies spanning two eras (1970s-early 80s and contemporary 

research) and nine countries. They synthesized past research findings using the feedback 

categorization schema developed by Darby (2000; 2006) and EPRI (2009) but specifically highlighted 

energy savings within each category. A subset of their results (for studies run between 1995 and 

2010) are shown in Figure 3.2. 
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Figure 3.2: The average household electricity savings categorized by feedback type according to Ehrhardt-

Martinez et al. (2010) based on a review of 36 feedback studies implemented between 1995 and 2010. 

In pulling together the findings from the above summary studies (Darby, 2000; Abrahamse et al., 

2005; Fischer, 2008; EPRI, 2009; Ehrhardt-Martinez et al., 2010), we can begin to observe effective 

(and not so effective) feedback designs. In those cases where no savings were found, the feedback 

occurred too infrequently (e.g., in the form of a semi-annual bill update), was too unobtrusive, or 

the homes themselves were already low consumers. Designs that performed best provided 

computerized feedback (rather than, say, augmented paper bills) with multiple feedback options 

(e.g., consumption over various time periods, comparisons, additional information like 

environmental impact or energy saving tips), were updated frequently (daily or more), were 

interactive (e.g., the device provided configuration options or user could “drill-down” into data), 

were clearly and simply presented, and/or were capable of providing detailed, appliance specific 

breakdown of energy usage. Interestingly, providing direct financial incentives for consumers to 

drive energy reduction had little lasting effect: consumption reverted to its previous levels once the 

incentive was removed. This phenomenon highlights one of the major deficiencies in the current 

literature—few have studied the underlying cause of behavior change influenced by feedback 

technology nor its longitudinal impact.  

Though feedback has great potential, simply revealing behavioral data, however, does not 

guarantee positive change or uniformly improve performance. As Latham and Locke (1991) state, 

“feedback is only information, that is, data and as such has no necessary consequences at all.” Other 

factors such as age, the cost of energy, home ownership, income level, and family size may affect 
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feedback’s effectiveness. For example, feedback is not as effective for households where the cost of 

energy is proportionally low with respect to income (Geller et al., 1982). 

3.2 COMPARING APPROACHES ACROSS DISCIPLINES 

We now focus more explicitly on studies of eco-feedback technology across the two primary 

disciplines involved in this research: environmental psychology and HCI/Ubicomp. We review 

literature in both fields to uncover differences in their approaches, treatments, and evaluations. The 

goals are to: (1) tease out what environmental psychology can offer to HCI; (2) better understand 

the theories and methodologies employed in studies of eco-feedback technology in both disciplines; 

and (3) uncover open areas of investigation that HCI and environmental psychology may be able to 

collaboratively pursue. Note that this research was conducted in the spring/summer of 2009; 

consequently, newer publications in either field are not represented.  

From HCI/Ubicomp, we draw upon papers primarily from the CHI, Ubicomp, and Persuasive 

conferences and related workshops. We found 139 papers related to both HCI and the 

“environment” or “sustainability.” Our corpus includes 58 workshop papers, 36 full papers, 32 

papers found in extended abstracts (e.g., demos, works-in-progress, alt.chi), and 13 short papers, 

journal or magazine articles. Roughly 44% of these papers were published in 2009 and 92% were 

published in the last three years. Of the 139 papers, 56 were related to eco-feedback technology—

44 of these provide a unique eco-feedback artifact, while the rest are essays. If an artifact was 

published more than once, we removed redundancies in favor of full papers.  

Our environmental psychology survey draws primarily from journals in psychology and sociology, 

such as the Journal of Environmental Psychology, Journal of Consumer Research, Journal of Social 

Issues and Journal of Applied Social Psychology. We also looked at the papers mentioned in three 

well-known surveys of energy feedback studies (Darby, 2000; Abrahamse et al., 2005; Fischer, 2008). 

We found 82 papers related to the effects of feedback on environmental behaviors including 

recycling, transportation and home resource consumption (e.g., gas, water, and electricity). Given 

the long history in environmental psychology of exploring eco-feedback, many of these studies were 

conducted before technology was seen as a practical feedback tool. Thus, most of these studies did 

not use eco-feedback technology in particular but rather other forms of feedback such as bill 

designs, media campaigns, pamphlets, and home audits. Much of this work is used in the next 

chapter to inform our discussion of the behavioral models and motivations techniques used in 

environmental psychology to encourage proenvironmental behavior. Here, though, we focus solely 
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on the 12 studies in environmental psychology that did use eco-feedback technology (often referred 

to as “computerized feedback” in this literature).  

In the next few sections we compare the 44 HCI eco-feedback papers with those from 

environmental psychology. An overviewof those papers that include an evaluation of their eco-

feedback technology is shown in Table 3.1. A full list of the publications used in this comparative 

literature review is available in Appendix A. 

  Environmental Psychology  HCI 

 Field studies/Total studies 10/12 8/27 

Field Studies 

Average number of participants in field studies 210 11 

Average number of field study conditions 3.6 1.8 

Average field study length (including baseline) 15.5 mos 2.5 wks 

Average field study length (excluding baseline) 7.15 mos 2.5 wks 

Number of field studies that collected baseline data 9 (90%) 0 (0%) 

Average difference in consumption after feedback 
introduced in field studies 

-18% -10 liters in Kappel and 
Grechenig (2009), “marginal 

increase” in recycling in 
Holstius et al. (2004). 

Number of field studies that reported qualitative data 6 (60%) 6 (75%) 

All Studies 
Reviewed 

Number of studies that included eco-feedback interface 
screenshot 

6 (50%) 23 (85%) 

Table 3.1: A summary of the eco-feedback studies found in the environmental psychology literature vs. the HCI 

literature. See Appendix A. 

3.2.1 Treatment of the Eco-Feedback Technology 

The most striking contrast between the HCI and the environmental psychology literature is the 

emphasis (or lack of emphasis) on the visual design of the eco-feedback interface itself. Although 

both disciplines are ostensibly interested in understanding the role of feedback technology in 

changing behavior, environmental psychology has largely focused on the effect of the feedback 

intervention itself while HCI has concentrated on the production of the eco-feedback artifact and 

rarely on conducting field studies to actually study behavior change. This discrepancy largely reflects 

core orientations of the two fields.  

Indeed, only half of the environmental psychology papers even provide a graphic of their eco-

feedback interface. In several cases, the descriptions of the interfaces were only a few sentences 

long and no visuals were provided in the papers (e.g., Sexton et al., 1987; van Houwelingen and van 

Raaij, 1989). Figure 3.3 shows the two most commonly reported designs: (1) a simple LCD display, 

and (2) a bar or line chart showing a breakdown of usage on a PC, with some amount of historical 

data available for self-comparison. Almost all (10/12) of the devices used were semi-interactive, but 
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interactions were often limited, for example, to pressing a button that would cycle through statistics 

like the current day’s electricity rate or the amount of the last month’s bill (e.g., Sexton, 1987).  

   
Figure 3.3: Some examples of displays used by environmental psychologists (and related disciplines) in the 

longitudinal behavioral trials. (a) A simple LCD display from Keirstead, 2007. (b) A more sophisticated LCD 

display used in Mountain, 2006. (c) The disaggregated electricity time-series display used in Ueno et al., 2006. 

    

   
Figure 3.4: Example HCI eco-feedback systems: (a) JetSam: uses a camera and a projection system to project the 

inside of a trashcan outwards (Paulos and Jenkins, 2006). (b) The Infotropism display uses sensors and living 

plants to provide feedback about recycling and waste disposal (Holstius et al., 2004). (c) Power-Aware-Cord: 

ambient energy usage display (Gustafsson and Gyllenswärd, 2005). (d) WattBot: mobile phone home energy 

feedback (Petersen et al., 2009). (e) ThePowerHouse: resource eco-feedback in a virtual game environment (Bang 

et al., 2006). (f) Stepgreen: proenvironmental behavior tracking social website (Mankoff et al., 2007b). (g) Imprint: 

environmental impact of printing ambient public display (Pousman et al., 2008). 

In contrast, the eco-feedback designs in the HCI papers were much more diverse and fully explained. 

Of the 27 HCI papers that provide some sort of study of their eco-feedback technology, only four 

a. b. c. 

a. b. c. d. 

e. f. g. 
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papers do not disclose a screenshot of the interface. In addition, the studies employed a range of 

presentation mediums for their feedback including: ambient displays (e.g., Arroyo et al., 2005; 

Gustafsson and Gyllenswärd, 2005; Paulos and Jenkins, 2006; Pousman et al., 2008), mobile phone 

applications (e.g., Chapter 5; Petersen et al., 2009), desktop games (e.g., Bang et al., 2007), and 

social websites (Mankoff et al., 2007b)—see Figure 3.4. 

Unfortunately, many of the eco-feedback designs in HCI do not link back to work in environmental 

or behavioral psychology. In our survey, less than half of the HCI eco-feedback papers referenced 

behavioral psychology literature and 58% referenced environmental psychology literature. Even 

more dramatically, no study in environmental psychology referred back to HCI. This represents a 

profound gap between disciplines. Interestingly, one author McCalley (e.g., McCalley and Midden, 

2002) has published in both fields—having published at both the Persuasive conference and journals 

in psychology and energy. Perhaps a future goal for HCI should be to initiate collaborations with 

environmental psychologists. 

3.2.1.1 Discussion of Treatment 

The primary motivation of eco-feedback technologies in both disciplines is to promote 

proenvironmental behaviors. Despite the relatively simple interfaces and lack of focus on design, the 

environmental psychology studies have achieved impressive results, a finding which should be cause 

for reflection by eco-feedback researchers in HCI. HCI researchers/practioners should ground their 

designs in the basic principles uncovered by environmental psychology. They can then apply the 

unique methodologies and approaches found in HCI (e.g., user centered design) to further the 

design of eco-feedback technology.  

Although the environmental psychology studies show that eco-feedback can reduce consumption, 

they do not clarify the extent to which this impact is based on specific design elements. Considering 

only the designs that appeared in the environmental psychology studies, we can see questions that 

HCI researchers are well-suited to study: How important is it that eco-feedback be even minimally 

interactive? What types of information and presentation mediums are most effective (e.g., graphs 

vs. abstract ambient representations)? To what degree does the physical placement and access to 

the device impact its overall effectiveness? Answering these questions should allow us to identify 

how environmental psychologists may improve on the advances they have already made. 
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3.2.2 Consumption Targets of Eco-Feedback Technology 

Eco-feedback technologies have been developed to target many types of consumption. The most 

common target is residential electricity usage: 41% of the papers in HCI and 92% of the papers in 

environmental psychology. This emphasis is both a reflection of the impact that electricity usage 

behaviors have on the environment as well as the ease with which energy usage can be 

automatically sensed. 

As a field partially composed of computer scientists and designers, HCI researchers often have the 

resources to construct both their own novel sensing systems as well as their own feedback 

interfaces. HCI has also developed techniques to test and iterate on prototypes for exploring 

interactions and interfaces independent of the current state of technology (e.g., Wizard-of-Oz 

evaluations). As such, HCI has explored eco-feedback technologies for a larger set of behaviors than 

have been studied in environmental psychology. We found 20 HCI papers on eco-feedback for 

electricity, four on water, four on transportation, four on carbon tracking, three on garbage and 

recycling behaviors, three on the environmental impact of product purchases, two on paper usage 

and one on eco-feedback for a virtual game world. 

3.2.2.1 Discussion of Consumption Targets 

The HCI studies have shown that people are open to new types of eco-feedback for behaviors 

outside of energy usage. One role for HCI is then to challenge the limitations of current eco-

feedback technologies by envisioning and exploring novel consumption targets for environmental 

behavior change. 

3.2.3 Study Methodology 

Another important distinction between the two disciplines is in study methodology (Table 3.1). HCI 

researchers have largely focused on laboratory studies or qualitative field studies of eco-feedback 

technology. Although behavior change is often reported as the primary motivation for these 

projects, the emphasis tends to be on the artifact itself rather than its effect on behavior. This is not 

to say that the designs are not evaluated. Of the 44 eco-feedback technology papers from HCI, only 

17 of them do not provide some sort of user evaluation of their designs (and 9 of these were 

workshop papers).  

The HCI laboratory studies tend to be informal in nature, seeking feedback about understandability, 

aesthetic, and perceived usefulness (e.g., Arroyo et al., 2005; Gustafsson and Gyllenswärd, 2005). 
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For example, a Wizard-of-Oz lab study comparing three visualizations of the Power-Aware cord 

(Figure 3.4c) found that 13/15 participants understood the feedback without explanation, but that 

there was a tension between two different designs (pleasing vs. informative) (Gustafsson and 

Gyllenswärd, 2005). As the authors state in the paper, “At this stage, the Power-Aware Cord is 

meant to be a conceptual design statement, mostly used to test people’s reactions and provoke 

thoughts around the area of energy consumption.” This is a common approach taken in emerging 

areas of HCI. It is also consistent with the principled HCI tradition of iterative design, since the 

laboratory offers a rather low-cost means of receiving feedback about a design idea or preliminary 

prototype.   

With respect to field studies, we found 8 papers in the HCI literature that conducted field studies of 

their eco-feedback technology, lasting between 1 to 4 weeks with an average of 11 participants. Of 

these studies, 4 reported behavior change data (Holstius et al., 2004; Kim et al., 2009; Kappel et al., 

2009; Yun, 2009). However, none of the studies included a control group that was not exposed to a 

feedback intervention, and only one study (Holstius et al., 2004) collected any baseline data (of 1 

week).  In this respect, the study designs were better suited for collecting preliminary user feedback 

and conducting iterative design of the prototypes. The study in (Holstius et al., 2004) was the most 

similar of the 8 to those found in our review of environmental psychology, although it was much 

shorter and did not include a control group that was not exposed to the intervention. The study 

evaluated the effect of an ambient plant display (Figure 3.4b) on garbage and recycling behaviors 

over a 2-week deployment in a university cafeteria. The researchers found no change in the amount 

of trash and a marginal increase in the amount of recycling; they also conducted interviews to 

uncover reactions to the design. Again, however, the focus was much less about quantitative 

experimentation but rather about subjective reactions to the feedback artifact. 

In comparison to the HCI research, the studies in the environmental psychology literature were 

almost exclusively field studies (10/12), with one survey and one lab study. All of the studies looked 

at the effect of feedback on home resource consumption (either water, gas, or electricity). The field 

studies here included a much larger number of participants than did the HCI studies, ranging from 3 

to 784 households (avg=210). The study with 3 households is the first known study of eco-feedback 

technology that we could find in our literature review: the Kohlenberg et al. (1976) light bulb study 

referenced at the start of this chapter. The largest studies (avg=414 households) were conducted in 

partnership with utility companies, which allowed researchers access to a large pool of data. Every 
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study included a control group that did not receive an intervention, and all but one of the field 

studies collected baseline data. Few papers discussed the actual design process of their eco-

feedback interface. 

Only one of the environmental psychology studies was a controlled lab study (McCalley and Midden, 

2002), but it offers a contrast to the HCI literature because it included a much larger sample size 

(N=100) and tested several different feedback conditions on behavior. A more typical study design 

from the environmental psychology literature was conducted by van Houwelingen and van Raaij 

(1989) and examined the impact of multiple intervention conditions on natural gas consumption. 

Interventions included electronic feedback, less frequent external feedback, self-monitoring, and 

information only. The study lasted three years, with one year each of baseline data collection, 

intervention, and post-intervention data collection. Results showed that all intervention conditions 

reduced consumption, with the electronic feedback condition being the most effective (a 12.5% 

reduction). Perhaps most interesting was that this reduction in natural gas usage did not last for the 

one year post-intervention period—in fact, there was no significant difference between the 

experimental and control groups after the interventions were removed. Thus, the feedback seemed 

to only have an effect during the period it was given. No long term habit formations were found. 

3.2.3.1 Discussion of Methodological Findings 

Researchers in HCI and environmental psychology have approached the design and evaluation of 

eco-feedback technology differently. The environmental psychology papers establish rough 

guidelines about how much baseline and intervention data studies need to collect in order to 

measure behavior change. In contrast, HCI offers techniques for iterating on feedback designs, 

particularly with respect to understandability, usability, and aesthetic. The styles of evaluation used 

in HCI are particularly important to employ before time and money are invested in extended 

behavioral change evaluations. 

Both evaluation approaches are valuable, but the disciplines can also learn from each other. For HCI 

researchers, if our goal is to study behavior change, the environmental psychology literature 

demonstrates the importance of rigorous comparative controls, whether this is through improved 

collection of baseline data or the inclusion of control groups who are not exposed to an 

intervention. HCI does not, as yet, have a culture of longitudinal behavior studies—at least for eco-

feedback technology.  
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This prompts the question: what incentives do HCI researchers have to conduct these sorts of 

studies and should it even be a goal? If not, then what is our goal in evaluating eco-feedback 

technology? Is it enough to demonstrate that a technology is usable and engaging, at which point 

we hand it off to psychologists or companies (e.g., utilities) to conduct larger and more formal 

behavioral studies? Based on our survey, eco-feedback researchers in HCI have yet to reach a 

definitive consensus on these issues. 

3.2.4 Summary of Comparison 

This comparative survey has exposed differences in HCI and environmental psychology in terms of 

both goals and methodologies. Despite the long history of research in environmental psychology, we 

have identified areas that HCI is particularly well-suited to explore, and we expand on this 

opportunity in the next section. 

3.3 DISCUSSION 

We have helped uncover findings in environmental psychology that may be relevant to HCI and, at 

the same time, suggest where HCI offers the strongest contributions to the area of eco-feedback 

technology. Perhaps most importantly, we have started a conversation that may help bridge 

researchers in both fields. The most prevalent behavioral models and motivation techniques used in 

environmental psychology present a rich design space that can ground HCI research. Here we 

discuss some implications for future eco-feedback research and design.  

3.3.1 Design Implications 

Our analysis has highlighted some of the more salient design factors that need more exploration. 

These include the frequency with which a feedback system updates, the measurement units or 

other representation of consumption that are most appropriate to present, the level of granularity 

of the data (e.g., do users see data from each appliance or the whole house), the accessibility and 

medium of the information (e.g., push vs. pull, or an ambient display vs. a webpage), and the ability 

to make comparisons (either with one’s past behaviors or the behaviors of others). These various 

design attributes have yet to be fully investigated in either HCI or environmental psychology, 

although Egan (1999) and Fitzpatrick and Smith (2009) offer a good start. We pursue this further in 

Chapter 4. 
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3.3.2 System Development and Evaluation 

In HCI it is rare to see field deployments on the scale of those conducted in the environmental 

psychology community. Although behavior change may be the ultimate goal of eco-feedback 

technology, it is clearly one that requires large amounts of time and resources to properly 

investigate. While this may be seen as a limitation of the HCI evaluation methodologies, we offer 

that this is not a detriment, but simply a difference. HCI has developed tools that allow us to explore 

aspects of eco-feedback technology that are not yet feasible for long-term deployments. Rapid 

prototyping, low-to-medium fidelity prototyping, and Wizard-of-Oz can be used to envision and 

study novel eco-feedback designs that circumvent technological limitations. Indeed, we see a role 

for HCI in providing eco-feedback designs that have been evaluated on merits such as evocativeness, 

engagement, understandability and usability. Even three-to-four week pilot studies are important in 

demonstrating potential. Those designs that seem particularly effective may then be handed off or 

evaluated collaboratively with environmental psychologists.  

For testing ideas, the laboratory offers a context to evaluate understandability, aesthetics, and 

feelings towards the design. For higher fidelity prototypes, field deployments are more appropriate. 

Although the information presented in eco-feedback technology is intrinsically tied to the data 

provided by the underlying sensing system, in some cases these limitations can be overcome by 

careful study design (e.g., manual meter reading to update interfaces). This allows the HCI 

researcher to focus on the eco-feedback artifact itself rather than implementing a durable sensing 

system. 

3.3.3 Targeting Feedback Behaviors  

What specific behaviors should eco-feedback technology be attempting to impact? Gardner and 

Stern (2008) draw a useful distinction between two types of consumption behaviors: (1) efficiency 

behaviors, which are one-time actions that provide a lasting impact, such as buying a fuel-efficient 

vehicle, and (2) curtailment behaviors, which involve forming new routines to reduce environmental 

impact, such as taking the bus to work (see Figure 3.5). A large majority of the eco-feedback 

technologies we reviewed in both HCI and environmental psychology have focused on the latter, yet 

it may be worth focusing on both. Gardner and Stern contend that the energy saving potential of 

efficiency behaviors far outweighs the potential of invoking curtailment behaviors. For example, the 

installation of compact fluorescent lighting (CFL) could be much more effective than remembering 

to turn off the lights. It is thus critically important that designers understand the environmental 
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behaviors that they are trying to motivate and to design around those behaviors. An eco-feedback 

technology for water need not simply visualize daily water usage but could also make specific 

recommendations about efficiency behaviors—for example, quantifying the amount of money that 

could be saved by installing a low-flow showerhead. 

That said, installing more efficient appliances (or driving a more efficient car) makes them 

susceptible to the rebound effect (Berkhout et al., 2000) where something is used more often simply 

because it is more efficient thereby offsetting its positive impact on the environment. With the 

rebound effect “the importance of the interplay between macro-level (e.g., technological 

innovations) and micro-level factors (e.g., knowledge of efficient use of technological innovations) 

becomes apparent” (Abrahamse et al., 2005). So, even with efficiency behaviors, feedback is 

important as it can convey how the usage of a new technology affects the environment. For more 

information on rebound effects, see Berkhout et al., (2000) or, more recently, for a discussion on 

Sustainable HCI research and rebound effects, see Kaufman and Silberman (2011).  

 

Figure 3.5: An example of cost/effort tradeoffs with respect to environmentally responsible behaviors. 

Curtailment behaviors tend to be low cost, but take relatively high effort to make routine. Efficiency behaviors 

range in cost and effort but can have similar, if not more, positive environmentally effects compared to their 

curtailment counterparts. 

Pierce et al. (2010) extend the above categorization of energy conserving actions by integrating their 

own qualitative fieldwork examining home energy practices and preferences (Table 3.2). Here, their 

focus is particularly on defining a common vocabulary of energy-conserving interactions for HCI 

applications and interaction designers.  
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Cutting 
Powering off or putting in an extremely low-power state (e.g., powering off the television or 
putting it in a standby state) 

Trimming 
Using a “lower” or more energy efficient setting when using a product (e.g., lowering the 
thermostat setting, or washing clothes on “cold” rather than “hot” temperature wash cycle) 

Switching 
Using a more energy-efficient product in place of a product with similar but different functionality 
(e.g., using a ceiling fan instead of an air conditioner) 

Upgrading 
Acquiring a more energy-efficient product to replace a product of the same time (e.g., replacing 
an older refrigerator with a more energy-efficient model). 

Shifting 
Shifting use to a different time or place without necessarily reducing the total energy consumed 
by that product (e.g., washing clothes at night during off-peak hours of energy demand) 

Table 3.2: Pierce et al.’s (2010) categorization of actions and strategies of energy conservation efforts and 

opportunities. 

Finally, it should be noted that encouraging the purchase and installation of more efficient 

appliances and fixtures is not so simple because of the environmental impact of the disposal of the 

old good as well as the environmental impact of the manufacturing and delivery of the new good. 

Here, again, however eco-feedback can take lifecycle assessment into account when making 

recommendations and even suggest the most green manufactured product. 

3.3.4 Learning and Feedback 

Eco-feedback technology may have a lifecycle of usefulness. Van Houwelingen (van Houwelingen 

and van Raaij, 1989) emphasizes the role of learning in feedback: subjects learn the connection 

between the amount of resources they use and the consuming behavior. Darby (2000) argues that 

the effects of feedback are largely rooted in educational theory: feedback is an essential component 

in learning. Often, feedback provides information that individuals did not have before. If learning is 

one of the key benefits of eco-feedback, then how long does it sustain relevancy in a person’s life? If 

a proenvironmental behavior is achieved, does the eco-feedback begin to lose its importance? 

3.3.5 Large-scale Commercial Deployments 

 With the emergence and large-scale introduce of smart meters , eco-feedback technology may well 

become part of a common technological landscape. Millions of households will be able to view their 

home resource consumption data on their mobile phones and web browsers. This will provide great 

opportunities for the behavioral analysis of eco-feedback technology through massive AB testing. 

This uptake in the commercial sector also raises issues of privacy and trust, since eco-feedback 

technologies can collect vast amounts of information on personal habits. 

3.4 CHAPTER SUMMARY 

We have investigated the ways in which HCI and environmental psychology approach eco-feedback 

technology research. Our goal was to explore: (1) what HCI can learn from environmental 
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psychology and (2) what the role of the HCI community should be in contributing to eco-feedback 

research. We believe that eco-feedback technology is a particularly ripe area for HCI and Ubicomp 

research because it often requires sensor building, information visualization, and novel interfaces 

and interactions. These are key areas of our expertise. HCI also offers a set of methodologies 

founded on rapid prototyping, user involvement, and iterative design that allows for design 

feedback early and often. As a community, however, HCI has yet to define how these methodologies 

should be used to evaluate the potential strengths of an eco-feedback design with respect to its 

ability to change behavior. We believe eco-feedback technology will soon play a major role in the 

ways in which we think about and act in the world. The HCI community should ensure that it is 

integral in helping shape the role of eco-feedback in the future. 

The next chapter, Chapter 4, continues the interdisciplinary perspective introduced in this chapter 

but with a specific focus on how findings from environmental psychology and the behavioral 

sciences may be used to design more effective eco-feedback systems. Chapter 4 concludes by 

integrating these findings (and those from this chapter) into an eco-feedback design space, which 

serves both as a critical lens to evaluate existing eco-feedback systems as well as a guide to help 

design new ones. We also draw upon findings from this chapter to inform the design and evaluation 

of our eco-feedback designs presented in Chapters 5 and 9. 
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  Chapter 4

The Design of Eco-Feedback Technology 

In this chapter, we present an eco-feedback design space rooted in literature from multiple 

disciplines, including HCI, information visualization (InfoVis), environmental psychology and applied 

social psychology. We first introduce prevailing theories in psychology and sociology about what 

motivates action and behavior. We then enumerate a series of techniques that have been 

successfully applied in the behavioral science and environmental psychology literature, with a focus 

on how these techniques may apply to eco-feedback technology. Building on these discussions and 

incorporating both our own experience as well as findings from the HCI, Ubicomp, and InfoVis 

literature, we present a design space for eco-feedback. This design space includes eight dimensions 

and serves two main purposes: (1) to help in analyzing and critiquing existing designs and (2) to 

provide a process and foundation with which to approach building new designs, by understanding 

the tradeoffs of different points in the design space. 

4.1 MODELS OF PROENVIRONMENTAL BEHAVIOR 

Understanding why people engage in environmentally responsible behavior is a complex topic 

spanning many disciplines including education, economics, sociology, psychology, and philosophy. 

For example, researchers have explored how certain psychological variables correlate with 

environmental behavior such as: proenvironmental attitudes and beliefs (Dietz et al., 1998; Dunlap 

and Van Liere, 1978; Scott and Willits, 1994) and personality traits (Pettus & Gilles, 1987; Schultz 

and Stone, 1994). Others have looked at contextual factors such as the convenience of the behavior 

(Gamba and Oskamp, 1994), an individual’s abilities (Kantola et al., 1983), and normative contexts. 



80 

 

Finally, others have looked at demographic variables such as age, gender, educational level, and 

income (Corral-Verdugo, 2002). 

Although numerous theoretical models of proenvironmental behaviors have been developed and 

studied, no definitive explanation has yet been found (Kollmus and Agyeman, 2002). Still, these 

models offer insights into why people do act environmentally and thus they have direct implications 

for the design of eco-feedback technology. Even if it is not explicitly recognized, designers approach 

a problem with some model of human behavior, which affects the various design choices that imbue 

their design. Here, we highlight a few of the most commonly used models, which extend from three 

views of proenvironmental behavior. The first, attitude models consider the influence of knowledge 

and attitudes on behavior; the second, rational-economic models view environmental behavior 

primarily as driven by self-interest and cost-benefit analyses; and the third, norm-activation models 

emphasize social norms and pro-social motives as most important in influencing proenvironmental 

behavior. 

4.1.1 Attitude Models 

Perhaps the most common approach to modeling and predicting environmentally sustainable 

behaviors is through attitude-behavior models (Kurz, 2002). Attitude models assume that favorable 

attitudes translate into favorable behaviors (Shipworth, 2002). These models suggest that informing 

and educating people about environmental issues leads to proenvironmental behavior (which is 

also, perhaps, an implicit assumption amongst many eco-feedback designers). As such, the key 

issues become how to change people’s attitudes towards environmental issues and to better 

understand the conditions under which such attitudes can be changed.  

The two most popular attitude-behavior models are both by psychologists Ajzen and Fishbein: 

theory of reasoned action (Fishbein and Ajzen, 1975) and its extension the theory of planned 

behavior (Ajzen and Fishbein, 1980). The theory of reasoned action assumes that an individual 

considers consequences of a behavior before taking action. Thus, the role of intention is an 

important factor in determining behavior. The theory of planned behavior extends the theory of 

reasoned action by emphasizing factors external to the individual (e.g., situational factors that may 

influence an individual’s perception of control). According to Steg and Vlek (2009), the theory of 

planned behavior has been successful in explaining various environmental behaviors from travel 

mode choice and household recycling to waste composting and the purchasing of energy-saving 
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light bulbs. In both models, Ajzen and Fishbein maintain that people are essentially rational making 

“systematic use of information available to them” and are not “controlled by unconscious motives” 

(as quoted by Kollmus and Ageyman, 2002). 

A key issue with these models, however, is that any number of other factors may also influence 

behavior, so there is not always a strong relationship between attitudes and subsequent actions 

(Costanzo et al., 1986). “One of the paradoxes of the psychology of environmentalism is that citizens 

generally hold preservation attitudes but routinely engage in environmentally unfriendly actions, 

such as driving to work instead of using public transportation” (Eagly and Kulesa, 1997). For 

example, researchers have found that people who cite conservation as the single most important 

strategy for averting an energy crisis are no more likely than others to engage in energy-conserving 

behaviors (Costanzo et al., 1986). Gardner and Stern (1996, chapter 3) note that countries such as 

China and India, where long-standing religious traditions include strong proenvironmental beliefs do 

not have strong records of proenvironmental action. Despite these limitations, both the theory of 

reasoned action and the theory of planned behavior are considered influential behavior models in 

social psychology because of their clarity, simplicity, and ease with which they can be applied and 

studied empirically (Kollmus and Ageyman, 2002).  

A more recent model, called the model of responsible environmental behavior, attempts to account 

for additional factors not originally addressed in Ajzen and Fishbein’s theory of planned behavior 

(Hines et al., 1986-1987). Through a meta-analysis of 128 proenvironmental research studies, Hines 

and colleagues proposed this model to emphasize the intention to act as well as situational factors 

that are conducive to such action (e.g., economic constraints or social pressures). This model 

emphasized that situational contexts and both the knowledge of issues and of appropriate action 

were important factors in whether attitudes actually predicted behavior (Fransson and Garling, 

1999). According to Stern (1999), a number of literature reviews of attitude-based behavior theories 

have shown that the predictive value of attitudinal variables for proenvironmental behavior largely 

depends on context and the amount of effort, expense, and inconvenience required to change the 

target behavior. Still, attitude remains a popular factor in most environmental psychology research 

and models. Kaiser et al. (1999) estimate that almost two-thirds of all environmental psychology 

publications incorporate attitude in one form or another so it is clearly worth attending to.  
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4.1.2 Rational-Economic Models 

Rational-economic models assume that human behavior and decision making is regulated by a 

systematic process of evaluating expected utility—in other words, people act to maximize rewards 

and minimize costs. With respect to the environment, this model is often simplified to suggest that 

people will adopt environmentally responsible behaviors that are economically advantageous 

(though cost need not always be financial). Indeed, there is strong evidence that price plays an 

important role in stimulating conservation behavior. For example, the US government has found 

that an increase in gasoline prices corresponds to a drop in total freeway trips and a rise in demand 

for fuel efficient cars (Congressional Budget Office, 2008). Price is also used as a demand side 

management tool by utilities as high price signals have been shown to curb demand (Menon and 

Butler, 2006). 

The rational-economic model, however, is predicated on the assumption that people understand 

whether a behavior or a device is cost effective, which is not always the case. Other environmental 

psychologists (e.g., Gonzales et al., 1988) have argued that tying proenvironmental behavior directly 

to economic parameters is not sufficient. One must also convince individuals that these benefits 

exist, are viable, and that they warrant action or changes in behavior. In addition, the rational-

economic model tends to discount the effect of non-economic factors such as personal comfort, 

convenience, habit, and social norms (Yates and Aronson, 1983). Finally, in some cases, price simply 

cannot be significantly manipulated to change behavior. For example, dramatically increasing the 

cost of water quickly becomes an ethical issue as noted in Chapter 2. 

4.1.3 Norm-Activation Models 

Unlike the models above, which assume that behavior is regulated by reasoned and rational 

thinking, norm-activation models are based on the premise that moral or personal norms are direct 

determinants of pro-social behavior. Proenvironmental actions are often considered pro-social 

because they involve collective or community goods and the recognition that personal behaviors can 

affect others as well as future generations. A potential contradiction, then, in a rational choice 

model is that an optimal choice for the self-interested “rational actor” may not be optimal for the 

collective. Schwartz’s norm-activation model (Shwartz, 1977) suggests that proenvironmental 

behavior can be stimulated if a person is aware of the negative consequences of his/her behavior on 

others and ascribes some amount of responsibility for taking ameliorative action. Thus, norm-

activation models differ from rational-choice models in two important ways: (1) they recognize that 
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behavior may be rooted in altruistic values and (2) that personal norm activation (e.g., moral 

obligations) may trump subjective perceptions of utility (Staats et al., 2004). Schwartz’s norm-

activation model and derivatives have been successfully applied to a variety of environmental 

behaviors including recycling, off-road vehicle use, and willingness to pay for eco-friendly products 

(Vining and Ebreo, 2002; Stern, 2000b). 

Stern et al. (1999) extend Schwartz’s norm-activation model with the value-belief-norm theory of 

environmentalism, which applies a similar value-based logic to a range of values such as curiosity, 

personal achievement, and feelings for wildlife. In this way, behaviors are activated not just in 

regard to other persons (who would suffer from environmental damage) but also in regard to the 

self and non-human species.  

4.1.4 Synthesizing Models 

Given the complexity of human behavior, it is likely that each of the models above have some 

relevancy and that a multitude of factors should be considered when designing an eco-feedback 

system. In What Psychology Knows about Energy Conservation, Stern (1992) argues that psychology 

research generally supports a multistate causal model to determine environmentally relevant 

behavior (Table 4.1). In Table 4.1, each variable acts as a possible influence on the variables listed 

below. Note the two feedback loops, which flow in the reverse direction: (1) learning occurs when 

outcomes such as energy bills affect specific attitudes and beliefs about energy savings, which could 

then subsequently change behavior and (2) processes such as self-justification or dissonance 

reduction (see, e.g., Katzev and Johnson 1983 and 1984) can also feedback into higher levels of 

causality (in this case, self-justification is linked to changing general attitudes and beliefs). Stern also 

argues that this model helps explain the typical failures in finding relationships from one variable to 

another in past work; the issue is that there is often distance between the two variables (e.g., from 

general attitudes to energy use) and that the intervening variables are usually left unmeasured. 

Stern’s model is useful because it draws upon multiple determinants of behavior and attempts to 

provide some organizational hierarchy around how these determinants interact. 

4.1.5 Models of Behavior Change 

Psychologists have attempted to model not just determinants of a particular behavior but also how 

a person moves through stages of change to make that behavior routine. Many of the most 
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Table 4.1: A high-level causal model of environmentally relevant behavior from Stern (1992) and Stern (2000a). 

Note that variables at each level of causality have the potential for direct influence on variables at each lower 

numbered level.  

prominent behavior change theories have emerged from health psychology (e.g., addiction studies) 

rather than environmental psychology. Prochaska’s transtheoretical model (TTM) of behavior 

change (Prochaska and Velicer, 1997; Prochaska and DiClemente, 2005) is, perhaps, the most 

dominant model in the health behavior change literature. The TTM models change as a process 

involving progress through a series of stages including: precontemplation, contemplation, 

preparation, action, and maintenance/relapse/recycling. Prochaska’s model is useful in that it 

identifies and emphasizes different stages in the behavior change process and underscores the steps 

necessary to move from one stage to another. Although TTM has largely been applied in the health 

behavior change literature, some recent work has looked at its application to proenvironmental 

behavior (He et al., 2010).  

It is not clear if behavior change models from the health literature can be wholly applied to 

proenvironmental behaviors. For example, does a person move through the same stages of behavior 

change in the Transtheoretical Model (Prochaska and DiClemente, 1986) when trying to quit 

smoking—a behavior that is clearly in their best self-interest to stop—compared to an 

environmental behavior, such as trying to eliminate wasteful energy usage? Regardless of these 

contextual differences, the behavior change literature offers a rich corpus of both behavior change 

techniques and behavior change theories, which should be investigated further.   
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4.1.6 Relating Models to Eco-Feedback Technology 

The discussion above highlights some of the predominant theories of proenvironmental behavior in 

environmental psychology. It is not meant to be a step-by-step guide on which to base eco-feedback 

designs but rather an attempt to highlight the complexities and nuances underlying environmental 

behavior. Eco-feedback designers, whether conscious of it or not, imbue their designs with some 

theory of human behavior. For example, an implicit assumption often underlying the design of eco-

feedback technology is that the presentation of information, particularly at a time of local decision 

making, is enough to provoke environmentally responsible behaviors. However, how the technology 

presents this information is fundamentally based on how the designer believes humans behave and 

react. It is important, then, to begin questioning and exposing the theories used in eco-feedback 

designs in our research and, when possible, to relate them back to work in environmental 

psychology. 

Subscribing to one model versus another could result in strikingly different choices about the type 

and presentation of information. A design based on the norm-activation model should be value-

centric: for example, feedback combining water usage data with updates about wildlife in a local 

watershed may invoke an altruistic response. In contrast, a design based on the rational economic 

model may stress the cost savings of a low-flow showerhead. The models are also useful in 

uncovering behavioral variables for eco-feedback technology to explore. That is, environmental 

psychologists have spent much effort examining different predictors of environmental behavior and 

building models around such predictors (e.g., see: Stern, 2000b; Yates and Aronson, 1983; and 

Kollmus and Agyeman, 2002). These factors are worth attending to in eco-feedback designs.  

Finally, some models, such as Prochaska’s TTM are useful in underscoring not just the prerequisites 

of behavior change but the process necessary to fully adopt a new behavior (or change an existing 

one). In this way, future eco-feedback technologies could attempt to adapt their visualizations and 

messages to support different stages of the behavior change process.  

4.2 MOTIVATORS AND INHIBITORS TO CHANGE 

4.2.1 Intrinsic and Extrinsic Motivation 

People are motivated to act for a variety of reasons; these reasons may be internal (e.g., engaging in 

an activity because it is enjoyable or out of a personal commitment to excel) or external (e.g., acting 

one way because of a bribe or the fear of being surveilled) (Ryan and Deci, 2000). These two 
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categories of motivation, internal and external, are referred to as intrinsic and extrinsic motivation in 

psychology. In a range of studies exploring the two, Ryan and colleagues found that people who 

were intrinsically motivated had more interest, excitement and confidence relative to those that 

were externally controlled for an action. This was the case even when both groups had similar 

perceived levels of competence and self-efficacy. Furthermore, behaviors that were externally 

motivated (e.g., by the use of financial incentives) often cease soon after the reinforcement ends—

thus, rewards or feelings of guilt do not help create the type of high quality (internalized) motivation 

that lead people to take responsibility for their behavior (Osbaldiston and Sheldon, 2003). 

Self-determination theory (Deci and Ryan, 1985) posits a process with which extrinsic motivational 

factors become internalized. De Young (2000) also argues that people may engage in 

environmentally responsible behaviors out of self-interest (e.g., because it is personally satisfying to 

engage in those behaviors) and not for environmentally- or social-centric reasons. De Young offers 

three forms of intrinsic satisfaction derived from environmentally sustainable behaviors: (1) 

satisfaction derived from competence (feeling good about knowing what to do and doing it); (2) 

satisfaction from frugal, thoughtful consumption (not feeling wasteful); and (3) satisfaction from 

participation in a community (feeling part of a larger effort). 

4.2.2 Sense of Control 

A person is more likely to engage in environmental behavior if they believe that they can bring 

about change through their own behavior (Hines et al., 1986-1987). Psychologists refer to this 

concept as the “locus of control.” Individuals that believe that their actions have little-to-no impact 

are considered to have an external locus of control–they believe that actions of powerful others 

(e.g., God, government) create change (Shipworth, 2002). These individuals are less likely to engage 

in proenvironmental behaviors than those who believe that their actions can have an impact (those 

with an internal locus of control).   

4.2.3 The Role of Dissonance 

Cognitive dissonance theory states that when a person holds two beliefs or items of knowledge that 

are inconsistent, the person will experience cognitive dissonance and be motivated to reduce this 

dissonant state (Festinger, 1957). When an individual performs a behavior that is inconsistent with 

his/her beliefs, the usual method of dissonance reduction is an attitude change in the direction of 

the seemingly discrepant behavior (e.g., an attitude change can justify the action) (Sherman and 
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Gorkin, 1980). Aronson (1969) showed that dissonance theory is most prominent when a person 

does something that violates their self-concepts. For example, engaging in a behavior that is in 

conflict with a person’s understanding that s/he is a good, moral or competent individual creates 

dissonance that s/he will seek to resolve. Studies have shown that cognitive dissonance can 

promote changes in attitudes as well as behavior (e.g., Aronson, 1969). Cognitive dissonance has 

also been used successfully in a number of applied situations from weight loss (Axsom and Cooper, 

1981) to resource consumption reduction (Dickerson et al., 1992). 

4.2.4 Other Motivations 

Emotions such as fear, sadness/pain, anger, guilt and regret can be effective motivators. For 

example, there is a large amount of research on the persuasive use of vivid imagery and fear appeals 

to motivate behavior (see, e.g., Finckenauer, 1982 or Weinstein et al., 1986). However, Paul Stern 

(2000a), a noted environmental psychologist, notes that using fear to motivate can be complicated 

and suggests that fear may either persuade people to take constructive action or to simply ignore 

the problem. These reactions depend on a wide range of personal and situational factors including: 

a person’s belief in their vulnerability to the threat, their judgment of its severity, their awareness of 

what positive actions to take in response, and the belief that they can actually take such actions 

without undue cost. A review of media campaigns targeted at energy conservation found that scare 

tactics were much less effective than specific, useful information (Shipworth, 2000).  

In addition, Reiss and Havercamp (1998) identified sixteen basic desires that guide nearly all human 

behavior including acceptance: the need for approval, curiosity: the need to learn, saving: the need 

to collect, status: the need for social standing/importance, and tranquility: the need to feel safe. 

Each of these desires could be leveraged in eco-feedback displays to encourage proenvironmental 

behavior. 

4.3 TECHNIQUES TO MOTIVATE PROENVIRONMENTAL BEHAVIOR 

While models of proenvironmental behavior provide us with a philosophical and/or theoretical basis 

with which to design eco-feedback systems, they do not offer specific strategies for changing 

behavior. In this subsection, we cover some of the most popular motivation/intervention techniques 

used in behavioral psychology (e.g., see Geller et al., 1990), and offer examples that show how they 

have been applied to environmental behaviors. We review feedback as a strategy, as well as other 
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popular techniques that may be used in conjunction with feedback, such as providing information or 

incentives. 

In a seminal book called Promoting Energy Conservation: An Analysis of Behavioral Research, Katzev 

and Johnson (1987) provide a three-prong taxonomy of techniques for promoting energy 

conservation (Table 4.2): (1) the use of antecedents, such as informational materials, prompt and 

persuasive campaigns; (2) the use of consequences, where energy conserving actions are followed 

by feedback or rewards/penalties; (3) and the use of social influences such as group contingencies, 

modeling and commitment techniques. Geller et al. (1990) extended these three approaches into 24 

subcategories distilled from the behavioral science literature. In Table 4.3 below, we have extracted 

the techniques most relevant to feedback technology. Although Geller’s “intervention agent” 

describes a person (or persons) who promote the desired behavior among other individuals, here 

we can think about the intervention agent being a computing system (e.g., a smartphone, ambient 

display). For example, a goal need not be assigned by a person but rather could be automatically 

assigned by the feedback system to activate some desired performance in behavior. 

Antecedent 
Information Campaigns to promote conservation via information (e.g., pamphlets, letters, books) 
Prompts Cues designed to elicit conservation by means of signs, posters, flyers 
Persuasion Appeals to conserve by means of written or media-based persuasive campaigns 

Consequences 
Feedback Response contingent presentation of energy conserving information (e.g., via bills) 
Incentives Response contingent monetary rewards, rebates, or other tokens for conserving 
Disincentives Response contingent costs, inconveniences and penalties for failing to conserve 

Social 
Influences 

Groups Presentations of consequences contingent on group performance 
Modeling Exposure to people (live or videotaped) performing energy conserving behaviors 
Commitment Using social compliance procedures such as commitment or foot-in-the-door. 

Table 4.2: Katzev and Johnson’s (1987) taxonomy of techniques for promoting energy conservation. 

Geller notes that the impact of an intervention is a direct function of: (i) the amount of participant 

involvement elicited by the intervention; (ii) the degree of social support available to the participant; 

(iii) the amount of specific response information transmitted to the participant; (iv) the degree of 

extrinsic control exerted by the intervention; (v) the target individual’s perception of autonomy or 

self-control regarding the behavior change procedures. In addition, some of these techniques are 

focused on catalyzing extrinsic motivation (i.e., motivation that comes from outside the individual) 

rather than intrinsic motivation (i.e., motivation that is driven by an interest and enjoyment in a 

behavior itself). For example, the threat of punishment and the promise of a reward are commonly 

cited as extrinsic motivators while curiosity and the inherent drive to seek out new challenges are 

cited as intrinsic motivators. Researchers hypothesize that extrinsic motivation can become 

internalized under certain conditions (Deci and Ryan, 1985). The effect of these techniques will be 



89 

 

moderated by how they are delivered by the eco-feedback system and perceived by individuals 

(which will likely vary from individual to individual). 

Antecedent 

Commitment A written or oral pledge or promise by a subject to behave in a specific way. 

Discussion 
Bidirectional communication between agents to prompt behavior. Communication 
focuses on generating consensus regarding the behavior change technique. 

Written /  
Oral Activator 

A written or oral communication that attempts to prompt or activate desired 
performance or behavior. 

Individual /  
Group Goal 

A goal is set to reach a certain behavior by a certain time. This goal may be self-assigned 
or set by an intervention agent. 

Competition 
An intervention which promotes competition between individuals or groups to see which 
person or group will accomplish the desired performance level first (or best). 

Incentive 
An announcement to an individual or group in written or oral form of the availability of a 
reward that is dependent upon the occurrence of a desired behavior by the individual. 

Disincentive 
An oral or written announcement to an individual or group specifying the possibility of 
receiving a penalty contingent upon the occurrence of a particular undesired behavior. 

Consequences 

Feedback 
Presentation of either oral or written information to an individual or group concerning 
level of performance regarding desired or undesired behavior. 

Reward 
Presentation of a ‘pleasant’ item/event to an individual emitting a desired behavior, or 
the withdrawal of an ‘unpleasant’ item/event from an individual for emitting a desired 
behavior. 

Penalty 
Presentation of an ‘unpleasant’ item/event to an individual emitting an undesired 
behavior, or the withdrawal of a ‘pleasant’ item/event from an individual for emitting an 
undesired behavior. 

Table 4.3: A subset of Geller et al.’s (1990) 24 different approaches to change behavior that are most relevant to 

feedback technology. Note that social influences from Katzev and Johnson’s (1987) taxonomy are folded into 

individual antecedent and consequence strategies. Geller et al’s approaches also further differentiate between 

incentives/disincentives from rewards/penalties in that, for example, an incentive is a promise of a reward while 

the reward is the actual presentation of a pleasant item or event. 

4.3.1 Information  

The most widely used means to promote proenvironmental behavior change is information (Staats 

et al., 2004). Media campaigns, pamphlets, or websites are all examples of this approach. The 

assumption is that with better information people will act in more environmentally beneficial ways. 

However, various studies of informational programs have shown that simply presenting people with 

information on the benefits of proenvironmental behaviors typically results in only a marginal effect 

(Katzev and Johnson, 1987). To maximize information’s transformative potential it must be easy to 

understand, trusted, presented in a way that attracts attention and is remembered, and delivered as 

close as possible—in time and place—to the relevant choice (Brewer and Stern, 2005). 

Many conservation programs use high-level written or verbal messages, called prompts, to promote 

conservation (e.g., “Use Energy Wisely”). Investigations into general prompting strategies have 

shown that prompting has limited influence on behavior but can be made more effective by 

improving specificity, timing, and placement (Geller, 1982). For example, Winett et al. (1978) 

showed that placing signs next to doorways with specific information about when and who should 

turn out the lights (e.g., the last person leaving the room) resulted in a 60% reduction in the number 
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of days when the lights were left on compared to signs that were placed above light switches and 

contained only general messages about saving energy. This is a particularly rich opportunity for eco-

feedback technology, which could provide feedback proximal in location and time to the target 

behavior. That said, deciding on how and where to present eco-feedback is a research question 

within itself and will likely need to balance attentiveness, cognitive load, user motivation, 

information relevancy, and cost. Highly localized displays may perform best with respect to behavior 

change (e.g., placed directly on water fixtures or electric appliances), yet the cost of deployment and 

aesthetically fitting into homes are major barriers. 

4.3.2 Goal-setting 

Another well-studied source of motivation is goal-setting, which operates through a comparison of 

the present and a desirable future situation (van Houwelingen and van Raaij, 1989). Individuals, 

groups, and external agents (e.g., a coach) can all set goals. Locke and Latham (2002) summarized 35 

years of empirical research on goal-setting and found that goals affect behavior primarily through 

four mechanisms: first, goals serve a directive function—they direct attention and effort toward 

goal-relevant activities; second, goals have an energizing function and, in particular, high goals often 

lead to greater effort than low goals; third, goals affect persistence; and finally, goals affect behavior 

indirectly as individuals use, apply, and/or learn strategies or knowledge to best accomplish the goal 

at hand.  

According to Locke and Latham, the goal-performance relationship is strongest when people are 

committed to their goals. Two key factors affect goal-commitment: (1) the importance placed on 

attaining the goal and (2) belief that the goal can be attained (self-efficacy). The concept of self-

efficacy is important in goal-setting theory and relates to intrinsic motivation. Locke and Latham 

refer to studies that show that people with high self-efficacy set higher goals than people with lower 

self-efficacy. And when goals are assigned (rather than self-set), those with high self-efficacy are 

more committed, find and use better task strategies to attain the goals and respond more positively 

to negative feedback than people with low self-efficacy. Finally, Locke and Latham describe 

feedback as essential to goal-setting as it allows one to track progress towards completing a goal. 

Goal-setting has been successfully applied in some technology aimed at behavior change (e.g., 

UbiFit: Consolvo et al., 2008) but it has not been significantly explored in environmental HCI. There 

is evidence, however, that goal-setting is a valuable technique to stimulate environmentally 
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responsible behavior, particularly when combined with feedback. For example, in a study of 

electricity use, Becker (1978) found that households that received a difficult goal and feedback 

about their performance conserved the most (15.1%) compared to a control group. Similarly, van 

Houwelingen and van Raaij (1989) found that goal-setting in conjunction with daily feedback about 

consumption reduced natural gas usage by 12.3%. Questions remain, however, about how goals 

should be set and what goal targets should be used in addition to the role of goals once initial goal 

targets have been met. 

4.3.3 Comparison 

A comparison between individuals or groups can be useful in motivating action, particularly when 

combined with feedback about performance. Even feedback that provides information comparing 

one’s current behavior to past behavior has been shown to be effective (i.e., self-comparison). The 

effectiveness of social comparisons in environmental psychology, however, has been mixed. Siero et 

al. (1996) conducted a study of energy consumption behavior at two units in a metallurgical 

company and found that the unit exposed to comparative feedback saved more energy than the 

unit who received feedback only about their own performance. However, studies by Haakana et al. 

(1997) and Egan (1999) show that while people are often interested in comparisons, they do not 

necessarily have an impact on their behavior. One complexity is that eventually a performance 

plateau is reached, beyond which point emphasizing improvement over historical performance or 

the performance of others may not be effective. In addition, convergence effects may exist where 

both efficient and inefficient individuals change their behavior to more closely match average 

performance. In this way, a net gain in reduction is only possible if those inefficient individuals 

reduce more than the efficient individuals increase.  

Still, comparison can be a powerful tool. OPower20, a greentech startup company based in Arlington, 

VA., provides analysis tools and novel graphics to utility companies to improve the information and 

presentation on paper bills. For example, bills contain a bar graph that compares the current 

consumer’s last month’s energy usage with their neighbors and efficient neighbors. In its first trial in 

Sacramento, CA, homes with OPower’s modified bills reduced energy consumption by 2% over 

homes that continued to receive regularly formatted bills (LaMonica, 2009). OPower has continued 

to show 2-4% reductions in aggregate energy use among bill recipients across cities (Laskey and 

                                                           
20

 http://www.opower.com  
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Kavazovic, 2011). One way they deal with convergence effects is to use an injunctive message, in 

this case a smiley face, is enough to diminish the number of households who increase usage after 

observing that they use less than average.   

Moving forward, social media, such as Facebook or Twitter, may be used to mediate realtime 

sharing and comparisons. This is a relatively new topic of research (e.g., Mankoff et al., 2007b), 

however, and is also perhaps one of the most underexplored aspects of motivating behavior change. 

Social networking sites have the potential to provide accountability and normative pressure to 

engage in proenvironmental behavior (e.g., Goldstein et al., 2008) including the incorporation of 

competitions, social comparisons, and public commitments. However, it’s unclear who might be 

interested in this sort of social media use and how it might be implemented. 

4.3.4 Commitment 

A commitment is a pledge or promise to behave in a specific way or attain a certain goal. A person 

that expresses commitment increases the probability that s/he will pursue that behavior (Gonzales 

et al., 1988; Katzev and Johnson, 1987). For example, Wang et al. (1990) found that a signed pledge 

to recycle led to a 47% increase in recycling compared to baseline data. Similarly, Pallak and 

Cummings (1976) used public commitment to promote gas and electricity conservation among 

households—the group committed to publicizing their results used 15% less natural gas and 20% 

less electricity than other conditions. The type of commitment a person makes, the person or group 

to whom the commitment is made, and whether the commitment is public or private are three 

factors that impact behavior. Questions remain about how eco-feedback may incorporate 

commitment tactics including how the interface itself queries for a commitment, how long this 

commitment is meant to last, and who the commitment can be (and should be) shared with.   

4.3.5 Incentive / Disincentives and Rewards / Penalties 

Although sometimes used interchangeably, incentives and disincentives are distinct from rewards 

and penalties. Incentives and disincentives are antecedent motivation techniques—they come 

before a behavior (Geller et al., 1990). Rewards and penalties are consequence motivation 

techniques—they come after a behavior. Incentives have been used effectively to motivate a range 

of proenvironmental consumer behaviors from investments in home insulation to rebates for new 

energy-efficient home appliances. Incentives need not always be monetary; those incentives 

associated with status or convenience may also have important effects on proenvironmental 
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behavior. For example, specially reserved parking spots for rideshare users have been shown to 

increase carpooling, and curbside pickup of recyclable materials has significantly increased recycling 

efforts (Stern, 1999).  

Research into the effects of rewards have found that people respond to rewards even if they are 

nominal in nature (e.g., an acknowledgement of positive behavior) and that the reward should be 

linked as closely with the target behavior as possible (Valente and Schuster, 2002). Previous 

research in persuasive health technology has shown that even providing an asterisk after the 

completion of a behavior is enough to elicit a positive response (Consolvo et al., 2006). OPower bills 

“awards” smiley faces to those households that are efficient consumers (Laskey and Kavazovic, 

2011). Eco-feedback designs may not be able to offer financial incentives unless paired with a utility 

company, but most certainly can rely on game-like reward elements (e.g., points, levels, etc.) to 

promote behaviors (e.g., see elements of Chapter 5, or Bang, 2007). 

A challenge in applying incentives/rewards is knowing what and how much to offer for a given 

behavior. Stern (2000a) notes the difficulty in determining the “right” incentive to motivate cities 

and industrial manufacturing plants to reduce air pollution and that institutional constraints or 

mistrust in information can mitigate the effectiveness of incentives. Still, he argues that “prices and 

other tangible incentives are very important tools for behavior change.” (Stern, 2000a). 

4.3.6 Feedback 

Many of the above motivation techniques require some sort of feedback to be effective (e.g., goal-

setting requires feedback about performance towards a goal). One of the best-established findings 

in psychology is the positive effect that feedback can have on performance (Becker, 1978). Feedback 

comes in two forms: low-level feedback can provide explicit detail about how to change or improve 

specific behavior (e.g., the particular problems marked wrong on a math test helps identify trouble 

areas for students); high-level feedback is summative and can help improve performance towards a 

goal or in comparison to others (e.g., obtaining a ‘B+’ in math class may motivate the student to 

seek an ‘A’ next semester). 

A majority of research into the effect of feedback on proenvironmental behaviors has focused on 

home resource consumption. Fischer (2008) reviewed approximately twenty studies and five 

compilation publications from 1987 onward exploring the effects of feedback on electricity 

consumption and on consumer reactions, attitudes, and wishes concerning such feedback.  She 



94 

 

found that feedback resulted in typical energy savings of between 5 and 12% (though the absolute 

range was 0 to 20%). In cases where no savings were found, the feedback occurred too infrequently 

(e.g., in the form of a semi-annual bill update), was too disconnected from the consumption 

behavior, or the homes themselves were already low consumers. 

Although only 3 of the 20 studies reviewed by Fischer used computerized feedback (in contrast, for 

example, to redesigned bills), those studies resulted in the greatest change in energy consumption. 

In particular, she found that the most effective feedback interfaces contained multiple feedback 

options (e.g., consumption over various time periods, comparisons, additional information like 

energy saving tips), were updated frequently, were interactive (e.g., the user could “drill-down” into 

data), and/or were capable of providing detailed, appliance specific breakdown of energy usage. 

More work is needed to determine if these results translate to other forms of consumption or 

environmentally impactful behavior; however, these findings highlight the potential of eco-feedback 

technology. The effect of feedback on proenvironmental behavior is reviewed in Chapter 3 in more 

detail. 

4.3.6.1 Framing Feedback to Influence Choice and Decision Making 

Although feedback itself has been shown to be effective in changing behavior, the way this feedback 

is framed can impact behavior differently. For example, the way in which a choice is framed can 

influence the decision outcome. Tversky and Kahneman (1981) showed how individuals are more 

sensitive to losses than they are to gains even if the underlying proposition is the same. That is, 

individuals are more likely to take action to avoid or minimize a loss than they are to secure a gain of 

the same quantity. Tversky and Kahneman’s study framed a question to participants in two different 

ways, one as a choice between losses and another as a choice between gains. Participant responses 

reversed depending on the phrasing of the question even though the outcomes were the same. 

Further empirical work has found that losses are weighted about twice as strongly as gains—that is, 

the disutility of losing $100 is roughly twice the utility of gaining $100 (Thaler et al., 1997).  

Commonly, feedback interfaces reveal how much energy is being used contextualized within a 

historical frame (e.g., a time series line graph visualizing the current day’s energy usage 

information). Given that humans are generally averse to losses, perhaps a better rendering of the 

data is how much energy (or money) is being lost by not taking action (e.g., by installing more 

efficient appliances). Indeed, research by Yates and Aronson (1983) indicates that persuasive 

appeals can be made more effective by encouraging consumers to consider losses that result from 
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the failure to adopt energy-conserving technologies. Modern feedback technology has the ability to 

calculate these losses extremely accurately and to render them in an evocative manner. 

In many decision-making situations, people make estimates by starting from an initial value that is 

then adjusted to yield the final answer (Tversky and Kahneman, 1974). For example, estimating the 

amount of time it may take to get home by bicycling versus taking the bus involves taking into 

account past experiences with each transit mode (an initial value) and then extrapolating given the 

current context (e.g., weather, distance to bus stop, traffic). Though it may occur often in a person’s 

life, this is a rather complex calculation. When making a decision, individuals tend to fixate on 

certain types of information (“anchor points”) rather than exhaustively searching for and processing 

all relevant information (Tversky and Kahneman, 1974). This has direct implications for the design of 

feedback interfaces—depending on how information is presented, decisions can be biased towards 

the initial anchor point. These biases can be significant: in Tversky and Kahneman’s experiment, 

participant responses to quantitative questions would vary by 20% depending on an initial, random 

value that they were given. Indeed, in more realistic scenarios (i.e., outside the laboratory), it has 

been found that when faced with uncertainty, the status quo or default option of a decision tends to 

be favored (Armel, 2008). 

4.3.7 Relating Motivation Techniques to Eco-Feedback 

The above section summarizes key motivation techniques that environmental psychology and the 

behavioral sciences at large have used to influence behavior. As is apparent from our summary, 

these techniques have a varying degree of effectiveness. When designing eco-feedback technology 

it is important to consider not just which motivation techniques to employ but what behaviors, in 

particular, a design is hoping to motivate.  

Each behavior has its own set of contexts and constraints that impact behavior change. An individual 

considering bicycle commuting, for example, must have access to a bicycle, helmet, and lock; live 

within a reasonable distance of his/her workplace; plan an appropriate bicycle route; have access to 

a changing room and shower; and so on. One must also think about why the individual is considering 

bicycle commuting—is it for the exercise, for the reduction in CO2 emissions, for the image it 

presents to co-workers, or is bicycling just an opportunity to be outside? 

Thus, eco-feedback designers must think deeply about and study the particular behaviors they hope 

to change and/or motivate before building their prototypes. Ethnography is certainly one valuable 
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approach here, surveying is another; both have been effectively applied in environmental HCI (e.g., 

the formative studies in Chapters 5 and 6, and ethnographic studies in: Woodruff et al., 2008; Chetty 

et al., 2009). It is also critical to turn to environmental psychology to see which types of behaviors 

have been explored and what motivation techniques have been used (as we did in Chapter 3). 

4.4 AN ECO-FEEDBACK DESIGN SPACE 

Previous efforts have looked at articulating a set of design concerns for eco-feedback technology 

with a particular focus on residential energy consumption (Wood and Newborough, 2007; Pierce et 

al., 2008, Fitzpatrick and Smith, 2009; Rodgers and Bartram, 2010; Sundramoorthy et al., 2011 as 

well as my own work: Froehlich, 2009). The recency and popularity of such work demonstrates an 

identified need for structuring the eco-feedback design process, defining clear vocabulary, and 

framing and focusing future research into effective eco-feedback designs. Our design space builds 

on this past work but broadens it to include design factors relevant to all eco-feedback technology 

(not just that for the home). In addition, it integrates findings from a variety of fields including 

information visualization, the behavioral sciences, HCI, and environmental psychology (as described 

in this chapter as well as in Chapters 2 and 3).  

To create our eco-feedback design space, we reviewed and synthesized the above sources to create 

a large list of design attributes related to eco-feedback technology. Two researchers then 

independently organized these attributes into higher level categories and subcategories via affinity 

diagraming. These categorizations were then discussed and merged into a single set. The final 

design space, shown in Figure 4.1, is broken down into eight high-level design dimensions, each of 

which has a series of sub-dimensions. The dimensions include how the eco-feedback data is 

manifested and visualized (Display Medium and Data Representation), how the data is accessed and 

interacted with (Information Access and Interactivity), how actionable the presented data is 

(Actionability/Utility), and motivational factors (Social Aspects, Comparison, Motivational/Persuasive 

Strategies). These dimensions are not entirely orthogonal; indeed, many intersect. However, the key 

is in how they help to structure the design process and for analyzing and comparing existing 

instances to aid in the development of new systems. 
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Figure 4.1: The eight dimensions of the eco-feedback design space (along with sub-dimensions). 
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This design space serves three goals: (1) to allow designers to approach the eco-feedback design 

process with a tangible structure that exposes assumptions underlying various eco-feedback 

techniques and provides a means to reliably compare the strengths and weaknesses of different 

design decisions; (2) to uncover underserved opportunities for eco-feedback and provide a structure 

for exploration of design possibilities; (3) to provide a common vocabulary with which to discuss and 

analyze eco-feedback designs. Below, we briefly describe each of the eight dimensions and their 

sub-dimensions. 

4.4.1 Information Access 

Information Access refers to how the eco-feedback information is accessed, how often it is updated, 

and the system’s demands on attention.  

Update Frequency: refers to how often the display is updated, from real-time to monthly (or even 

less frequently). The design space also includes a non-exclusive discrete option for user polling (e.g., 

visiting a webpage). As previously mentioned, the frequency with which a feedback system updates 

appears to improve the link between action and effect and, therefore, increases an individual’s 

consciousness about their action’s consequences (Fischer, 2008). Several studies have demonstrated 

the benefit of frequently updated feedback to reduce consumption. Bittle et al. (1979) placed 

feedback cards that described the amount of kilowatts consumed the previous day into residential 

mailboxes. The feedback group used an average of 1-9% less electricity than the control group, 

which only received monthly bills. In a more recent study, homes that used a computerized 

feedback display of real-time electricity usage reduced electricity consumption by 12.9% (Dobson 

and Griffin, 1992). The ideal frequency of feedback is unclear, but new types of computerized 

feedback systems provide a level of flexibility in data presentation and access that was previously 

unavailable. 

Spatial Proximity to Behavior: refers to the location of the display in orientation to the target 

behavior. Displays that are spatially co-located and updated frequently have the most potential to 

change behavior but at a cost of higher attentional demand. The location of the feedback may be 

highly localized (e.g., on the appliance itself) or completely independent (e.g., via an internet portal 

or paper bill). A single display may be positioned in a highly trafficked part of the home, for example, 

in the family room or kitchen. Feedback location is restricted by sensing capabilities and the cost of 

installation. Currently, localized displays tend to either be built into the appliance or part of the 
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sensing assembly unit. Two recent studies show that linking energy consumption and source 

through localized displays is a promising direction. McCalley and Midden (2002) gave consumers 

immediate feedback about washing machine energy usage via an attached control panel and found 

a 21% reduction in energy use. Ueno et al. (2005) installed sensors for each home appliance and also 

monitored total electric power and gas consumption and found a 12% reduction in energy usage 

after system installation. 

Attentional Demand: refers to the glanceability of the display. This is related to the Ambience sub-

dimension in Display Medium but is different in that you can have a display with low-attentional 

demand that is not ambient. 

Effort to Access: refers to how much work the user must do to access the information. The ideal 

display should try to minimize effort and yet balance user attention requirements. UbiGreen 

(Chapter 5), for example, visualizes transit usage information on the background of a mobile phone. 

Thus, the eco-feedback data is always available when the user is normally interacting with the 

phone (e.g., to make a phone call or to send a text message). Of course, the user can also choose to 

specifically take out his/her phone to look at the eco-feedback data explicitly. In contrast, to view 

home energy information in Microsoft Hohm, the user must have a computer with access to the 

internet, needs to navigate to the Microsoft Hohm webpage, login and find an appropriate webpage 

detailing usage (a much higher effort to access data). 

4.4.2 Data Representation 

Data Representation refers to the visual manifestation of the eco-feedback information including its 

aesthetic, how the data is grouped, the type of measurement units displayed, and primary visual 

encodings (e.g., graphical vs. textual). According to Fischer’s (2008) eco-feedback literature review, 

very few studies have considered the role of graphic design or the format of presentation on 

behavior. 

Aesthetic: refers to the appearance of the display, its look and feel and the tradeoffs between 

functionality and utility and art and beauty (Figure 4.2). We heavily borrow from Kosara (2007) here 

who distinguishes between two aesthetic approaches: pragmatic visualizations vs. artistic 

visualizations. Pragmatic visualizations analyze, synthesize and present information in a way that 

allows a thorough understanding of the data—Kosara notes that Card et al. (2010) describe this 

process as knowledge crystallization. Visual efficiency is a key attribute of pragmatism: produce 



100 

 

visualizations that convey data as quickly and effortlessly as possible. In contrast, the goal of artistic 

visualization is primarily “to communicate a concern, rather than show data” (Kosara, 2007). The 

data is transformed and conveyed in a more interesting, artistic fashion such that it may not be 

immediately recognizable but still must be readily understood. 

Pragmatic visualizations are more common and provide concrete quantitative information; 

however, they often require a ramp-up period to learn (i.e., visualizations are learned interfaces). 

Artistic visualizations are more abstract by nature and can use visual representations that the 

consumer may find evocative but often at a cost of explicitness. For example, in UbiGreen (Chapter 

5), we found that although users appreciated artistic metaphors that represented their travel 

activity, they also sought more precise information that would allow them, for example, to better 

compare their current performance to previous performances. More research is necessary to know 

when, where, and how pragmatic and artistic visual designs should be used.  

    
Figure 4.2: Different aesthetics: (a) The Blue Line Innovations PowerCost monitor is primarily text based and 

displays real-time electricity use in terms of cost and kWh.(b) the Energy Aware Clock by (Broms et al., 2010) 

overlays energy usage onto a clock; (c) Holmes (2007) “7000 Oaks and Counting” visualization uses a tree 

metaphor to communicate energy flows in a building; (d) The Pinwheel design by Rodgers (2011) adds spinning 

pinwheels based on amount of energy used. 

Time Window: refers to how much historic data is available to view and the time window used to 

calculate the data displayed by the eco-feedback system. For example, it is common practice now 

for home energy bills to provide a bar graph depicting the last year of usage broken down by month. 

In our own studies (Chapter 9), we have found that users particularly like being able to see temporal 

patterns corresponding to season as well as to compare usage for the current month to the same 

month last year. A year time window allows for these sorts of investigations (Figure 4.3a). 

a. b. c. d. 
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Figure 4.3: Different time windows: (a) A Seattle Public Utility electricity bill shows a bar graph of electricity 

usage over the past year (including the current month). (b) The Toyota Prius dashboard display shows mileage 

and regeneration information for the last 30 minutes. (c) Lucid Design Group’s building dashboard shows 

electricity use, in this case, over the course of a day. 

Temporal Grouping: refers to the temporal grouping of data (e.g., by hour, by day, by week). In 

Figure 4.3a the time window is one year but the temporal grouping is by month while in Figure 4.3b 

the time window is 30 minutes but the temporal grouping is in five-minute intervals. 

Data Granularity: refers to the granularity of data displayed on the screen. For example, for 

electricity eco-feedback, the finest granularity would be device/outlet level while the coarsest would 

be neighborhood (or larger) level; see Figure 4.4. 

 
Figure 4.4: The data granularity design sub-dimension applied to home resource consumption. 

Visual Complexity: refers to how busy the display seems. This aspect could also include the 

approachability/immediate understandability of the display. 

Primary Visual Encoding: refers to the primary visual elements used to feedback information from 

textual to graphical. For example, the Kill-A-Watt display is completely textual whereas UbiGreen is 

completely graphical. 

Measurement Unit: refers to the metrics used to measure and present usage. The design space 

includes the most common units: resource (e.g., watts, kWh), cost, environmental impact (e.g, CO2 

emissions and how that affects the environment), activity (e.g., number of times biked to work vs. 

drove), time (e.g., length of a shower), metaphorical units (e.g., the number of one gallon milk jugs 

used in last shower). Like many of the design dimensions, the choice of measurement unit is not just 

about understandability but also about identifying a presentation that the individual or household 

may find particularly motivating (e.g., cost vs. environmental awareness). See Figure 4.5 for 

examples. 

a. b. c. 
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Figure 4.5: (a) General Electric’s Ecomagination display uses cartoonish iconography to display energy 

consumption values in terms of dollars, tons of CO2 and miles driven. (b) The Lucid Design Group Building 

Dashboard display uses metaphors in terms of gallon jugs and toilet flushes to convey water usage. (c) The Energy 

Detective (TED) can be set to display electricity usage in terms of cost or kWh; here the display is showing 

cost/hour. 

Primary View: refers to the primary view used by the visualization, including temporal, spatial or 

categorical. For example, in Chapter 9, we present a variety of water usage eco-feedback designs 

including a time-series visualization (temporal), a blueprint-based visualization (spatial), and a bar 

graph visualization of  water usage by fixture (categorical). 

Data Grouping: refers to how data is grouped. For example, an eco-feedback display for electricity 

or water may group the data by consumption category (e.g., different types of electricity devices or 

faucets vs. toilets, etc.) and by space (e.g., which rooms use the most energy or water). 

4.4.3 Interactivity 

Interactivity refers to the degree with which the user can interact with and customize the eco-

feedback display. 

Degree of Interactivity: refers to the degree with which the display supports user-interaction from 

none to high. 

Interface Customizability: refers to the degree with which the display can be customized from none 

to high. 

User Additions: refers to the support for different types of user additions such as annotations or 

corrections of incorrectly sensed usage data (e.g., for probabilistic sensing systems). 

4.4.4 Social Aspects 

Social Aspects intersects with Motivational/Persuasive Strategies and Comparison and yet Social 

Aspects deserves its own dimension because of the importance of social influences on behavior 

a. b. c. 
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(e.g., see social influences in Katzev and Johnson, 1987) as well as because it allows us to emphasize 

social context (private/public) and individual vs. social targets. 

Target: refers to the intended target or targets of the eco-feedback display. Most past work has 

focused on feedback for individuals (e.g., UbiGreen in Chapter 5), but feedback could also shape and 

inform group behaviors at the household level and beyond.  

Private/Public: refers to whether the eco-feedback display was intended for private or public 

viewing. Private here need not simply mean designed for only a single individual viewer as there are 

different layers to privacy (hence, the spectrum).  

Data Sharing: refers to what information is shared with others and who that information is shared 

with in the case that the eco-feedback display is not private to a single user. 

Social-Comparison: refers to who and/or what groups are comparison targets. Note that this 

dimension is included here for comprehensibility but belongs in the Comparison subspace. 

4.4.5 Display Medium 

Display Medium refers to the physical form, size, and ambience of the display. 

Manifestation: refers to the physical manifestation of the display. UbiGreen (Chapter 5), for 

example, is a mobile phone application for feedback on personal transit activities. In contrast, 

Chapter 9 explores water usage feedback displays that are meant to hang on a wall, fridge or other 

location in the home.  

Ambience:  refers to the ambient quality of the display. Ambient displays “are aesthetically pleasing 

displays of information which sit on the periphery of a user’s attention” (Mankoff et al., 2003). 

Oftentimes, ambient displays trade reduced user interaction for increased aesthetic emphasis (Skog 

et al., 2003). For example, the Ambient Orb by Ambient Devices21 maps incoming data into the color 

of a glowing orb (e.g., if mapped to a particular stock, the orb glows green when the stock is rising 

and red when the stock is falling). In 2007, Southern California Edison tested the use of the orb’s 

ability to affect peak energy use behaviors by installing 120 orbs that would glow green when the 

grid was underused (i.e., when electricity was cheaper) and red during peak hours. They found a 

                                                           
21 http://www.ambientdevices.com/products/energyorb.html 

http://www.ambientdevices.com/products/energyorb.html
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40% drop in peak-period energy usage (Thompson, 2007); however, it is unclear if this change 

persisted. 

Size:  refers to the size of the display medium and the data displayed therein. Size affects ambience, 

ability to discern at a distance, as well as how the display fits into different types of spaces and 

contexts. 

4.4.6 Actionability/Utility 

Actionability/Utility refers to how directly users can translate the data on the display into an action 

that appropriately reduces environmental impact. Like many of the dimensions from other 

subspaces, the dimensions here are subject to interpretation by the user.  

Degree of Actionability: refers to how easy it is to view the eco-feedback display and know what to 

do, if anything, to reduce environmental impact. Degree of actionability can interact with other 

aspects of the design. For example, informing the user that they take longer showers than average is 

more actionable than simply telling them their overall household water use is higher than average. 

Note that degree of actionability may also be highly subjective; for example, if an Ambient Orb 

display glows red, household residents may have learned that this is because energy on the grid as 

at peak use, while a visitor may not have the contextual frame to make this inference.  

Decision Support: refers to suggesting particular actions and purchase decisions to reduce 

consumption or address specific usage issues (e.g., water leaks). Ideally, the decision support should 

be highly personalized and based on the low-effort actions on behalf of the resident. Few systems, if 

any, that we are aware of offer advanced decision support. Research suggests, however, that 

humans tend to assign disproportionate weight to information that is highly concrete and 

personalized (Borgida and Nisbett, 1977). Computerized feedback may be able to offer highly 

personalized recommendations tailored to particular sensed actions. For example, the system may 

be able to detect a malfunctioning water heater which is consuming excessive amounts of energy. In 

those cases, the system could, for example, provide links to more efficient water heaters that would 

be more economical in the long-term (with specific cost/benefit analyses).This is an important 

future direction and relates to shifting the cognitive effort from the user to the system. 

Personalization: refers to the degree with which the display is personalized to individuals or 

individual households. This could include both the degree with which the decision support system is 
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personalized as well as the adaptation of the visualizations to support different stages of use over 

time.  

Information Intent: refers to the number of actions that the display is meant to inform. For 

example, the Toyota Prius display is meant to inform a few driving-related behaviors (e.g., 

acceleration and braking behavior) while the disaggregated water usage displays presented in 

Chapter 9 are meant to inform a large number of behaviors around water usage. 

Automation/Control: refers to whether the eco-feedback system offers or works in conjunction with 

a control system that can, for example, manipulate various building-related parameters to increase 

efficiency (e.g., temperature, windows, shades).  

4.4.7 Comparison 

As noted earlier in this chapter, comparison is perhaps the most important part of any feedback 

display. Both the comparison target and the way the comparison is visualized is important. Once the 

first sub-dimension listed here, comparison target, is set, the remaining four sub-dimensions can be 

explored as applicable. 

Comparison-Target: refers to who or what is used as a comparison. Targets can include self-

comparison, comparison to others, and comparison to usage goals.  

Comparison by Time: refers to what temporal data is used to make the comparison, such as the past 

week, month or same time last year. The comparison target may also be based on projected data 

rather than historic data, for example: “if you continue to consume at this rate, your consumption 

for the month will be 11% more than usual.” 

Social-Comparison Target: social-comparison targets are essentially drawn from one of three 

categories: geographically proximal groups, demographically similar groups, or selected individuals 

from a social network. Carefully choosing a social-comparison target is important. In Fischer’s (2008) 

feedback review, none of the twelve studies that incorporated social normative comparisons could 

demonstrate an effect. She offers that, “while [normative comparisons] stimulates high users to 

conserve, it suggests low users that things are going not so bad and they may upgrade a little. These 

effects probably tend to cancel out each other.” Still, social norming can be a powerful motivator. 

For example, Goldstein et al. (2008) found that hotel guests who were exposed to descriptive norms 

about towel reuse activity were 33% more likely to reuse their towels than a comparison group who 
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were not. As previously mentioned, OPower has also been successful with social-comparisons and 

normative messages (Laskey and Kavazovic, 2011). More research is needed to understand how 

normative comparisons can be effectively integrated into feedback systems. 

Goal-Setting Strategy: refers to the strategy used to set the goal target, which could either be self-

set, system-set, or externally-set (e.g., by a government or resource supplier). 

Difficulty to Reach Comparison Target: The perceived difficulty in reaching the comparison target 

can influence a user’s motivation to conserve or change their behavior (Latham and Locke, 1991). 

4.4.8 Motivational/Persuasive Strategies  

In this dimension, tactics or “persuasive design patterns” are used to influence the user toward 

action. The focus here shifts from eco-feedback that is capable of relaying types of information to a 

person or household about their behavior to how to most effectively relay that information to affect 

behavior. Aspects of other dimensions fall under this category as well such as Comparison, Social 

Aspects, and Actionability. 

This dimension includes techniques described in Section 4.3 including goal-setting, commitment, 

rewards/punishments, competition, loss-aversion and more. However, there are far more 

techniques that exist than we have room to describe in this dissertation and we refer the reader to 

findings from fields such as persuasive design (e.g., Lockton et al., 2010), persuasive technology 

(e.g., Fogg, 2002; Fogg and Eckles, 2007), behavioral science/economics (e.g., Pink, 2011; Ariely, 

2008; Thaler, 2008; Kahneman and Tversky, 1979), environmental psychology (e.g., Ehrhardt-

Martinez, 2010), game design (e.g., Deterding et al., 2011; Bogost, 2007), social marketing (e.g., 

Cialdini, 2001), and health behavior change (e.g., Prochaska and Velicer, 1997). See Figure 4.6 for 

two examples. 

This dimension, perhaps more than any other, is the most underexplored and may have the most 

potential. However, this dimension is also potentially susceptible to abuse and most certainly 

involves ethical issues on behalf of the designer, about the ways in which persuasion is encoded in 

the display. At worst, these tactics may shift from persuasion to coercion and propaganda. That is, a 

designer may feel justified in making small distortions or manipulations in the data displayed in an 

eco-feedback system to promote proenvironmental behavior for the “common good” (e.g., by 

providing a social-comparison target that does not exist but is portrayed as fact) but this is a slippery 
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slope and without system transparency, a difficult one to detect. To our knowledge, a discussion of 

ethical frameworks within the persuasive technology space has been limited. 

  
Figure 4.6: (a) Users of Efficiency 2.022 who reduce their electricity usage earn reward points that can be 

redeemed for discounts on groceries, electronics and apparel though one has to wonder if this technique simply 

shifts consumption (e.g., to product purchases) rather than actually reducing overall environmental impact (see 

Berkhout et al., 2000). (b) OPower uses social normative messages on their bills with social-comparison graphs to 

encourage conservation (Laskey and Kavazovic, 2011). The OPower bill also includes an injunctive message to 

indicate social approval for good behavior (e.g., smiley face). 

4.4.9 Other Design Considerations 

Although this design space contains what we consider to be the most important design elements for 

eco-feedback technology, additional considerations exist, including: 

 The role of education. Designs could incorporate educational theory. 

 The role of information vs. persuasion. Although we touched on this point, more work is 

needed to fully tease out these roles. 

 Usability factors. As with any interface, basic design elements such as button size and 

placement will impact the user’s experience. 

 The role of ethics. There are opportunities for manipulation or abuse with any technology 

aimed at modifying behavior. 

 Underlying system support for logging data useful for evaluation (e.g., number of times 

display interacted with, visualization most frequently selected, measurement units most 

frequently selected, logging of all sensed behaviors, etc.). 

 Visualization and interface support for probabilistic sensing systems (such as the ones 

presented in Chapters 5, 7 and 8). 

 User trust in the information. This can be undermined if, for example, the sensing system 

malfunctions or the display presents information that the user knows to be untrue. 

 Attentional requirements. In general, eco-feedback is not sexy and not significantly 

engaging to most people. Consequently, users will not invest much time in trying to 

understand a display. Design eco-feedback systems for minutes of attention a week (or less). 

                                                           
22 http://efficiency20.com/ 

a. b. 

http://efficiency20.com/
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 Long-term changes in use. Fitzpatrick and Smith (2009) point out three different stages of 

adoption and engagement in home resource eco-feedback technology: the baseline 

exploration stage where users are experimenting with the display and figuring out its use; 

the awareness stage where users assimilate to the display and use it to inform action; and 

the querying and diagnosing stage where users need more detailed analyses for one reason 

or another (e.g., they receive a high bill) and are motivated to more deeply explore the 

system (Figure 4.7). The key here is to think about longitudinal use of the system and how to 

persistent positive change. 

 

 

Figure 4.7:  Three different stages of eco-feedback use once system has been deployed (adapted from 

Fitzpatrick and Smith, 2009). 

 Interplay between the feedback system and the sensing system. One crucial aspect in 

guiding/constraining the design of an eco-feedback display is the underlying sensing 

system—they are intrinsically tied (e.g., the sensing data granularity, frequency with which 

it is updated, and sensing location can all have significant impacts on the way the feedback 

system can be built). The information quality of any eco-feedback system largely rests on 

three components: the visual design, the underlying analytics/recommendation engine (if 

one exists), and the underlying sensing system that provides the former two components 

with data. Given this interplay, the sensing system may be considered an extension to the 

eco-feedback design space (e.g., Figure 4.8). 

 
Figure 4.8: Example addition to the eco-feedback design space: the underlying sensing system. 

4.4.10 Summary of Eco-Feedback Design Space 

We created an eco-feedback design space to help tease out different ways of visualizing information 

related to behavior and the environment. In particular, our eco-feedback design space has eight 

dimensions based on findings from fields including information visualization, the behavioral 

sciences, HCI, and environmental psychology (see Sections 4.1 – 4.3 in this chapter and as well as 

Chapters 2 and 3). The eco-feedback design space is also useful in uncovering underserved areas of 

eco-feedback design and providing a structure to explore different design possibilities. Finally, but 

Baseline Exploration Stage 
Initial period of use entails playful 
exploration with the feedback system and 
learning how to interpret it with actual 
usage. 

Awareness Stage 
After initial exploration period, users become 
more aware of their behaviors and routines. 
The display’s actionability and visual efficiency 
becomes more important as novelty wanes. 
 

Querying and Diagnosing Stage 
The need to conduct more detailed analyses 
at ad hoc times, which may be triggered by 
bills, for example, as users try to determine 
what caused spikes in usage. 
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no less importantly, the eco-feedback design space introduces a vocabulary, partly borrowed from 

information visualization, that allows us to have a common language when we discuss, analyze, and 

evaluate eco-feedback designs. 

4.5 CHAPTER SUMMARY 

This chapter made three contributions: first, we surveyed and synthesized theoretical models of 

proenvironmental behavior and drew out implications for the design of eco-feedback. In particular, 

we argued that although no definitive model of proenvironmental behavior exists, it is critically 

important for eco-feedback designers to think about and reflect upon how they are imbuing models 

of behavior into their designs. Even if it is not explicitly recognized, all designers approach a problem 

with some model of human behavior. This inevitably affects the design choices that are used to 

create the eco-feedback system/visualizations. 

While models of proenvironmental behavior provide us with a philosophical and/or theoretical basis 

with which to design eco-feedback systems, they do not offer specific strategies for changing 

behavior. Thus, our second contribution explored some of the most popular motivation and 

intervention techniques used in behavioral psychology, surveyed how these techniques have been 

applied in eco-feedback thus far, and discussed implications for future eco-feedback systems. 

Finally, our third contribution synthesized the findings and related work from the above two 

sections as well as Chapters 2 and 3, and encoded them into an eco-feedback design space. As with 

any emerging discipline, frameworks help to map and crystallize the research to date and emphasize 

possible directions for future work. Our design space serves both as a critical lens with which to 

analyze existing eco-feedback systems as well as a guide to develop new ones. The design space is 

useful not just in the design process but in the evaluation process as well (see Chapter 9 for an 

application to both processes). 

The end of this chapter serves as a pivot point. Chapters 5, 7, 8 and 9 describe specific sensing and 

feedback systems that were, in part, inspired by work from Chapters 2 through 4. In the next 

chapter we present UbiGreen, a sensing and feedback system to encourage green transit activities. 

We directly apply many of the findings from Chapters 3 and 4 and include an analysis of UbiGreen 

using the design space from this chapter. 
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  Chapter 5

UbiGreen: Sensing and Feedback of Transit 

Activities to Support Green Transportation  

In the past few chapters, we have reviewed and synthesized work from a variety of disciplines that 

can inform the design and evaluation of eco-feedback technology. This chapter and the next four are 

focused specifically on integrating these findings into our own eco-feedback designs. This chapter 

focuses on eco-feedback for personal transportation (Figure 5.1) while the next four are focused on 

water.  

Researchers have identified three areas responsible for a majority of energy consumption in 

American households: home heating and cooling; shopping and eating (and the associated 

slide may go here or 
before “raw sensor data 
to transit activity” slide 

 

Figure 5.1: The UbiGreen Transportation Display semi-automatically senses routine travel behavior such as 

walking, bicycling, and taking the bus and visualizes this information on the background (“wallpaper”) of the 

mobile phone in order to promote awareness and support green transportation habits. 
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transportation of goods); and commuting, flying and other daily transportation activities (Bin and 

Dowlatabadi, 2005; Weber and Matthews, 2008). In this chapter, we focus on the latter (personal 

transportation), the greatest individual contributor of CO2 emissions (26%) in the average American 

household (Weber and Matthews, 2008). 

Given the growing prevalence of mobile phones with sensing capabilities, one compelling 

opportunity to potentially impact human behavior is to offer immediate feedback about how 

currently sensed behaviors affect the environment. In this chapter, we explore the use of personal 

ambient displays on mobile phones to give users feedback about their sensed and self-reported 

transportation behaviors (Figure 5.1).  

There is extensive literature in the areas of environmental sociology, public policy, and more 

recently, conservation psychology that discuss the promotion of environmentally responsible 

behavior (Abrahamse et al., 2005; Ampt, 2003; Maibach, 2003; Vining, 2003). Past work has shown 

that motivators such as public commitment, frequent feedback, and personalization can positively 

impact environmentally responsible behavior (see Chapters 3 and 4). Since the 1990s, information 

campaigns and other programs have attempted to engage individuals in voluntary greening of 

transportation behavior (Ampt, 2003). Programs and studies have explored issues from social 

marketing (Maibach, 2003) to community-level interventions (Ampt, 2003). There is also literature 

to support the connection between increased personal awareness of everyday activity and behavior 

change. For example, in a review of over twenty studies exploring the effects of feedback on 

electricity consumption patterns in the home, the typical energy savings found were between 5 and 

12% (Fischer, 2008; see Chapter 3 for a more detailed review). It is unclear, however, if feedback 

technology focused on transportation choices will translate into this level of reduction. 

Computing technologies have begun to play a more substantial role in supporting green behaviors. 

A-Life Tree23 grows on the background of the user’s PC depending on CO2 sensors in the 

environment; however, this is not tied to personal actions. The RideNow project uses a website and 

email to help coordinate carpooling (Wash et al., 2005). Professor Tanda uses a mobile phone to 

teach about environmental impact in context (Chamberlain et al., 2007). Other mobile applications 

support green transportation behaviors (e.g., Carbon Diem24 and Ecorio25), but little research has 

                                                           
23 http://www.nyu.edu/projects/xdesign/onetrees/description/index.html 
24 http://www.carbondiem.com 
25 http://www.ecorio.org/ 



112 

 

been conducted about how to successfully encourage green transportation choices using mobile 

devices.  

Our work focuses on using technology to encourage green transportation habits among individuals 

who have a pre-existing interest in taking action to lessen their impact on the environment. Here, 

green transportation refers to any eco-friendly transit alternative to driving alone. We have built an 

application prototype for mobile phones, called the UbiGreen Transportation Display (Figure 5.1), 

which supports awareness of personal transportation activities, reminds users of additional reasons 

for being green (e.g., financial savings), and reinforces their commitment to eco-friendly behavior.  

We first report on two studies we performed to better understand current transportation behaviors: 

an online survey and an experience sampling (ESM) study (Csikszentmihalyi and Larson, 1987; 

Froehlich et al., 2007). Both studies focused on how we might engage individuals in green behavior. 

Based on participants’ responses to early design concepts, we determined that feedback about 

green behavior on a mobile device would be of value and that an iconic representation of green 

behavior could be engaging.  

The results of these formative studies inform the design of our UbiGreen Transportation Display, an 

activity-based eco-feedback system for encouraging sustainable transportation behavior. This 

prototype uses sensors and self-report to monitor transportation activities and provides feedback 

on the background of the user’s phone. We describe UbiGreen and then present the results of a 3-

week, 13 person field study. Our results help to illustrate the value of our designs. The primary 

contributions of this Chapter are:  

1. A working system for tracking transportation behaviors and providing feedback on a mobile 

ambient display; 

2. A design capable of engaging users (as demonstrated by our study) with the goal of 

increasing their green transportation, based on a series of formative studies exploring the 

value of different design dimensions; and 

3. A qualitative analysis of a 3-week deployment of our system, resulting in new ideas for 

increased social interaction, engagement and motivation.  

5.1 FORMATIVE STUDIES OF TRANSPORTATION HABITS 

We conducted two formative studies, an online survey and an experience sampling study, that 

investigated, among other things, the respondents’ willingness to shift to more eco-friendly 

transportation, their motivations for driving, and reactions to different visual representations of 
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transportation behavior. The experience sampling data was gathered using a combination of 

complementary techniques: signal-contingent sampling, diary reports and photos (Carter and 

Mankoff, 2005; Consolvo, et al., 2007; Froehlich et al., 2007). The studies supported the user-

centered design process in developing UbiGreen by giving us early feedback on our visual design 

concepts and on the user experience of wearing and interacting with our system for tracking 

transportation behavior. In addition, data from the experience sampling study helped refine our 

transportation inference algorithms and visualization design.  

5.1.1 Online Survey  

The goal of the online survey was to determine people’s attitudes regarding green transportation 

and get feedback on early visual design concepts.  

Survey participants were recruited through a popular online classified ads listing service in Seattle. 

Respondents received a $10 gift certificate for completing the survey. Our recruitment materials 

stated that we were interested in “transportation practices in our community” and would be using 

this study “to design mobile technology to help people travel in a more environmentally-friendly 

way.” Our goal was to reach individuals interested in using green forms of transportation, as they 

would be representative of the potential users of the tool we planned to build.  

A total of 63 respondents (78% female) completed the online survey in July and August 2008. 

Respondents represented a wide range of occupations and included a flight instructor, school bus 

driver, students, managers, scientists, and stay at home parents. 42% of respondents lived in large 

cities (i.e., cities of more than 500,000 people); the rest lived in towns and smaller communities.  

The online survey was divided into two parts. The first section asked respondents about their 

transportation habits, including the frequency with which different modes of transportation were 

used and what influenced their choices. The second section, which could not be viewed until the 

first section was complete, explored design concepts for a mobile tool to encourage green 

transportation choices. This section explored a variety of design dimensions such as comparative 

versus personal data and iconic versus numeric representations.  
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5.1.2 Online Survey Results 

The online survey helped us understand how people make transportation decisions, their willingness 

to engage in green travel, and their reactions to our application design concepts. We discuss each of 

these areas in turn. 

Why respondents drive: Similar to past research (Frank et al., 2007), we found a number of factors 

underlying a person’s choice for transportation. When asked about the most important factors 

when selecting transport, 77% of respondents selected time to destination, 67% selected flexibility, 

and 47% selected cost. Combining travel with exercise was mentioned by 13% of respondents. 

When asked about reasons for driving by car, 45% of respondents reported that not driving would 

take too much time, 51% responded that public transportation was unavailable or impractical, and 

57% said that they needed the car to carry things. Our results suggest that if obstacles to not driving 

could be overcome, motivations other than eco-friendliness could be used to motivate green travel. 

Willingness to engage in eco-friendly travel: While only 19% of respondents reported that being 

environmentally-friendly was one of their top three priorities when making transportation decisions, 

72%  said they would be willing to set goals for themselves to travel in a more eco-friendly way. 

Fewer than half of the respondents (45%) thought that they were doing everything they reasonably 

could to travel in an eco-friendly manner. Furthermore, 61% had taken at least one action with the 

direct goal of making their transportation more eco-friendly. Popular actions included driving only 

when necessary, combining multiple errands into one trip, driving a hybrid or a fuel-efficient car, 

trying to walk more and making better use of public transportation. Of this group of respondents, 

63% claimed to have maintained these eco-friendly travel choices over time.  

Reactions to application design concepts: Half (52%) of respondents were interested in having 

feedback about eco-friendly travel on their phone, including how they did in relation to others in 

their city (71%). However, 54% were unwilling to share this data with others (familiar or strangers). 

With regards to visual feedback preferences, respondents were almost equally divided between 

iconic (50%) and numeric (47%) representations. Iconic representations used an abstract image or 

metaphor to indicate green behavior in some way. Numeric representations used text or a bar 

graph. An abstract image provides less information but may add other potential benefits such as 

evocativeness or aesthetics, depending on its design (Consolvo et al., 2008). See also Chapter 4. 
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These results indicate that our respondents were receptive to change and would be willing to use a 

system like the one that we propose in this chapter. 

5.1.3 Experience Sampling Study 

After the online survey, we ran an experience sampling study using mobile phones to see whether 

people’s in-the-moment reasoning about their transportation choices were consistent with the 

results from the online survey, and to get feedback on the early designs of the transportation 

sensing and visual design components of our mobile application. We also used this data to help 

calculate how many green transportation actions people took in a week. 

Seven people (five female) from the Seattle area volunteered to participate in the one-week study. 

Participants were recruited from among our acquaintances that were interested in green travel and 

were willing to work with an early prototype; six were graduate students and one was a software 

developer. Participants were loaned a Cingular 2125 Windows Mobile phone running the 

MyExperience software (Froehlich et al., 2007) and also carried their personal mobile phones. 

MyExperience automatically triggered short self-report questionnaires on the mobile phone based 

on the participant’s movement (e.g., when a trip had completed, see Figure 5.2). These 

questionnaires asked about current location, the method used for transport, and, depending on the 

response, a series of questions about that particular transportation method. For example, if the 

participant had just driven somewhere alone, we asked about eco-friendly alternatives and the 

circumstances under which the participant would be likely to use these alternatives. We ended with 

exit interviews where we demonstrated our design concept and got user feedback. 

Figure 5.2: The MyExperience Tool (Froehlich et al., 2007) was used to collect in situ data on transit decisions, 

attitudes and behaviors via context-aware experience sampling (Intille et al., 2003) on the mobile phone. 

MyExperience would trigger a small survey like the one shown above whenever the participant was inferred to 

have traveled to a new location. 
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Automatic trip detection was done by looking for significant changes in the visible GSM towers on 

the phone, which allowed us to detect trips of about half a mile or longer. Participants were asked 

to manually trigger a questionnaire in cases where the automatic trip detection failed and to take 

camera-phone pictures of anything that illustrated the experience of their daily travel (average of 14 

photos per participant). This approach allowed us to test our trip detection and get situated data 

early in our design process with a minimum of development time, which is difficult to do in 

ubiquitous computing research (Carter et al., 2008; Consolvo et al., 2007).  

5.1.4 Experience Sampling Study Results 

Participants reported an average of 18 trips for the week (min: 11, max: 24). The majority of trips 

taken by our mobile participants were green, with walking being the most favored green 

transportation method. 34% of the trips were taken on foot, 26% using a bicycle, and 15% using 

public transportation (buses or ferry). When the participants did drive, their reasoning was similar to 

the reasoning provided by the survey respondents. Out of the 34 car trips total for all seven 

participants, they claimed that it would have taken too long not to drive for 13 of the trips (38%) and 

that they needed the car to carry things for 11 of the trips (32%). Also similar to our survey results, 

for 73% of all car trips, greener transportation options existed. 

This study also helped reveal the hidden complexities behind the perception and selection of a 

transportation mode. One participant noted in the exit interview that when biking for 

transportation, he did not think of it as exercise. Reframing short trips as an opportunity for exercise 

could potentially make a difference in selecting vehicular travel vs. healthier (and more 

environmentally friendly) options. If a participant indicated in an ESM survey that s/he drove, we 

asked if bicycling or walking were viable alternatives. In those cases when bicycling or walking were 

indeed viable options, our participants reported 52% of the time that they would have been more 

likely to select bicycling or walking had they thought of health benefits (e.g., caloric expenditure) 

when making the travel decision. 

Finally, the participants were shown an early version of our design concept for a mobile phone 

application—an icon-based design representing green activity with a growing tree (similar to the 

tree design in Figure 5.3). All were able to understand the interface elements without prompting 

and were positive about having such a representation of their transportation activities on their 

mobile phones. 
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5.1.5 Design Implications of Online Survey and ESM Study 

Our formative studies suggested that users could benefit from a mobile application that provides 

awareness of transportation routines and that they would be interested in such an application. 

Given the range of considerations that impact transportation choice, a design need not focus solely 

on emphasizing green behavior and may incorporate auxiliary benefits such as cost and health. 

Other factors such as stress, ability to do other things while traveling (e.g., reading) may also be 

relevant. Prior work (Frank et al., 2007) also underscores the many factors that affect transportation 

choice—not all of which are environmentally related. We highlight these secondary benefits in our 

design. 

Although initially we were interested in building a social-mobile application around green 

transportation behaviors, our participants’ ambivalence about sharing information led us to focus 

on a single-user application. We plan to explore multi-user applications in future research. 

As users did not express a preference between the iconic representations vs. numeric 

representations of transportation behaviors in our online survey data, we decided to use iconic 

representations for our mobile application. Prior literature enumerates a few of the advantages of 

iconic visual displays: (1) they may be more aesthetically pleasing in a peripheral viewing situation 

(Stasko et al., 2005); (2) once learned, they can easily and quickly convey glanceable information 

(Matthews, 2007); and (3) they may evoke other responses such as emotional attachment (Dillahunt 

et al., 2008; Donath, 2004). However, iconic representations often do not offer the same level of 

detail as their numeric counterparts. 

5.2 UBIGREEN MOBILE APPLICATION 

Based on the results of our formative work, we created the UbiGreen Transportation Display, a 

mobile phone-based application that provides personal awareness about green transportation 

behaviors through iconic feedback. Small graphical rewards are earned by taking “green” 

transportation such as riding the bus or train, walking, biking, or carpooling. Although each of these 

activities has different CO2 emissions, we counted them equally, as each is preferable to driving 

alone. Once a green transit activity is sensed, the background (wallpaper) of the user’s phone is 

updated accordingly. A phone’s wallpaper represents a critical area of screen real estate as it is seen 

nearly every time the device is picked up and used. In this way, the wallpaper functions as a type of 

personal ambient display (Consolvo et al., 2008; Matthews, 2007).  
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Our designs are partly based on a finding from social psychology that cognitive representations of 

different concepts become linked if those concepts are repeatedly encountered together (Higgins, 

1996). We take advantage of this fact by jointly presenting a representation of eco-friendly 

transportation and representations of other goals—such as saving money, getting exercise, etc.—

that the user may care about. The interface emphasizes these sub-goals automatically when green 

transportation is taken.  

We were also influenced by research in conservation psychology that showed how caring for 

animals helps humans connect with nature (Myers and Saunders, 2002). Dillahunt et al. (2008) 

adapted this notion and explored how “virtual polar bears” could be used to motivate green 

behaviors. They found that emotional attachment to a virtual polar bear could translate into 

concern for the environment and a tendency towards taking green action. This research paired with 

the results of our own formative work lead us to create two different iconic representations to 

reward green behavior (Figure 5.3). 

5.2.1 Visual Designs 

In one interface, a tree is used to indicate green transportation activity. At the start of each week, 

the tree is almost bare. Leaves, blossoms, and eventually apples are progressively added to the tree 

after each green transportation event. In the other interface, a polar bear is shown on a small 

iceberg. Over the week, the iceberg grows as green transportation actions are taken and the 

surrounding ecosystem also improves. For example, new food sources such as fish and seals appear 

(Image #12 in Figure 5.3). Both designs follow a linear sequence of images. The last image in the 

sequence provides a small, but engaging final reward. In the tree design, the flowers give way to 

fruit and in the polar bear design, the sun sets and the Aurora Borealis (Northern Lights) appears. 

The images never return to a previous state due to inactivity, but at the start of each week, the 

 

Figure 5.3: (a) The tree and polar bear storyboard progressions. (b) One of the tree and polar bear storyboards 

shown in context on the background of the mobile phone. In both cases, the current activity is carpooling 

indicated by a car icon with the “2” in the windshield. Since carpooling saves money, the piggy-bank icon is also 

highlighted in the secondary value icon bar. 

     storyboard #             1                          3                                    12                                   21                                 last   

a. b. 
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interface is reset to the first image in the sequence. The entire background area of the screen is 

filled although small parts of the images are obstructed by menus and text (right-side images in 

Figure 5.3). Due to technical limitations on Windows Mobile devices, the image transitions were not 

animated. 

In both designs, an icon representing the most recently sensed green transportation activity is 

shown (e.g., in the right two designs of Figure 5.3, the most recent activity is a “carpool”). In 

addition, at the bottom of the interface, four icons are shown representing other potential benefits 

of this activity: a piggy bank represents money savings, a person meditating represents relaxation, a 

weightlifter represents exercise and a book represents the opportunity to read or do work, for 

example (see also Figure 5.6). These four icons were chosen based on the results of our online 

survey, which indicated that financial savings, exercise, opportunity to do other things while 

traveling, and “time to think” were reasons for taking green transportation. Although one could 

reward users differently depending on the carbon footprint of their current transit activity we chose 

not to do so for simplicity (e.g., walking produces zero carbon vs. carpooling, whose per person 

carbon footprint is dependent on the car type, number of passengers, distance traveled, etc.).  

5.2.1.1 Analyzing the UbiGreen Visual Design through the Eco-Feedback Design Space Lens 

We can use the eco-feedback design space presented in Chapter 4 to analyze critical elements of the 

design; see Figure 5.4. 

Information Access: Perhaps most importantly, the accessibility of the information is extremely 

high—by using the background of the mobile phone (a device that most of us carry everywhere), the 

transit feedback data is nearly always present at hand and the effort to access the feedback is low. 

UbiGreen updates in real-time and offers feedback co-located with the target behavior (transit). 

Data Representation: Second, in terms of data representation, UbiGreen is more artistic than 

pragmatic but uses iconography in a way that allows the user to track progress throughout the 

week. The primary visual encoding is graphical (there was no text), relatively simple visual 

complexity; however, the as an artistic display, the information was not immediately 

understandable without explanation or direct use. The measurement unit was number of green 

transit activities instead of, for example, amount of carbon emissions or miles traveled.  

Interactivity: Ideally, the system would have required no direct user interaction other than a glance 

at the data; however, due to transit sensing and inference limitations, we relied on the user to self- 
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Figure 5.4: Applying the eco-feedback design space from Chapter 4 to the design of UbiGreen. 
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report certain transit activities (such as driving in a car alone vs. carpooling). The interface was not 

customizable (e.g., users could not choose their own storyboards). 

Display medium: As previously noted, the UbiGreen display ran on the background of the user’s 

mobile phone on a 240x320 pixel screen. The interface was designed to be ambient and 

glanceable—in the sense that the user could see the information as a side-effect of pulling out and 

using their phone. 

Actionability/Utility:  UbiGreen had a low degree of actionability in that it does not explicitly 

provide information to the user on how they can best change their behaviors to reduce their carbon 

emissions or even suggestions for alternative transit based on sensed travel routines. The 

information intent was to inform multiple actions—i.e., different types of transit modes and 

routines.  

Social Aspects: UbiGreen was designed for individuals and did not support data sharing (though, as 

you will see in our results, many participants physically showed off their display to others). In 

addition, as an eco-feedback display running on the mobile phone, it was designed for personal 

rather than public use. 

Comparison:  UbiGreen did not explicitly support comparison of any sort (not self-, social-, or goal-

comparisons). As the display reset on each Sunday, the user would have to remember the green 

transit feedback stage reached from the previously week to compare week-to-week performance.  

Motivational/Persuasive Strategies. Many of our design elements were influenced from the 

motivation techniques section of Chapter 4 as well as the game design literature. For example, the 

visual adaptations that would occur after green transit was sensed could be perceived as rewards. 

The storyboards themselves were game-like narratives where the user’s actions in the real-world 

affected how the story progressed. Both the tree design and the polar bear design portrayed a sense 

of “stages” and “unlocking features” by adding new elements that were not previously available 

once a number of green trips were completed (e.g., the tree stages went from bear tree, to leaves, 

to flowers, and finally, the last stage, fruit). 

In summary, the eco-feedback design space is useful to better understand how a feedback system is 

designed but also to uncover open areas for improvement. In this case, the limited actionability and 

comparison aspects of the display could be improved in future designs. 
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5.2.2 Implementation 

The UbiGreen prototype was built in C# using .NET CF along with two open source tools: 

MyExperience (Froehlich et al., 2007) and ActivityDesigner (Li and Landay, 2008). UbiGreen relied on 

three sources for transportation data: a Mobile Sensing Platform (MSP) (Choudhury et al., 2008), the 

phone’s own GSM cell signals, and the participants themselves. The MSP sensor, shown in Figure 

5.1, is a small device about the size of a pedometer worn around the belt and contains ten sensors 

including a 3-axis accelerometer, a barometer, and infrared light sensor. Its onboard algorithms are 

able to accurately differentiate sitting, standing, walking, running and cycling activities. To avoid 

recording erroneously detected activities, participants did not receive credit for automatically 

sensed transit activities that were six minutes or less in duration. 

We used GSM cell tower information similar to Sohn et al. (2006) to infer when a participant was 

traveling by vehicle (car, bus, or train). In particular, we used a sliding window algorithm to 

continuously calculate the rate-of-change between the strongest visible seven cell towers. We could 

not automatically distinguish between these transit modes. Consequently, in these cases, UbiGreen 

would trigger a two question self-report questionnaire (a “travel survey”) on the mobile phone 

asking about the exact form of travel (e.g., bus, drove alone, or carpooled; see Figure 5.5c). This 

questionnaire was only triggered after we inferred that the transportation had ceased to avoid the 

possibility of creating driving distractions. If the automated sensing methods failed to detect a trip, 

the participants could still get credit for a green transportation activity by invoking a transit survey 

themselves. To avoid redundancies in the data, both the manually triggered and the motion-

triggered self-report surveys were prefaced by a dialog informing the user about their most recently 

recorded transportation activity (Figure 5.5b). 

UbiGreen was built, in part, using ActivityDesigner, which allows designers to rapidly create 

applications that react to data about human activities (Li and Landay, 2008). ActivityDesigner uses a 

combination of storyboarding and demonstration to create application behaviors. UbiGreen 

reported transportation activities over the Internet to ActivityDesigner, which would then calculate 

the next image to be displayed and send that image back to the phone. ActivityDesigner also 

provides an interface to playback collected field data. This allowed us to replay events sent from our 

participants’ phones during the field study. This was useful in debugging early versions of the 

prototype as well as helping to monitor our participants’ data as it was being generated (Figure 5.7).  



123 

 

The UbiGreen prototype also included an “information” screen that provided feedback about the 

real-time activity inference, the status of the Bluetooth connection to the MSP, and information 

about the user’s mobile Internet connection (Figure 5.5a). During the first week of our field study 

(see below), participants had expressed disappointment when the sensing technology did not sense 

all of their trip activity or did not sense it accurately enough to earn credit. We quickly added the 

new information screen, which allowed participants to more easily detect whether their hardware 

was working and whether their current transit activity was automatically being sensed. 

   
Figure 5.5: Non-wallpaper UbiGreen screens: (a) UbiGreen’s application screen where the user could choose to 

launch a self-report survey and see status information from the sensing and inference system. (b) The manual 

survey screen. Note that it explains to the user about the last recorded activity to ensure that duplicate activities 

were not recorded. (c) The first survey screen asks “What type of trip did you take?” 

5.3 UBIGREEN FIELD STUDY 

We used a combination of rapid iteration and field testing to get in situ data on the use of UbiGreen. 

Our goal was to compare the two visual designs and to explore issues such as social use, the most 

engaging aspects of our design, and responses to the changing iconic progress representations. We 

were also interested in exploring the viability of using semi-automatic sensing for recording transit 

activities. 

Before we give the details of our study and results, it is important to comment on our methodology 

and the resulting timeline. The ability to get in situ data at early stages of application development is 

an acknowledged problem in the literature (Carter et al., 2008; Consolvo et al., 2007), and many 

researchers have engaged in tool and technique development to address these issues (Carter et al., 

2007; Froehlich et al., 2007; Li and Landay, 2008). Because this was a design exploration, we heavily 

leveraged rapid development tools such as MyExperience (Froehlich et al., 2007) and 

a. b. c. 
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ActivityDesigner (Li and Landay, 2008) that allowed us to test our application in situ within only a 

few months of the start of our software development process.  

 
Figure 5.6: When walking is sensed, the UbiGreen background display would change to look like it does in this 

figure. Note how the secondary value icon bar highlights the “saving money” and “exercise” icons, which serve to 

reinforce the benefits of walking. 

That said, UbiGreen is a sophisticated technological artifact relying on external hardware sensors, 

mobile phone Internet connectivity, real-time inference algorithms, and backend server calculations 

to produce the desired application behavior. As a result of this complexity, the technology did not 

always function optimally during the course of the study. Some participants, for example, had 

trouble maintaining a stable Bluetooth connection between their mobile phone and the MSP. 

Others found the MSP cumbersome to wear (particularly women who did not always have a belt or 

belt loop for attachment). Next, we provide more details about our participants and method. 

5.3.1 Participants and Method 

Participants were recruited from two major metropolitan cities, Seattle and Pittsburgh, to increase 

the diversity of perspectives in our resulting data. We evaluated participants’ level of environmental 

concern using De Young’s (2000) scale of 1 to 5. Our Pittsburgh participants were significantly less 

concerned about the environment (M=2.95, SD=0.19) than our Seattle participants (M=3.72 
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SD=0.22, F1,14=7.0, p<.05). Recruitment was done by posting to the Pittsburgh and Seattle Craigslists 

and using a CMU’s online recruitment service. The ads stated that we were “investigating how 

mobile phones could be used to encourage sustainable transportation choices.” We selected 

participants who had AT&T or T-Mobile mobile phone service plans, as UbiGreen required GSM cell 

network operators for its motion inference. Participants were paid $100-$300 depending on the 

length of their participation in the study.  

Participant ID Location Condition Days Occupation 

P1 Pittsburgh Tree 27 Sales Clerk 

*P2 Pittsburgh Tree N/A Attorney 

P3 Pittsburgh Tree 21 Law Enforcement 

P4 Pittsburgh Tree 9 Student 

P5 Pittsburgh Polar Bear 20 Technical/Engineering 

P6 Pittsburgh Polar Bear 12 Student 

P7 Pittsburgh Polar Bear 16 Student 

P8 Seattle Polar Bear 6 Student 

P9 Seattle Tree 42 Office Admin 

P10 Seattle Tree 19 Consultant 

P11 Seattle Tree 25 Program Manager 

P13 Seattle Polar Bear 37 Programmer 

P14 Seattle Polar Bear 30 Consultant 

P15 Seattle Polar Bear 6 Student 

Table 5.1: Participants involved in UbiGreen field study. Of the 14 participants, 7 saw the tree graphics and 7 saw 

the polar bear graphics. Duration ranged from 1 week to 4 weeks. *P2 dropped out of the study. Her data is not 

included in our analysis 

Out of the 14 participants, 6 were from Seattle and 8 were from Pittsburgh (Table 5.1). The majority 

of participants were drawn from the working populations of both cities, although 5 were students (1 

undergraduate). Half were male and half female, the average age was 26-30, and the study included 

two couples. Participation lasted from 1 to 4 weeks (average of 21 days, median=20).  

At the beginning of the study, participants were supplied with a Cingular 2125 phone running the 

UbiGreen prototype, which was intended to replace their current mobile phone (we moved their 

SIM card for them). They also received a pager-sized MSP sensor. One participant (P2) found that 

the Cingular 2125 phone was incompatible with her work and thus had to drop out of the study. The 

participants were given an explanation of the UbiGreen prototype and training on their new phone. 

We also provided a 24 page manual and three one-page quick reference guides documenting how to 

use the Cingular 2125 mobile phone, the MSP, and the UbiGreen application. 
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We randomly assigned seven participants the polar bear visuals and seven participants the tree 

visuals, balanced across conditions. At the start and end of the study, participants were asked to 

complete a questionnaire that included relevant questions from our earlier transportation study, 

demographics and environmental attitudes. We also interviewed participants about their experience 

with the application at the end of the study.  

During the field deployment, a number of strategies were used to ensure that the UbiGreen sensing 

and feedback system was functioning properly. First, UbiGreen would automatically notify the 

participant if the MSP device was malfunctioning or if it seemed that the participant forgot to wear 

the device. Second, the research team could view a secure website of each participant’s current 

UbiGreen background display (Figure 5.7). Finally, UbiGreen also sent text messages to the research 

team when certain irregularities were detected (e.g., system crashes or phone restarts).  

  
Figure 5.7: The research team could view the above website to track the status of our participants in real-time. 

This website was not publically accessible and not available to the participants themselves. Note the differences in 

different stages achieved in the storyboards between the Monday view (a) and the Saturday view (b). 

5.4 RESULTS OF THE UBIGREEN FIELD STUDY 

The goal of early-stage in situ deployment is to show that an application concept is feasible and to 

learn how it may be used and how this differs from the expectations of the researchers. We analyze 

our interview and transit data with respect to four issues that relate to feasibility and use: (1) the 

viability of using automatic sensing to detect transportation patterns; (2) qualities of our two visual 

designs; (3) opportunities for engagement with the issue of sustainable transportation; (4) and 

finally, the potential to influence behavior change. 

a. b. 
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5.4.1 An Overview of the Data 

Our exit interview used an open-ended, semi-structured format and asked participants to describe 

their experiences using UbiGreen. Our transit data was logged via automatic sensing and self-report. 

We collected an average of 21 days of data per participant (16 days in Pittsburgh and 27 in Seattle). 

A “day of participation” was only counted as such if we logged at least one sensor event for that 

day. This was to ensure that our daily averages were not underreported. A total of over 8.4 million 

sensor events were logged during the study. Sensor events included GSM cell information, device 

usage (SMS, Internet browsing activity, phone call activity), and UbiGreen related activity data. 

Transit Activity: Of the 8.4 million logged sensor events, 1,129 were travel events, 872 (77%) of 

which were green. This is 4.2 transportation events per day on average across participants (3.2 of 

which were green). The average trip length was 18 minutes (23 minutes for green trips). The number 

of total trips per day is in line with previous research on daily transportation behavior (Froehlich and 

Krumm, 2008; Hu and Reuscher, 2004) which provides evidence that we were accurately recording 

transportation behaviors. Figure 5.8 presents the statistical breakdown of observed transit activities 

in our dataset. Like in our ESM study, the most popular form of transportation overall was “walking” 

accounting for 31% of the recorded trips (average length 13 minutes). The second most popular 

form of travel was “driving alone” (22%, 13 minutes), followed by “carpools” (19%, 19 minutes) and 

“bus rides” (19%, 22 minutes). In Pittsburgh, carpooling (31%) and walking (31%) were the top two 

most popular forms of green transportation, whereas in Seattle walking (32%) and riding the bus 

(20%) were the two most popular. 

 
Figure 5.8: (a) The raw number of trips broken down by transit mode. (b) The percentage composition of all 

recorded transit activities. (c) The percentage breakdown of transit activities by city. 

Data Acquisition: Transit data came from three sources: the MSP, GSM-based motion inference 

(which triggered a survey asking what type of vehicle the user was in), and the participant 
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him/herself. The MSP accounted for 24% of the recorded trips (Figure 5.9). GSM-triggered surveys 

accounted for 35% of our data and manually invoked surveys accounted for the rest (41%). In all, 

856 surveys were completed with a median completion time of 18 seconds. 

 
Figure 5.9: The source of UbiGreen transit activity data broken down by (a) transit activity and (b) city. 

5.4.2 Viability of Automatically Sensing Transit Activities 

As one participant observed, UbiGreen’s full potential rests upon its ability to automatically sense 

transportation activity, “everything should be automatically detected” (P7). Although this is 

technically challenging, our early prototype performed quite well at automatically sensing walking 

and bicycling and our GSM motion algorithms accounted for a majority of bus and carpool events.  

Still, we were hoping that the number of manually invoked surveys would be lower. One reason that 

they were not, we believe, is because our vehicle trip detection had a delay between the end of a 

trip and inferring that the trip had indeed ended (“I did get travel surveys after I took the bus. 

Sometimes it took way too long though and I would trigger the survey myself” (P13)). From 

interviews, most participants found that the sensing worked quite well: “The car detection was very 

good. Within 1 or 2 minutes after the activity was complete [I would get surveyed]” (P7). 

Requiring our participants to wear an additional sensor (the MSP) was an obvious burden, “I guess 

the biggest annoyance for me was just having an extra piece of gear to wear” (P11). We have 

recently developed activity inference algorithms for the Apple iPhone using the built-in 

accelerometer and Nike+iPod piezoelectric shoe sensor capable of detecting walking, running, and 

bicycling in a laboratory setting with 98% accuracy (Saponas et al., 2008). 

In summary, sensing was viable but could be further automated. In addition to our iPhone inference 

work, we have also investigated how GPS signals can be used to discriminate between train, bus, 
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and driving activities (much work has been published in this area as well since our UbiGreen work 

was performed; see Chapter 2).  

5.4.3 Visual Design Qualities 

Participants commented that the presence of the visual display on the background screen of the 

phone increased personal awareness and stimulated reflection about their transportation activities. 

“It really encourages you to analyze your own performance” (P8). As observed in previous studies 

(Consolvo et al., 2008), the wallpaper is frequently visible to participants as they go about their 

normal phone usage. One participant said, “it’s omnipresent” (P9). Participants also seemed to 

appreciate that their “green” transportation led to a progression of the visual design shown on the 

phone screen. “I liked the tree because it was, to my mind, a pretty progress bar. There was enough 

of a clear distance between each state that I could tell the difference at a glance” (P11).  

Some participants wanted more variety in the visual rewards. “The first couple of times were 

interesting [when the background changed]… but then it started repeating” (P13). Participants P8 

and P11 both thought we could “have different stories every week … to maintain curiosity in the 

app,” (P8) and that we, or others, could “generate their themes online and share them” (P11). 

Future designs could also follow non-linear storytelling patterns where users follow certain thematic 

arcs based on their performance (similar to a choose-your-own adventure style book, only the 

branching through the story is chosen automatically based on transportation behavior). 

Iconic vs. Numeric Representations: Participant feedback indicated an interest in knowing actual 

carbon emissions in addition to seeing the iconic progression of the arctic ecosystem. “I would like 

more information about carbon emission savings” (P15). Tracking carbon savings, however, is quite 

challenging with current technology. As P11 noted, “if you tracked all carbon emissions or gallons 

saved it would be based on what kind of bus you rode in and what kind of cars people drove, it 

would get really complicated.” Despite these challenges, it is possible to calculate an approximate 

impact that gives participants a sense of progress. We will explore this in our future work. 

Secondary Icons: Most participants noticed the secondary icons at the bottom of the interface but 

few were impacted by them. “I didn’t feel like they added a lot of information, like I know biking is a 

good form of exercise” (P11). Another participant pointed out that the secondary icons would be 

more interesting if “the circles filled up as you did more of those activities [over time]” (P10). We 

believe that highlighting secondary benefits for green transportation is still a promising area for 
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future work, particularly when those benefits are highly personalized and highlighted in the moment 

(e.g., by informing them that a bus route is actually faster than driving or that bicycling to work 

would save X dollars over the month).  

Negative Imagery: Some participants were keen to mention using both positive and negative 

imagery depending on performance, “I think negative reinforcement would also be good. I think 

maybe my polar bear should drown if I am bad” (P14). Another participant was even more macabre. 

He stated that if you were really bad, “maybe penguins should show floating dead-up in the water.” 

(P15). It may be worth pursuing future designs that include both positive and negative 

reinforcement—leaves falling from the tree, for example, when a user drives excessively. These 

options could then be evaluated more systematically for impact. 

In summary, our visual design was effective and present, but participants asked us to show more 

detailed information (such as more varied stories; actual carbon savings; tracking secondary benefits 

numerically; and so on). 

5.4.4 Opportunities for Engagement 

Although in a field study of this length, novelty likely plays a strong role in application usage levels, it 

is still interesting to highlight aspects of our design that participants specifically mentioned as 

motivating. Two unexpected themes arose—one was the idea of the application as a real-life game 

and the other was the anticipation and curiosity inherent in moving through the sequence of 

images.  

UbiGreen as a real-life game: Although we did not describe UbiGreen as a game to our participants, 

many perceived it as one. In interviews and in our freeform post-study survey data, participants 

would use game-like metaphors when describing the application. For example, participants 

mentioned that engaging in green transit behaviors earned “points” and making it to the last screen 

was the “final level.” One participant even complained that when a trip hadn’t been automatically 

recorded, “I felt like I was being cheated out of my points” (P15).  

Because so many participants conceptualized UbiGreen as a game, they considered opportunities to 

“cheat” the system to be problems. One participant described UbiGreen’s method of “earning 

points” as potentially flawed, “I don’t like incentives for getting points artificially by taking 

unnecessary trips… like trying to beat your own score by taking two more trips just to earn points.” 
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(P11). This participant was worried that UbiGreen might encourage people to take more trips simply 

to earn more points (some green trips could lead to more emissions than no trip at all).  

Future designs that incorporate a more overt gaming model could mitigate these effects by 

rewarding “more points” for zero-carbon trips such as bicycling and walking. The application could 

also reward the user for taking fewer trips from week to week. Finally, although carbon tracking is 

still an active form of research (Weber and Matthews, 2008), a progress bar (or some other visual 

indicator) could be used to reveal total carbon emissions for the week.  

Anticipation and Curiosity: We did not disclose the image sequence or “final image” to participants 

ahead of time. This created a sense of anticipation and curiosity. P10 commented “I liked that we 

didn’t know what it was going to do. Like when your phone turned from leaves into flowers and 

then apples.” Similarly, P14 said “I wasn’t sure if there was anything else [after the Northern Lights], 

so I kept going.” As previously mentioned, designers could take advantage of this by offering new 

weekly themes or themes that continue progressing through a story over time. 

Social Sharing of Transportation Activity: Although our design was not inherently social, nearly all of 

our participants commented that the graphics on their phone’s background display became 

conversation starters at work and at home. More interestingly, however, some co-workers seemed 

to take an interest in participants’ progress “Some people at work knew about the polar bear and 

every day they asked me about it. ‘Did you get a seal today?’” (P14). Similarly, both of the couples 

that participated in the study developed a sense of competition. “There was a competition with P15 

like I mentioned; he would always ask about my phone” (P14). “Yah, P14 started a day before me so 

that I was always one day behind her” (P15). We believe that exploring how social motivators like 

competition can be used to influence transportation behaviors is a rich, open area of future research 

(Petersen, 2005). 

Real Time Recommendations: In the UbiGreen field study exit survey, we asked participants what 

could help them to make more green trips. The top two things they selected were reliable 

transportation (79%) and financial incentives (71%). However, more knowledge about alternatives 

(56%) also received a high rating. Specifically, P13 mentioned that one improvement to UbiGreen 

could be a recommendation system that suggests alternative forms of transportation based on your 

personal trip history. In cities like Seattle, where the public transit system publishes real time data 

about bus locations using GPS, these recommendations could be very specific. Such a system could 
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even incorporate shared commute data by other UbiGreen users—“42% of the people who live in 

your neighborhood and work in Capitol Hill take the bus.” 

In summary, users encouraged us to do more with the game-like properties of UbiGreen and to 

factor in real time data about friends and/or transportation options, time, cost and CO2 savings. This 

would also address the issues of convenience raised in our online survey. In some cases, it may be 

that a green form of transit is actually faster than driving (e.g., buses can circumvent traffic by using 

the high-occupancy vehicle lanes). 

5.4.5 Potential for Behavior Change 

Our formative work showed that participants would value feedback about their transportation 

choices and identified forms of feedback that might help to support and sustain greener 

transportation choices. Our field study clearly demonstrated the viability of our concept, to which 

participants responded positively on many fronts described above. In fact, 7 of the 13 participants 

continued using the software beyond the planned end of the study. Participants talked about 

gaming and points, and expressed concern about cheating, all indications that they were engaged by 

the system. While an early-stage study like this cannot reasonably be expected to confirm that 

behavior change occurred, our qualitative results indicate that participants were engaged in the 

application (a prerequisite for behavior change) and did start new behaviors.  

At the end of the study we asked whether participants felt that UbiGreen had encouraged them to 

travel in a more eco-friendly way and what they did this week to be more green. In open ended 

responses on our exit questionnaire, three participants gave specific answers about changes they 

had made. P3 wrote “I’ve been carpooling to work and walking to my familys [sic] houses because 

they are close enough to do so, though before i [sic] would usually just hop in my car.” P9: “I’ve tried 

to carpool more to go to church (I go to church more than once a week).” P10 reported “…learning 

to ride a bicycle more confidently.” Two of these (P3 and P9) were the least green participants 

involved in our study. Most other participants told us things like “I feel I already travel in a relatively 

eco-friendly way and the study did not change that” (P15), a reflection of the fact that most of our 

participants were already very green and had lifestyles amenable to not driving (such as living and 

working in an urban area or living next to a bus stop). A common request amongst our participants 

was the ability to compare their current week’s performance with previous weeks. This also implies 

an interest in understanding how their own behavior changes over time. 
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Still, some participants felt that the visual feedback was not enough to change their transportation 

habits. For example, P6 mentioned that “It definitely keeps you more aware of it [transportation 

habits] every single day. You use your phone every single day so you know… but I’m not sure if being 

aware of it changes your habits.” Only a longer and more controlled study can truly answer this 

question.  

5.5 CHAPTER SUMMARY 

In this chapter, we presented results from a set of formative studies exploring individual 

transportation, which led to the development of the UbiGreen Transportation Display, a mobile 

application prototype that semi-automatically senses and reveals information about transportation 

behavior. We described the results of a 3-week field study of the use of our prototype in two distinct 

U.S. cities. Our contributions from this research are a system that semi-automatically tracks 

transportation behaviors, a visual design capable of engaging users in the goal of increasing green 

transportation, and implications for the design of future green applications. The results and 

experiences derived from this field deployment factored directly into the refinement of the eco-

feedback design space in Chapter 4. They also helped inform our water usage eco-feedback 

explorations, which are described in detail in Chapter 9. The next chapter serves as a transition point 

from personal transportation to the water portion of the dissertation.  
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  Chapter 6

Investigating Water Use in the Home  

“When the well is dry, we know the worth of water” 

—Benjamin Franklin, 1746 

In this chapter, we transition from personal transportation to water use. As motivated by Chapters 1 

and 2, many cities around the world are facing an escalating demand for potable water due to 

increasing populations and a shift in population density from rural to urban areas (Willis et al., 2010; 

Barlow, 2007). To reduce residential water consumption, the water industry has largely focused on 

regulatory and financial incentives. However, these approaches often do not address a fundamental 

problem: most home occupants have little-to-no knowledge about water usage in the home and 

limited means to find out.  

This lack of awareness and understanding about water leads to inefficient practices such as irrigating 

during mid-day or using the full-load cycle on a laundry machine when washing only a few clothes. 

And, because so few people have a strong understanding of water usage amounts, they have 

difficulty determining anomalous or excessive usage on their water bills (unless these excesses reach 

extraordinary amounts). In addition, past studies have shown that the fifth most water consuming 

source in the home is actually from leaks, accounting for 13.7% of residential use (Mayer et al., 

1999)—much of this is from leaky toilets (EPA, 2008). Yet, even these cases of unnecessary waste 

are difficult to identify and solve with current water sensing and feedback systems.  
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Although energy usage has received a great deal of attention in HCI research (as discussed in 

Chapters 2-4), the needs, concerns, misconceptions and motivations surrounding water use may be 

different and therefore may require different forms of eco-feedback. For example, unlike electricity 

where heavy energy use tends to be from automated sources (e.g., central air conditioning systems, 

refrigerators, and electric heating), heavy water use often involves some sort of manual human 

behavior (e.g., showering, toilet flushing, doing the laundry, and lawn and garden watering). In 

addition, in contrast to electricity where there are a number of commercial products that motivated 

customers can purchase to get feedback on their electricity usage (e.g., The Energy Detective 

(TED)26, Blueline Innovations Power Cost Monitor27, or P3’s Kill-A-Watt28), water has no such 

products. Thus, the bill most often remains a household’s only feedback point on water 

consumption. Finally, the cost of water is often much cheaper than the cost of electricity, which 

gives rise to questions about motives for conservation.  

To inform the design of eco-feedback displays for water consumption, we conducted a formative 

study examining perspectives of water and water usage practices in the home. In particular, we 

performed an online survey of 656 respondents from around the United States and Canada, focused 

on exploring knowledge of water consumption for everyday activities like showering and toilet 

usage, knowledge of water cost, desire to conserve water, concerns around water supply and 

sewage, and motivations for conserving water (e.g., environmental vs. financial). Several findings 

provide direct implications for the design of eco-feedback displays for water consumption. For 

example, most respondents were relatively unaware of their water consumption habits and had 

misconceptions about where water comes from, where it goes, and how much is used for daily 

activities. We used the data, in part, to inform the design of our own novel water usage feedback 

displays, which are presented and evaluated in Chapter 9.  

In this chapter, we first discuss the factors influencing water consumption from the environmental 

psychology, sociology and water research fields. We then present the survey method and results, 

and discuss implications for the design of eco-feedback displays for water. 

                                                           
26 http://www.theenergydetective.com/ 
27 http://www.bluelineinnovations.com/ 
28 http://www.p3international.com/products/special/P4400/P4400-CE.html 

http://www.theenergydetective.com/
http://www.bluelineinnovations.com/
http://www.p3international.com/products/special/P4400/P4400-CE.html


136 

 

6.1 BACKGROUND: FACTORS INFLUENCING RESIDENTIAL WATER USE 

Although a number of HCI researchers have designed and, in one form or another, evaluated eco-

feedback displays for water (see Chapter 2), few studies have looked at or incorporated past 

research into water attitudes, practices and history. Such background is relevant because it provides 

additional perspectives with which to shape and focus the eco-feedback water research agenda. 

Indeed, it expands water eco-feedback to consider not just individual choices around consumption 

but the larger infrastructural, cultural and social components under which those choices are made.  

Water research scientists and managers have identified a number of factors that correlate with 

water usage. These can be broken down roughly into six groups (1) background demographic 

variables such as family income, education level, retirement status, number of people in the 

household, number of children, number of people with fulltime jobs, and socioeconomic status; (2) 

house variables such as house age, house value, number of water-using appliances, number of 

bathrooms; (3) attitudes, beliefs, and motivations concerning water usage and the need for 

conservation; (4) understanding and awareness of specific water usage strategies intended to 

reduce water use including installing water-saving fixtures and appliances, curtailing outdoor water 

use, and changing behavior to reduce indoor use; (5) temporal context such as season and time of 

day; and (6) regional and national regulatory structures and management efforts. This list is 

synthesized from Hamilton (1983), Cooley et al. (2007), Memon and Butler (2006), Vickers (2001), 

Jeffrey and Geary (2006), Fox et al., (2009) and Kenney et al., (2008). 

Whereas the Background and Related Work chapter (Chapter 2) explored some of these factors—

particularly the effect of regulatory structures and demand management efforts on water use—this 

section focuses on individual and household variables that affect use. In addition, our review 

includes past work exploring motives for water conservation. 

6.1.1 Personal and Household Demographics 

In the water research community, there is much interest in assessing the impact of various 

demographic variables on water usage. However, with a small number of exceptions (e.g., Mayer et 

al., 1999), researchers rarely have datasets that allow them to match household-level consumption 

data with rich demographic data about a home (e.g., number of low flow-toilets, number of water 

using appliances/fixtures) and the people within it (Kenney et al., 2008). In comparison, obtaining 

data on weather, price, and local legislation to compare with household usage is relatively 
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straightforward. Taking into account the effect of demographic variables on usage is often 

challenging not just because of the difficulty in obtaining the data but also in isolating the effect of 

any particular variable. As Hamilton (1983) notes, many of the variables are correlated with one 

another (e.g., personal income and house size) and have a complex network of interconnections. 

Two of the most highly cited variables correlated with water consumption are household income 

and property type (e.g., single-family home vs. apartment) (Jeffrey and Geary, 2006). Higher 

incomes allow for more discretionary use (e.g., hot tubs, pools) and affluence is correlated with 

larger homes, which may have yards and gardens that require water to maintain. Stephenson (2003) 

presents a table of water usage according to standard of housing (p. 170), which shows that high 

quality housing areas used anywhere from 1.25x to 2.5x the amount of water compared to urban 

residential areas and low-cost housing. In addition, Russac et al. (1991) found that water demand 

was highest in homes vs. apartments/condominiums, which was attributed to low per capita 

outdoor watering in apartments and greater space for water consuming appliances in homes. 

Finally, Jeffrey and Geary (2006) cite a number of studies showing a positive correlation between 

water usage consumption amounts, property value and personal income. 

Age and family type has also been correlated with consumption. In Russac et al. (1991), retired 

people in single-family homes consumed 52 gallons per day on average compared with 37 gallons 

per day by an adult living in a similar residence. The difference is likely because retired people are 

often in their homes for longer periods during the day (Memon and Butler, 2006). In addition, age-

related diseases such as diabetes and prostate issues can increase the frequency of urination and 

therefore flushing (Green, 2003). Some of the highest indoor water usage comes from young 

families with a large number of children or from chronic medical conditions (according to Strang, 

2004). Similarly, Mayer et al. (1999) also found that the presence of teenagers in a household 

tended to increase water usage. 

It is not just the type of people living in a household that affects consumption but also the number 

living in the home. Although an increase in the number of occupants living in a home increases total 

water consumption, multiple studies have found that per capita consumption actually decreases 

(Butler, 1991; Edwards and Martin, 1995; Mayer, 1999)—see Figure 6.1. For example, in the REUWS 

study (Mayer et al., 1999), a single person household used 1.5 times as much water on average than 

a two-person household and twice as much per capita than a four-person household (Figure 6.1a). 

This has implications for the prediction of future water demand, as much of the projected growth in 
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the number of households over the coming decades in developed economies is expected to be from 

single-person households (Memon and Butler, 2006; Thames Water Utilities Limited, 2007). 

According to UK government projections, for example, the number of new homes is expected to 

increase by 3.3 million between 1996 and 2016 and the trend points towards smaller household 

sizes (EA, 2001; Figure 6.1b and c). Thus, water demands are expected to rise disproportionately 

higher than they would otherwise if just accounting for the total influx of population. 

 
Figure 6.1: Although the overall amount of water used in a household goes up with increased levels of occupancy, 

the per-capita usage goes down. This pattern has been found in (a) North American homes and in (b) the UK. 

Some studies cite this trend along with observations that household occupancy levels are going down in some 

western cities such as London (c), which would lead to additional overall water use. 

Finally, some past work has indicated that “behavioral knowledge” is an important predictor of 

water savings. That is, providing individuals with specific skills and knowledge about how to save 

water leads to a reduction in use (Corral-Verdugo, 2002 and Middlestadt et al., 2001). 

6.1.2 Time and Water Use 

In this section, we move from discussing household and personal demographics to temporal effects. 

Depending on climate, seasonal variations affect water usage demand, a change that is generally 

linked to outdoor usage (Memon and Butler, 2006). For example, in the UK, garden watering took 

place every six days on average during the summer, using between 260-320 gallons per watering 

session (Herrington, 1996). In Seattle, water use can jump by 50% in the summer (Shridar, 1998). In 

the more arid Southwest, outdoor water demand can account for more than 90% of total use during 

the summer months (Gleick et al., 2008). 

At a more micro-level, different times of day correspond to higher and lower levels of water use. 

There are five distinct periods of water use: three peaks and two periods of lower flow. The sharpest 

peak is in the morning around 8AM followed by two smaller peaks corresponding to dinner time 
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(around 7PM) and bedtime (11PM). The two lulls occur during the workday (10AM and 5:30PM) and 

while most people are sleeping (1AM and 6AM). As noted in Chapter 2, time-of-use pricing has been 

successfully employed to shift electricity usage peaks to periods during the day of lower demand, 

but no such strategy has been employed yet for water. Some governments, however, are 

investigating its potential (Turner et al., 2010).  

A few researchers have also explored temporal usage patterns of water at a disaggregated level 

(e.g., Butler, 1993; Mayer et al., 1999). When broken down by fixture category, showers tend to 

peak in the early morning with a mid-morning peak for washing machines. The other fixture 

categories (e.g., faucets, dishwashers, toilets) have a two peak pattern with a spike in the morning 

and one in the evening. This overall domestic usage pattern is consistent in the UK (Butler, 1993) as 

well as North America (Mayer et al., 1999). See Figure 6.2. 

   
Figure 6.2: Indoor residential usage patterns in the (a) UK and (b) North America. Figure (a) is adapted from 

Butler (1993) while figure (b) is adapted from Mayer et al. (2009). 

6.1.3 Gender, Culture and Religion 

Although gender, ethnic background and religion have not received as much attention as the above 

factors (perhaps because their inclusion in research can be contentious and the variables 

themselves are difficult to obtain), there is evidence that these factors can also play a role in water 

usage. In Mexico, for example, Corral-Verdugo (2002) found that women consumed significantly 

more water than men. This was not a reflection of differences in how water was perceived by the 

two genders but rather that females had a higher level of involvement in chores that required water 

consumption (e.g., washing dishes, watering plants, cleaning).  
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A set of studies by Smith and Ali (2006) looked at water usage behaviors based on ethnicity and 

religion. These studies are particularly good at illuminating the spiritual and ritual properties of 

water, an element that strongly differentiates water from other resources in the home. Smith and 

Ali logged (15-minute interval) water usage data along with census and interview data to explore 

water usage patterns in ethnically and religiously characterized London districts. They found 

pronounced temporal patterns particularly amongst the Muslim and Jewish communities. For 

example, in Jewish districts, there was a characteristic evening peak that varied throughout the year 

with the time of sunset (Figure 6.3a). The authors note that this peak is caused the Jewish ‘Shabbat’ 

(Saturday), which starts at sunset on Friday and no work may be done during this day. As might be 

expected, then, they also found that Saturday water use was much lower, on average, throughout 

the year compared with Friday or Sunday (Figure 6.3b).  

 
Figure 6.3: (a) In Jewish households, Smith et al. (2006) found a characteristic evening water usage peak that 

would shift with the time of sundown throughout the year as households prepared for the Sabbath (“Shabbat”), 

the day of rest. (b) Water use was much lower on Saturdays than on Fridays or Sundays. Both images from Smith 

and Ali (2006).  

6.1.4 Water Use as a Routine and a Culturally Embedded Practice 

Finally, water consumption has been examined from a sociological/anthropological perspective. 

Southerton et al. (2004) argue that most consumption in the home is routine and not subject to the 

forms of decision-making and reflection associated with the rational consumer (with aligns certain 

models of behavior described in Chapter 4). Medd and Shove (2005) highlight water consumption in 

particular (over other forms of home resource consumption) and contend that a “majority of 

domestic water use does not take place because of decisions made to consume water but rather as 

a consequence of the routines of everyday life.”  

For both Southerton et al. and Medd and Shove and many other sociologists, consumption practices 

in the home are not centered on the resources of electricity, water, or gas but rather the routine 

behaviors that draw from them. The resource itself is rarely the focus, only the enabler for 

a. b. 
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behaviors. For water, these behaviors—washing up, taking a shower, doing the laundry—are often 

coordinated around other practices such as child-care, getting ready for work, and preparing meals 

(Medd and Shove, 2005). Thus, when thinking about informing water usage, one must consider not 

just water as a resource but also the larger set of interconnected activities and routines that are 

dependent on water in the home (indeed, connecting activities to consumption was a visualization 

technique we attempted in Chapter 9).  

Larger social trends also influence household water consumption. In an essay on the rise of 

showering in the UK, Southerton et al. (2004) consider the complex infrastructural, technological, 

and social arrangements that have co-evolved to support cultural and social norms around 

cleanliness. Only recently in the UK has the daily shower begun to surpass the twice- or thrice-

weekly bath. Indeed, Herrington (1996) observed that showering has risen steadily from 1976 

through the 1990s. Southerton et al. (2004) cite key economic, technological, and infrastructural 

developments to support this practice. For example, it was not until the early 1930s that middle-

class homes in the UK were equipped with hot and cold running water. These developments have 

also informed and shaped norms around washing and cleanliness. In the HCI community, Strengers 

(2008) recently addressed how smart metering systems may disrupt or otherwise impact comfort 

and cleanliness habits in the home. 

6.1.5 Motives for Conserving Water 

While the above subsections looked at factors influencing water usage in general, this subsection 

focuses specifically on the motives that people cite for conserving water. This has long been an 

interest of water utilities. In 1896, for example, the East London Company claimed “consumers took 

not the slightest interest in the … careful use of the water, and made no provision against drought, 

frost, or the breaking of the mains” (Trentmann and Taylor, 2005). Despite this interest, much of the 

research exploring motives for resource conservation has focused on recycling and electricity with 

much less attention paid towards household water consumption (Gregory and Leo, 2003; Corral-

Verdugo et al., 2003). 

Most of the research exploring reasons for water conservation focus on economic or idealistic (e.g., 

environmental) motives. Hamilton (1983) for example found that “the strongest single predictor of 

indoor behavioral conservation was idealistic motives; economic motives were relatively less 

important.” Hamilton explains that households with high income and citing predominantly 
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economic motives for conservation were less likely to save water—except in those households of 

lower income. Others have found a similar emphasis on environmental motives. In a random phone-

polling survey of 916 UK adults, 51% stated that environmental concerns were more important than 

personal financial concerns (Logica CMG, 2006).It is not always economic vs. idealistic motives, 

however. Corral-Verdugo et al. (2003) found that those with ecological water beliefs (e.g., that 

water is a limited resource that needs to be conserved) used less water than those with utilitarian 

beliefs (e.g., those who considered water an unlimited resource that could be used in an arbitrary 

way).  

Finally, Kantola et al. (1983) note that motivating an individual to conserve water may not lead to 

reduced consumption if a number of criteria are not met including: if (1) the person does not 

possess the skills or knowledge to conserve water; (2) the household environment (e.g., the 

influence of other household members) is not conducive to behavior change; or (3) conserving 

water is more difficult than the person envisaged. Thus, as we described in Chapter 4, a person’s 

concern or positive attitude is an important correlate to engaging in proenvironmental behavior but 

is not necessarily enough to cause proenvironmental action. 

6.1.6 Summary of Background Factors 

Overall, this review shows that water consumption is influenced by a large variety of factors 

including affluence, culture, and temporal factors such as season or time-of-day. In particular, we 

differentiated water use from other types of home resources by offering that it more strongly 

notions of cleanliness, health and spirituality. We also presented factors, which influence 

conservation, such as financial vs. idealistic motives. 

While our study below touches on some of these factors, the focus is to complement this body of 

work as well as the studies described in the Water Management Programs and Strategies in Chapter 

2. In particular, we aim to explore specific areas that will help motivate and guide the design of 

water-based sensing and feedback systems. As such, we focus our attention on more directly 

examining specific knowledge gaps that exist around common water activities, looking at 

perceptions and practices around water bills, motivations that exist for limiting water usage and the 

type of feedback that people would like to see with regards to their water usage behaviors. All four 

areas have direct implications on future sensing and feedback systems for water. 
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6.2 STUDY METHOD AND PARTICIPANT DEMOGRAPHICS 

To better understand water usage attitudes, knowledge, and practices in the home, we conducted a 

formative study consisting of an online survey of 656 North American respondents. The specific aims 

of this Formative Water Survey were to uncover conceptions and misconceptions of water usage in 

the home, to determine the ways in which people think about and respond to various forms of 

water conservation, and to explore opportunities for using HCI/Ubicomp to improve household 

awareness around excess or profligate use (i.e., implications for the design of water-based eco-

feedback technology).  

6.2.1 Study Method 

We recruited respondents via email lists, word-of-mouth, and online postings to Craigslist, Twitter, 

and Facebook. At the end of the survey, respondents could choose to leave their email address to be 

entered into a drawing for a single $50 Amazon gift certificate. There was also an optional checkbox 

that asked if this email address could be used to email the respondent once and only once for a 

follow-up survey (the Display Evaluation Survey, see Chapter 9). The survey was created and hosted 

using the online survey platform SurveyGizmo29, which allowed us to use branch logic and our own 

custom HTML in the survey. Depending on branching, the survey asked between 38-45 questions. 

When possible, question order and answer order were randomized.    

To thwart misuse, only one survey completion was allowed per computer. This was controlled via 

SurveyGizmo using cookies. Although abuse is a concern for any online survey, our analysis detected 

no overt forms of misuse or abuse. Given the number of open-ended qualitative questions in the 

survey, branching logic within the survey itself, the need to supply a unique email address to be 

entered into the drawing and the fact that an additional completion of the survey only earned the 

respondent one additional chance at the gift certificate drawing, we were unsurprised that abuse 

was not a problem. 

Before launch, we pilot tested five iterations of the survey with seventeen participants. A majority of 

these pilot tests involved a research assistant sitting beside or behind the participant while they 

filled out the survey. The research assistant took notes on survey timing and comprehension but 

only engaged with the participant if s/he was struggling or had a clarifying question. From these 

pilot tests, we shortened the survey by approximately 15%, enabled branches such that question 

                                                           
29 http://www.surveygizmo.com  
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wording and answer blanks were in the respondent’s metric of choice (gallons or liters), and 

changed unclear wording. 

At a high level, the survey was divided into four parts: the first part gathered information on 

personal and household demographics such as gender, income level, education, and information on 

house type (apartment/condo vs. house), number of bathrooms, number of residents, etc. The 

second part asked questions about the respondent’s water supplier, their water bills, and their 

payment practices. The third part explored water usage attitudes, perceptions and behaviors 

including questions about who they perceive to use the most water in their home and why and 

questions about water usage amounts for everyday water use behaviors. The fourth and final part of 

the survey investigated the respondent’s conservation and environmental outlook including 

questions on global climate change, the perceived eco-friendliness of the respondent’s social 

groups, and their concern about water and why. Appendix B contains the full set of survey 

questions. 

6.2.1.1 Data Analysis 

Before analysis began, the survey data was processed to convert all volumetric responses to gallons 

(the survey allowed for either liters or gallons) and to convert monetary units to US dollars. 

Throughout the presentation of our results, we simplify five-point Likert-scale responses to three-

point to make our figures more legible. Thus, a “Strongly Disagree,” “Disagree,” “Neutral,” “Agree,” 

and “Strongly Agree” scale was reduced to “Disagree,” “Neutral,” and “Agree.” Our analysis was 

conducted on both the five-point scales and the three-point scales and our textual discussion 

includes both. 

The four open-ended survey questions were coded based on the iterative coding method prescribed 

by Hruschka et al. (2004). Three researchers independently created initial sets of codebooks (one 

codebook per researcher per question) based on answers from a random sub-sample of 50 of the 

656 respondents. The codebooks were then combined for each question and given to two new 

coders, who independently coded the same 50 respondents’ answers. A Cohen Kappa’s inter-rater 

reliability score was calculated on this data and the two coders met to discuss and modify 

problematic codes in the codebooks. The two coders then coded the entire set of open-ended 

responses using the updated codebooks. The Cohen Kappa’s inter-rater reliability scores for these 

questions are Table 6.1. Finally, the coders met again to discuss discrepancies and make 

corresponding modifications to create a final dataset. 
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Question Num Respondents 
Num 
Codes 

Cohen’s 
Kappa 
Score 

Lowest 3  
Cohen’s Kappa Scores 

(Ascending) 

Highest 3  
Cohen’s Kappa Scores 

(Descending) 

Why do you think this 
person uses the most 
water in your home? 

545 16 0.77 “junk” (0.23), 
“environmental 
reason” (0.40), “other 
reason” (0.55) 

“only one living there” 
(0.95), “long showers” 
(0.93), “takes baths” 
(0.90)  

Why are you concerned 
about the water supply in 
your area? 

198 (only asked if 
respondents previously 
indicated that they were 
concerned with the water 
supply in their area) 

12 0.73 “junk” (0), “other” 
(0.57), “wasteful use” 
(0.71) 

“growing 
population”(0.97), 
“drought” (0.96), 
“quality of water” 
(0.90) 

Other measures taken to 
conserve water in the 
home not listed above. 

262 (previous question listed 
strategies to conserve water, 
respondents could write-in a 
response if they utilized 
additional strategies not 
listed) 

16 0.73 “junk” (0.24), “other 
installation” (0.30), 
“other” (0.44) 

“take showers instead 
of baths” (1), “install 
more efficient fixtures” 
(0.96), “turn off water 
while doing activity” 
(0.95) 

Other reasons for saving 
water. 

88 (previous question listed 
reasons for saving water, 
respondents could write-in a 
response if one of their 
reasons was not listed) 

16 0.62 “junk” (0), “cost” (0.38), 
“energy” (0.39) 

“cost (sewage)” (1), 
“environmental 
responsibility” (0.88), 
“upbringing” (0.85) 

Table 6.1: Cohen Kappa’s inter-rater reliability scores for the four subjective questions coded in the Formative 

Water Survey. We followed the iterative coding process as prescribed by Hruschka et al. (2004). The scores 

presented here are from just after our two coders coded the entire set of open-ended responses. Once these 

statistics were computed, our coders met a final time to eliminate any discrepancies and provide a final coded 

dataset with 100% agreement. 

6.2.2 Participant Demographics 

We limited the survey to North American respondents because of regional differences in water 

availability, infrastructure and cultural norms and practices. Of the 711 total survey completions, 55 

of these were from outside North America and thus were not analyzed for this dissertation. Of the 

remaining 656 respondents, 72 were Canadian (11%) and the rest were American (N=584). The 

average age of our survey respondents was 36.7 (SD=13.6; Min=18; Max=81) and 62% were female 

(N=407).  

Given our recruitment method, we do not have a random sample of the North American population. 

The reliance on word-of-mouth and social networking sites led to a skewed demographic that was, 

in part, reflective of the research team’s own composition (highly educated and in a technical 

profession). In addition, there is a self-selection bias in our sample in that these are people who saw 

the survey link and chose to click on it. The SurveyGizmo survey engine records HTTP referrer 

information. From this, we can surmise that 36.1% of respondents came from Craigslist and 13.9% 
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from Facebook or Twitter; the remaining 50% had no referrer information recorded. Although we 

received 711 survey completions, an additional 156 people started the survey but did not finish. This 

resulted in a drop-out rate of approximately 18%, which was lower than expected given the ease 

with which a person online can simply close the browser window to stop taking a survey.  

Of the 656 completed surveys from North American respondents, the top five reported professions 

were: student (21%), education (11%), science/technology (10%), retired/homemaker (9%) and 

research (8%). The education levels were similarly skewed towards an educated population: 37% 

reported bachelor’s degrees and 36% reported graduate degrees. In contrast, household income 

was relatively evenly spread across different income categories, though again this is not reflective of 

the general Canadian or US populations (DeNavas-Walt et al., 2010). See Figure 6.4. We note this 

bias in our analysis and discuss this further in the Findings section as well as the Discussion section 

of this chapter. 

   
Figure 6.4: The demographic makeup of our survey respondents. 

As noted in Section 6.1, household demographics such as household income, number of children in 

the household, housing type (e.g., house vs. multi-family dwelling), and number of bathrooms are all 

factors that influence per capita consumption and are important to consider when examining 

perceptions and practices around water use. The average household size among our respondents 

was 2.8 (SD=1.5); 17.2% of respondents reported that they live alone. Of those respondents that 

reported having children in their household (31.8%), the average number of children was 1.7 (a child 

in this case was defined as anyone living in the home under 18 years old). The average number of 

bedrooms and bathrooms: was 2.9 and 2.0 respectively. In terms of housing type, 64.2% of our 

respondents reported living in a house while 35.8% reported living in a multi-family dwelling (e.g., 

apartment or condominium). Overall, 46.3% of respondents reported renting their property—the 

rest own. 
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6.3 FINDINGS 

The primary focus of the survey was to investigate water usage awareness and knowledge, water 

conservation practices and motivations, and attitudes towards water and the environment. We 

present the results here with an eye towards implications for design of eco-feedback interfaces. 

These implications are relevant not just to ambient eco-feedback displays but also to utility websites 

and bills. 

6.3.1.1 Environmental and Water Conservation Attitudes and Beliefs 

Given that our respondents were a self-selected population who voluntarily opted into taking a 

survey about water, it is not surprising that a large majority (88.4%) reported interest in conserving 

water in their home (Figure 6.5a). This self-interest in water conservation is an important factor to 

consider when reading our analyses and we discuss its implications on our findings. Respondents 

also had a general interest in the environment and engaged in various “eco-friendly” activities. For 

example, 80.5% reported concern about climate change and a large majority reported that they 

actively recycle and use energy efficient light bulbs in their home (84.7% and 70.6% respectively, see 

Figure 6.5b). Although most are concerned about the environment and believe that climate change 

will affect water supplies (84.3%), fewer are actually concerned with the impact of these issues on 

their own lives. A minority (36.1%) voiced concern with the water supply in their local area. For 

those that were concerned with their local water supply, the top three reasons included a general 

water shortage concern (34%), weather such as drought (24.2%), and the quality of their drinking 

water (16%). 

We also examined perceptions of “greenness” amongst respondents’ social groups with the idea 

that this may further reflect on respondents’ proenvironmental tendencies. Given the general level 

of environmental interest among respondents, we were surprised that only 34.1% thought their 

friends and neighbors were “environmentally friendly” and 38.5% believed that most people they 

know “don’t do much to help the environment”. This has interesting implications for data sharing 

and social-comparisons in water usage feedback displays. 

Finally, because our survey asked questions about behaviors and beliefs that had socially desirable 

responses, we included two questions to help evaluate social desirability bias. Social desirability 

“refers to a need for social approval and acceptance and the belief that this can be attained by 

means of culturally acceptable and appropriate behaviors” (Marlowe and Crowne, 1961). Past 

research studying proenvironmental behavior has found a social bias towards inflating one’s  
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Figure 6.5: (a) Likert scale responses to various statements about the environment and water. (b) Likert scale 

responses to statements regarding the the frequency of performing various “eco-friendly” activities. To simplify 

the visualization of these responses, the 5-point Likert scales were condensed to 3-point scales. 

knowledge of environmental issues and engagement in various eco-friendly activities (e.g., 

Hamilton, 1985). Finding and mitigating desirability bias is challenging when no external means of 

validation are available, such as in an online survey. Thus, we adopted a strategy employed by Berk 

et al., (1993)30 to include fictitious conservation activities and issues in one question of our survey. 

Responses to these fictitious items provide insight into the general bias within the respondent pool 

as well as to identify individual respondents particularly prone to bias. However, this approach is not 

without limitation—the key one being that the fictitious item or items may not be properly 

understood, prompting an incorrect response.  

In our case, we included two fictitious items of our own creation on the frequency of “eco-friendly” 

activities question: “Buy bed linens made out of 100% recycled organic fiber” and “Try to use yard 

                                                           
30 Berk et al. included seven fictitious items in their survey launched in 1991 in Southern California. Interestingly, two of 

their seven fictitious items could no longer be considered fictitious: recycling light bulbs and owning an energy saving 

television set. 
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products with Greensulgar-D31.” Only 1.8% of respondents stated that they always buy the recycled 

bed linens and 1.5% always use Greensulgar-D (though 21% reported buying recycled bed linens 

some of the time and 9.3% reported using Greensulgar-D some of the time). These percentages 

indicate that there will be some inflation of positive responses due to social desirability bias. Though 

we did not conduct this analysis below, future work could use these fictitious responses as 

covariates to adjust downward the self-report data for questions with some social desirability. 

Summary of Environmental and Water Conservation Attitudes and Beliefs 

In summary, our respondents could largely be described as “green”—most had an interest in 

conserving water in their homes and many engaged in eco-friendly activities. In addition, we found a 

slight positive bias in questions that asked about socially desirable beliefs and behaviors. Both points 

should be considered when interpreting our results. In terms of implications for water eco-feedback 

systems, our respondents are a particularly motivated subset of the general population that would 

likely comprise the early-adopters of such systems.     

6.3.1.2 Water Literacy/Knowledge 

Past studies of electricity usage found that few people understand the units used to measure 

electricity consumption, namely watts and kilowatts and even fewer understand watt-hours or 

kilowatt-hours (Anderson & White, 2009; Kempton and Montgomery, 1982)32; however, no studies 

that we are aware of have previously explored similar comprehensions of water-related units. This 

has obvious implications for the ways in which consumption information is presented in eco-

feedback systems. In our survey, we asked respondents to self-rank their own confidence in 

understanding various measurements of water including volume measures: gallons, liters and CCF 

(100 cubic feet, a standard measurement of water and natural gas among American utilities) and 

flow-rate measures: gallons per minute (gpm) and liters per minute (lpm). We also asked about two 

electricity related measures, watts and kilowatt-hours, to contextualize our water-related results.  

The question was phrased as: “I feel confident that I understand each of the following 

measurements and could explain their quantity/definition to a friend.” As pointed out earlier, one of 

                                                           
31 Whereas the first fictitious item was completely fabricated, the second fictitious item was based on Berk et al., (1993): 

“use of yard products with Selgar-D.” 
32 Watts are a unit of power while watt-hours are a unit of energy. A watt measures how many joules of work can be done in 

one second while a watt-hour is the amount of energy that can be done with a one watt source of power for one hour. For 

example, a 100 watt light bulb burning for one hour consumes 100 watt-hours of energy. To make this more clear, one can 

draw an analogy between water and energy measurement units. The flow rate of water (e.g., gallons per minute) is 

equivalent to watts and volume consumed (e.g., gallons) is equivalent to watt-hours. A one gpm fixture filling up a large 

bucket for one hour will fill the bucket with 60 gallons of water. 
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the first questions in the survey asked respondents to select between either “gallons” or “liters” as 

their most comfortable water measurement unit. To make the presentation of our results more 

clear, we will break the responses down into two groups based on whether the respondent had 

previously selected “gallons” (N=542, 82.6%) or “liters” (N=111, 17%)—we refer to these as native 

units. The results are presented in Figure 6.6. 

 
Figure 6.6: Self-reported confidence in understanding various measurements common to home resource 

consumption. The two graphs (a) and (b) present the same information but broken down by two groups: a 

“gallons group” (N=542) that previously indicated that they were more comfortable with gallons than liters and a 

“liters group” (N=111) that previously indicated more comfort with liters than gallons.  

We expected that gallons and liters would be more comprehensible than other units (e.g., gpm or 

watts) because of their physical embodiments in the everyday experience (e.g., buying a one gallon 

jug of milk at the store). In contrast, energy related metrics have no such easily identifiable tangible 

manifestations and therefore remain abstract. As expected, we found that for both groups, the 

native volume measurement units were most understandable: 90% of respondents in the “gallons” 

group stated that they understood gallons and 94% in the “liters” group stated that they understood 

liters. However, when shifting from volume measures to flow-rate measures, there was 

approximately a 20% drop off in self-perceived understanding. Although gallons-per-minute and 

liters-per-minute are labels used on fixtures and appliances, they are not as well understood as their 

volume counterparts—perhaps because they are less tangible (e.g., a bucket or gallon jug does not 

represent flow-rate well; the rate with which those containers fill does however). Finally, neither 

group understood CCFs despite it being one of the standard units of measurement for billing among 
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utility companies (many water meters are also in CCFs). For comparison, CCFs were understood 

about as well as watts and kilo-watt hours. See Figure 6.6 for details.  

We shift now from assessing respondents’ understandings of measurement units to more holistic 

understandings of what contributes to water consumption in the home. Again, this inquiry has 

direct implications for the design of eco-feedback systems as it can help reveal areas that suffer 

from the largest knowledge gaps that eco-feedback may want to target. Past studies of residential 

end uses of water have found that outdoor usage comprises nearly a third of a household’s total 

water usage (31.4%) (Mayer et al., 1999; Vickers, 2001). For indoor use, the most water consuming 

fixtures/appliances are toilets, laundry machines, and showers accounting for 18.3%, 14.9%, and 

11.5% respectively of a home’s total usage (including indoor and outdoor, see Vickers, 2001). We 

asked respondents to rank what they believed to be the top three most water consuming 

fixtures/appliances in the average North American home (including outdoor water usage). We 

provided a list of twelve items to choose from. The results compared with the actual water use 

estimate in the average North American home are shown in Figure 6.7.  

The most frequently selected item, shower, was ranked within the top three 71% of the time (it is 4th 

in Vickers’ list). However, only half of respondents selected laundry machines and toilets as heavy 

water users (55.9% and 50.8% respectively). Outdoor water usage, which should have been ranked 

number one, was only within the top three 33.4% of the time though it was correctly selected as the 

number one water user by 120 respondents (18.6%). Dishwashers, which are the least water 

consuming fixture/appliance in the average North American home, were incorrectly ranked within 

the top three more than a quarter of the time (26.6%). 

These results suggest that most of our respondents had an inaccurate conception of what fixtures 

and appliances accounted for most of the water use in a typical North American home. A potential 

limitation of this question, however, is that respondents may have answered based on their 

personal experiences with water usage in their own home. For example, those who rent or live in a 

multi-family dwelling may not perform any outdoor water usage activities, making that response an 

unlikely choice. Despite this limitation, the results, at the very least, indicate that respondents had 

difficulty thinking about general residential water usage patterns. 
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Figure 6.7: (a) The results from the question asking our respondents to rank the top three highest water users in 

the average North American home. (b) Actual water usage breakdown in the average North American home 

according to Vickers (2001). 

To dive deeper into the water knowledge of our respondents and to bypass the need to ask about 

the abstract concept of “average North American homes”, we created a set of questions about 

water knowledge that could be objectively evaluated. In particular, we asked respondents to 

estimate the water usage amounts of nine common water activities in the home. For each activity, 

an open-ended answer blank was supplied for the usage amount estimate along with a three-point 

Likert scale, asking for a confidence measure in the estimate (“Not at all confident,” “Somewhat 

confident,” and “Confident”). The answers here could be objectively quantified for accuracy. The 

results are presented in Table 6.2, Table 6.3, and Figure 6.8. Given the wide variation in responses, 

we found the median to be a better indicator of general estimate trends than the mean (see Table 

6.2). 

In general, respondents tended to underestimate water usage activities. For example, the average 

American bathtub holds 45 gallons of water filled to the overflow valve (WECalc, 2001). Our 

respondents estimated that the median bath used less than half of this—20 gallons of water. 

Similarly a 10-minute shower with a standard 3 gpm showerhead uses approximately 30 gallons of 

water (10 x 3 gpm = 30). The median response in our survey was 20 gallons, which is an 

underestimate of 33%. A low-flow showerhead reduces this 30 gallon shower down to 25. However, 

here, perhaps influenced by the word “low-flow,” our respondents provided an even lower 

estimate: a median response of 10 gallons (an underestimate of 60%). The most glaring 

underestimate, however, was with regards to outdoor lawn watering. The question asked for 

respondents to estimate the amount of water used by a standard oscillating yard sprinkler for 1-

hour. The median response was 20 gallons; however, the actual usage is 6 to 24 times as much—

between 120 gallons for a 2 gpm low-flow sprinkler to 480 gallons for a high flow version (8 gpm). 

71.0% 

55.9% 

50.8% 

33.9% 

33.4% 

26.6% 

25.2% 

3.6% 

0% 40% 80%

Shower

Laundry

Toilet

Faucet

Outdoor

Dishwasher

Bath

Other

% of Responses (N=656) 

Selected as Within Top Three Water Users in the 
Average North American Home 

 31.7 

18.5 

15 

11.6 

10.9 

9.5 

1.6 

1.2 

1 

0 20 40

Outdoor

Toilets

Laundry

Showers

Faucets

Leaks

Other

Baths

Dishwasher

Gallons Per Capita Per Day (gpcd) 

Actual Water Use in Average North American Home 

a. b. 



153 

 

 

 Minimal Outliers Removed 3xInterquartile Range Outliers Removed 

Mean Median SD % Remvd Mean Median SD % Remvd 

Bath 29.3 20.0 37.1 0.5% 23.2 20.0 16.9 5.1% 

10-Min Standard Shower 28.2 20.0 39.2 0.2% 21.2 16.5 16.8 5.7% 

10-Min Low-Flow Shower 18.1 10.0 29.9 0.8% 13.7 10.0 11.7 4.3% 

Dishwasher 16.1 8.0 38.5 2.2% 10.1 8.0 8.1 7.8% 

Hand Washing Dishes 9.0 5.0 13.4 0.5% 7.0 5.0 6.3 4.0% 

1-Min Bathroom Tap On 3.2 2.0 6.8 0.6% 1.9 1.3 1.5 7.1% 

Standard Toilet Flush 5.5 3.0 22.5 0.2% 3.7 3.0 2.5 3.4% 

Low-Flow Toilet Flush 2.7 1.5 7.3 1.1% 1.8 1.5 1.3 5.9% 

1-Hr Stand. Yard Sprinkler 42.3 20.0 79.2 1.7% 29.8 15.9 33.1 5.6% 

Table 6.2: The water usage estimates of nine common water usage activities. The left half of the table has a 

minimum number of outliers removed: all zero responses and two grossly inaccurate estimates: a 1,000 gallon 

estimate from hand washing dishes and a 222,222 gallons estimate from yard sprinkler.  The right part of the 

table removed data points outside of the “lower” and “upper outer fence” (Quartile25% - 3 x Interquartile Range 

and Quartile75% + 3 x Interquartile Range) according to the NIST e-Handbook of Statistical Methods (NIST, 2010). 

Note that this drops the mean and standard deviations due to a few dramatic overestimates in the original dataset. 

The medians, however, are not substantially affected. 

 
Median 
Estimate Accurate Low Estimate Accurate High Estimate 

Bath 20 34 gal (45 gal tub filled 75%) 45 gal (45 gal tub filled to overflow valve) 

10-Min Standard Shower 20 30 gal (3 gpm showerhead) 50 gal (5 gpm showerhead) 

10-Min Low-Flow Shower 10 20 gal (2 gpm ultra-low-flow showerhead) 25 gal (2.5 gpm low-flow showerhead) 

Dishwasher 8 7 gal (1995-present) 12-14 gal (1980-1995) 

Hand Washing Dishes 5 Answer greatly dependent on kitchen faucet flow rate and user behavior (e.g., whether a wash bin is used 
or faucet is on entire time dishes are washed as well as the number of dishes). With a low-flow faucet (2.5 
gpm), a reasonable low estimate might be 5-7 gals and high estimate 15 gals. 

1-Min Bathroom Tap On 2 1.5-2.5 gal (2.5 gpm max allowed after 1994) 2.75-3 gal (2.75-3 gpm from 1980-1994) 

Standard Toilet Flush 3.0 3.5 gpf (toilets from 1980-1994) 5.0 gpf (toilets from 1950s-1980) 

Low-Flow Toilet Flush 1.5 1.0 gpf (ultra-low-flow toilets, not common) 1.6 gpf (1.6 gpf max allowed after 1994) 

1-Hr StandYard Sprinkler 20 A single rotating lawn sprinkler, on the low end, 
might use 2-4gpm resulting in 120 to 240 gals of 

water used. 

A single rotating lawn sprinkler, on the high end, 
might use 5-8 gpm resulting in 300 to 480 gals of 

water used. 

Table 6.3: Comparing median water usage estimates provided by respondents to actual usage estimates. Sources: 

Mayer et al., 1999, Vickers et al., 2001 and WECalc, 2011. A US federal requirement for residential fixture flow 

rates was instituted in Jan 1st, 1994 allowing a maximum of 2.5 gpm for faucets and showerheads and 1.6 gpf for 

toilets installed after that date. 

The most accurate responses were for estimating toilet flushes (e.g., median low-flow estimate: 1.5 

gpf vs actual: 1.6gpf) and for estimating the amount of water used in 1-minute by a common 

bathroom faucet (median estimate was 2 gallons). Of course, these are per-use estimates and do not 

account for how frequently each use occurs. As we saw from Figure 6.7, only 50% of respondents 

selected toilets as heavy water users despite them being the number one indoor water consumer in 

the average home. So, although respondents were fairly accurate in assessing the amount of water 

used per flush, this knowledge did not necessarily translate into understanding general usage 

patterns in the home. Interestingly, although dishwashers are often selected as heavy water users, 
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Water Usage Amount Estimates of Nine Common Water Usage Activities 

 
Figure 6.8: (top) The confidence ranking supplied for each water usage amount estimate. (bottom) The water 

usage estimates for nine different activities ranging from a flushing a low-flow toilet to using the dishwasher. The 

dotted red line indicates an accurate response. No such line is provided for “hand washing dishes” estimates 

because these could vary greatly depending on faucet type and whether water flowed continuously or was turned 

on and off. In general, respondents were not confident in their estimates and tended to underestimate amounts.   
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the actual water usage estimates for one load of dishes in the dishwasher were not far off. The 

median was 8 gallons per load while an accurate response would be between 7 to 14 gallons 

depending on the dishwasher model. 

So, for the most part, respondents generally had a limited understanding of the amount of water 

common water usage activities consume, particularly for showering, bathing, and lawn watering. 

Examining the accompanying confidence ratings, we found that most respondents professed low 

confidence in their estimates, indicating they were aware their estimates may be inaccurate. Of the 

nine activities, only two received a “Confident” ranking more than 10% of the time: flushing a 

standard toilet (14.1%) and flushing a low-flow toilet (12.1%). The lowest ranking activity was lawn 

watering, which received a “Confident” ranking by 3.7% of the respondents.  

Finally, we asked our respondents to compare their water usage with other households, 31% felt 

that they used less than average, 58% stated that they used average amounts, and only 11% thought 

that they used more than average. Although there is no way to evaluate the accuracy of these 

claims, eco-feedback could be used to more explicitly inform people about how much water they 

use compared to others (e.g., a social normative comparison such as that offered by OPower: Laskey 

and Kavazovic, 2011). 

Summary of Water Literacy/Knowledge 

Even with a highly educated and self-interested population, our findings suggest that residential 

water usage knowledge is relatively low. Our results show not only that respondents had difficulty 

ranking the relative water usage amounts of common fixtures and appliances but also that they had 

limited knowledge of how much water common activities in the home use (e.g., showering, lawn 

watering). This lack of knowledge would make it difficult for home occupants to understand and 

prioritize where they can conserve water in the home—indeed, it may lead to poorly invested effort. 

These results help motivate the need for better water feedback systems in the home—in particular, 

systems that are capable of providing information at the fixture or fixture category level and making 

recommendations about where to best save water. 

6.3.1.3 Paying for Water 

As noted in the introduction to this chapter, despite a recent prevalence of commercial off-the-shelf 

devices that provide real-time feedback on a home’s electricity usage (e.g., The Energy Detective), 

no such products exist for water. Thus, the water bill remains the primary—and most often only—
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means of receiving feedback on water consumption. We were interested in exploring 

understandings of water cost, how water cost was perceived to influence consumption behaviors, 

and practices surrounding the reading and use of the water bill itself.  

Of the 656 respondents, 439 reported that their household pays for water (67%). The primary 

reasons supplied for not paying for water were because the respondent lived in a multi-family 

dwelling that does not receive a water bill (24%) or because the respondent was on well water (3%). 

Thus, a rather large number of our respondents (33%) received no monitoring or feedback about 

their water consumption. 

 
Figure 6.9: All three questions in the above figures were asked of respondents who previously indicated that their 

household pays for water. (a) Perceptions of the price of water in the respondents’ local area. (b) The estimated 

monthly bill. (c) The estimated cost of water per gallon.  

According to the US Environmental Protection Agency, the average US household spent $474 on 

their water bill in 2002 (Mehan, 2003 as cited in EPA, 2009), or about $40 per month. For 

comparison, the average US household spent $104.52 on their electricity bill in 2009—$87.65 when 

adjusted for inflation to 2002 levels (U.S. Energy Information Administration, 2011). Thus, electricity 

is over two times as expensive for most households compared with water—if the household even 

pays for water. For those 439 respondents that reported receiving a water bill, the average reported 

water bill was $68 per month (median=$50) or about $815 a year. Without knowing the actual bill 

amounts of our respondents, we cannot speculate about the accuracy of their estimates but the 

average and median seem reasonable given inflation and higher water costs since 2002 and the 

higher-than-average education and household income levels among our respondents compared to 

the general US population (the latter of which correlates with higher water use).  
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In addition to estimating monthly water costs, we also asked those respondents who previously 

reported receiving a water bill to estimate the price of water per gallon or liter in their home33. 

Although prices can vary depending on region, the average American pays $2.50 per 1,000 gallons or 

approximately $0.0025 per gallon—four gallons for a penny (Glennon, 2009). In our survey, we also 

asked that the respondent not consult a bill, an online website or other outside source for 

information because, we emphasized, we were interested in studying their perception of water cost. 

The question was open-ended so as not to bias the response but an “I Don’t Know” option was 

available for those who did not feel comfortable offering an estimate. 

Figure 6.9c shows the responses. Note that the y-axis is plotted on a logarithmic scale because of 

the wide variation in estimates. After filtering the 24 outliers above $10 per gallon, the average price 

across the remaining responses was $0.79 per gallon (median=$0.20; min=$0.00001; max=$10). 

Both the average and the median are off by a factor of 100 in comparison to the national average. 

Only 14% of the respondents’ estimates were 1 cent or less (the most accurate response). We also 

asked respondents to supply a confidence ranking for their estimate, either: “Not At All Confident,” 

“Somewhat Confident” or “Very Confident.” A large majority of respondents (71.3%) responded 

“Not At All Confident.” Interestingly, those that responded “Very Confident” (3.8%) offered similar 

estimates to the other two confidence groups. The cost estimates were also similar regardless of 

whether respondents were the primary bill payer or not (69% and 72% respectively). 

There is obviously a substantial difference between the estimated cost of a gallon of water supplied 

by our respondents and the actual cost. There are likely multiple reasons for this difference. 

Compare water to gasoline for example: it would be highly surprising if estimates of gasoline cost 

per gallon were off by an order of 100. Unlike gasoline, however, water is relatively cheap—

especially when considered in per-gallon units—which may not compel enough interest for a 

household to pay attention. In addition, the cost per gallon may not be listed directly on a water bill 

making the cost per gallon seem obscure. Finally, an accurate response to our question required 

that people think of cost in terms of a fraction of a cent, an uncommon conception of money. 

Interestingly, however, there is some past precedence for our results, though not for studies of 

water. Becker et al. (1979) found similar results with the cost of electricity: in a study of 43 well-

                                                           
33 As noted previously, branch logic in SurveyGizmo was used to ask questions in the respondents’ unit of choice (e.g., liters 

or gallons). Thus, questions were phrased according to gallons or liters and price amounts could be entered in the 

respondent’s currency of choice. All data was converted to gallons and $USD for our analysis. 
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educated households in Princeton, NJ, few households could accurately give the price of a kilowatt-

hour of electricity. Answers ranged from $0.03 to $5.00, with a median of $0.31 (the correct answer 

was $0.05 but only 16% guessed $0.10 or under). 

Summary of Paying for Water 

Unlike in the Water Literacy/Knowledge subsection where our respondents underestimated the 

amount of water used by common activities, here our respondents vastly overestimated the actual 

cost of water. This has implications for the way in which information about water consumption is 

presented. For example, if a resident is economically motivated to conserve, an eco-feedback 

system for water that draws attention to its cheap cost may actually provoke an increase in 

consumption. This is in contrast to common electricity displays, which often place cost as the 

primary focus (perhaps because electricity is more expensive than water). 

6.3.1.4 Looking at the Water Bill for Feedback 

Modern water bills provide more information than just the total due. In this section of the survey, 

our questions investigated what information the bill payer looked at on the bill as well as what other 

information they were aware of (Figure 6.10). This analysis focuses on the 256 respondents (40.4%) 

who reported that they were the primary water bill payer in the home. A large majority (90.6%) 

spend 5 minutes or less looking at the water bill—5.7% admitted to not even looking at it (i.e., using 

auto-pay). When the bill was read, the most common information looked at was the total due 

(89.5%) followed by the overall water volume used during the pay period (62.3%). A minority of 

respondents looked at the overall cost of water used (39.3%), their sewer charge (31.9%) or the rate 

charge per unit of water (26.5%). This last result may partially account for why respondents were so 

inaccurate in estimating the per-gallon charge for water. 

In addition, many bills provide information beyond cost to contextualize a household’s water usage. 

For example, some bills include a bar graph that shows per-month water use over the past year to 

give occupants an idea of trends in their water usage (e.g., whether they are using more or less than 

usual). Traditionally, the water industry has lagged behind the energy industry in implementing 

these sorts of advanced billing strategies, which can be used in demand side management programs 
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Figure 6.10: For those that indicated that they were the water bill payers in their household: (a) the time spent 

looking at the bill; (b) the information looked at on the bill; and the advanced information available on the bill. 

to decrease per-capita consumption (e.g., OPower’s redesigned bill exists for energy but not water: 

Laskey and Kavazovic, 2011). Our results show that at least a third of bill payers received one or 

more types of advanced information on their water bills. The most commonly reported elements 

were “water usage compared to the previous billing period” (37.7%), “water usage compared to the 

same period last year” (33.6%) and “per-month water use over past year” (24.9%). Far less common, 

however, were indications of the “local water reservoir’s supply levels” (2.6%) and graphs or data 

comparing water usage to neighbors (2.3%). So, the takeaway here is that people are generally not 

receiving much additional information on their water bills about their usage patterns. This is an 

opportunity for eco-feedback systems. 

Finally, we also explored what information, if any, our respondents were interested in seeing about 

their water usage (Figure 6.11). Unlike the above questions in this subsection, we asked this 

question of all 656 respondents. There was a strong preference towards seeing self-comparison data 

and less interest in seeing social-comparison data. The most popular response was providing 

information on how water usage compared to the same period during the previous year (82.7%; 

42.5% strongly agree) followed by water usage compared to the previous billing period (80.3%) and 

a graph of per month water use over past year (79.7%). Fewer respondents were interested in 

seeing their local water reservoir’s supply levels (66%) or how their water usage compared to their 

neighbors (66%). 
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Figure 6.11: Interest in seeing various water usage feedback: self-comparison was generally preferred over social-

comparison. 

Summary of Water Bill Findings 

In summary, we found that only 67% of our respondents reported that they receive any type of 

feedback on their water consumption. For those that do and consider themselves the primary bill 

payers, we found that most (90.6%) spend five minutes or less looking at their water bill and few 

actually receive advanced information on their water bill that would allow them to compare their 

usage to the past or others. This is in spite of our findings that a vast majority of our respondents are 

interested in seeing just this type of data.   

6.3.1.5 Water Conservation Actions and Factors Influencing Consumption 

As noted in the demographic section of this analysis, respondents were generally more 

proenvironmental than not and had an interest in water conservation. Given this interest, how often 

do people perceive themselves as trying to limit their water use? We found that 14.9% of 

respondents reported that they always try and limit their water usage and 84.4% do so at least half 

the time. Only 3.8% of respondents stated that they never try to limit their water usage (Figure 

6.12b). 

To gather data on what concrete steps people take to limit usage, we presented a list of approaches 

to limit water usage in the home and asked respondents to select the frequency with which they 

employ these approaches via a five-point Likert-response ranking from “Never” to “Always” with an 

additional “Not Applicable” response (Figure 6.12a). The most common response was waiting until 

there is a full load of dishes or clothes before starting the dishwasher or laundry machine (88.3%). 

The second and third most common techniques were turning the tap off while brushing teeth (77%), 

and turning the tap off when washing dishes (57.3%). Our respondents were much less likely to 

reduce the number of showers or baths that they take (28.1%). 
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Figure 6.12: (a) The reported frequency of various water conservation activities. The question was closed-form 

with a five-point Likert-scale from “Rarely” to “Always,” which was condensed to a three-point scale to make this 

graph more readable. (b) The reported frequency of trying to limit the amount of water use in the home. 

 
Figure 6.13: The coded responses to the question “Other reasons for saving water” that were not listed in the 

“Frequency of water conservation activities” question.  

Nearly half of our respondents (47.7%) stated that there were other water conservation measures 

that they were aware of but that were not listed in the “frequency of various water conservation 

activities” question. A subset of these respondents (N=256) opted to write-in a response describing 

the measures that they take to conserve water, which were coded according to the method 

described in the Study Method section. The results are presented in Figure 6.13. The number one 

cited response was “installing more efficient fixtures” (30.1%) followed by “other behavior change” 

(19.5%) and “reduce shower length” (19.5%). 

For those respondents who previously indicated that they try to limit their water use in some form 

(N=624), we asked about what reasons they considered when limiting their use (Figure 6.14a). The 

number one factor cited was environmental concerns (77.7%) followed by current weather 

conditions such as a drought (55.3%). A little less than half of respondents considered requests to 

conserve by their water supplier (48%) or laws or city mandates (41%). Far fewer thought about the 
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cost of water (35.6%) or the cost of sewage (25.6%). For those respondents that reported being the 

primary water bill payer in their household (N=265), 46.8% stated that the amount they spend on 

their water bill influences their water usage behaviors (Figure 6.14b).   

 
Figure 6.14: (a) Reasons considered important when limiting water usage, which was asked only if the respondent 

had previously stated that they try to limit their water usage at least some of the time (N=624). (b) Graph showing 

whether the amount of money spent on a water bill influences water usage behaviors. This question was asked 

only for those respondents who previously reported paying the water bill themselves (N=265). 

 
Figure 6.15: The coded responses to “What other reasons do you have for conserving water.”  

A subset of respondents (N=89) wrote-in an additional reason for limiting their water usage, which 

we coded using the method described in the Study Method section. The codes and their frequency 

are listed in Figure 6.15. A sense of frugality (i.e., prudence in avoiding waste) was the number one 

reason for conserving water cited in 21.4% of the responses. For example, R229 mentioned “I 

generally don’t like to waste things” and R571 “I have a general aversion to seeing anything being 

wasted.” The third most cited reason was a concern about the water supply (e.g., R256: “I live in a 

desert area”). 
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Summary of Water Conservation and Factors Influencing Consumption 

Although most of our respondents reported trying to limit their water usage, strategies to do so 

varied. Most commonly, our respondents focused on small, physical curtailment behaviors such as 

filling up the laundry machine or dishwasher before use or turning off the tap during an activity. 

Changing showering/bathing practices was much less common as was installing new, more efficient 

fixtures. In terms of motives for conserving water, a large majority of respondents cited 

environmental concerns—far more than those that cited cost. Although this may be a 

representation of the overall “greenness” of our respondent pool, past work found similar results 

(Hamilton, 1983; Logica CMG, 2006). Thus, a water-based eco-feedback system may want to 

emphasize weather, local watershed health, and reservoir levels over cost. 

6.4 DISCUSSION 

This chapter was concerned with investigating perspectives, understandings, and knowledge of 

water usage in the home. It was meant both as a formative study to influence the design of water 

feedback systems—for example, by gathering data on what sort of measurement units people are 

familiar with—as well as to uncover new opportunities and potential for water eco-feedback 

systems in general. 

We found ample evidence to support the need for different sorts of water feedback than is currently 

available in most homes. A substantial portion of respondents (33%) received no monitoring or 

feedback about their consumption whatsoever, either because they live in a multi-family dwelling 

such as an apartment or condominium or because they are on well water. Interestingly, many multi-

family dwellings do not have the metering technology to monitor each unit’s consumption, likely 

because the cost of sub-metering hardware and installation is simply too high to justify its use. 

There is an opportunity here, then, for low-cost sensing technology that a motivated resident can 

install him/herself to receive water feedback. This system need not be controlled or monitored by 

the water supplier/utility but instead could be a private device that is solely owned and maintained 

by the homeowner (similar to The Energy Detective (TED) for electricity). We describe such a system 

in Chapters 7 and 8. 

Our findings also suggest that most people have an inaccurate conception of what fixtures and 

appliances typically use the most water. For example, approximately a quarter of respondents 

ranked dishwasher and bath among the top three water consumers in the home, while these two 

sources typically account for only a very small portion of water use per capita in the United States 
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(Vickers, 2001). What’s worse, respondents tended to underestimate the amount of water common 

activities consumed, particularly for showering, bathing, and lawn watering.This disconnect between 

knowledge and actual consumption points to the potential of eco-feedback displays to help educate, 

inform and potentially promote more efficient water use. 

In terms of the ways in which this feedback should be presented, our findings suggest that volume 

measures such as gallons or liters (as preferred by the respondent) were better understood than 

flow rates (e.g., gallons-per-minute). Interestingly, CCFs, which is the unit commonly used in meters 

and bills in the US was the least understood water-related unit. However, even though respondents 

tended to report high confidence of understanding in the volume measures, they had great difficulty 

applying this knowledge to water usage in the home. There is something much less tangible about 

water flowing down the drain than there is about water filling up a bucket—eco-feedback can play a 

role in crystallizing use and making it seem more concrete. 

Comparison is a well-known and effective strategy in motiving behavior but seems underutilized in 

the water industry. In our study, we found that 27% of respondents had some sort of comparison on 

their water bills (e.g., a per-month bar graph over past year, a comparison to last month, or a social-

comparison to neighbors). We also found that, in general, respondents were more interested in self-

comparisons than social-comparisons. For example, 83% of respondents expressed interest in seeing 

how their usage amounts compare to the same period during the previous year while only 66% were 

interested in seeing how their water usage compared to their neighbors. 

Among other reasons, water is unique from natural gas and electricity because of its low cost. This 

distinction, more than any other, may lead to different emphases in water feedback displays in 

comparison to energy feedback displays. A vast majority of respondents overestimated the price of 

water—both the average and the median are off by a factor of 100 in comparison the national 

average. Perhaps related, many more people cited environmental concerns as an important 

motivator for conserving water (78%) compared with those who cited cost (36%). Even though our 

respondent population was heavily biased towards positive attitudes and beliefs regarding the 

environment, this finding is consistent with past work (Hamilton, 1983; Logica CMG, 2006). Future 

work should explore how the differences in cost between water and electricity as well as the 

different perspectives of these resources (water often evokes more environmentally charged 

responses) should be leveraged in eco-feedback designs. 
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The greatest resource in a home is, perhaps, occupant attention. Most people lead extremely busy 

lives filled with professional and domestic responsibilities. Water is but a small part of this. In our 

survey, we found that a majority of primary bill payers (90.6%) spend five minutes or less looking at 

their water bills and almost half look at it for less than one minute or not at all. Thus, an eco-

feedback system must be designed to be used and understood at a glance. For an ambient system 

that is highly visible in a home (e.g., in the kitchen), one could probably expect a few glances a day 

at the most (30-60 seconds of attention/day). For water feedback viewed online, the frequency with 

which the information is examined will drop dramatically but a user’s attention will be more 

focused—still, online feedback would probably be examined with similar amounts of time to the bill 

(less than 5 minutes a month). The key is for the feedback system to do the heavy lifting/cognitive 

effort and make it easy to understand where an occupant can conserve and why. 

Finally, it is important to note that water usage is a socially and culturally embedded practice and, as 

such, will have friction to change. In addition, not all water usage in the home is for personal 

usage—some, such as laundry and dish washing, is for the benefit of the household. Thus, eco-

feedback systems may need to take this issue into account.  

6.4.1 Limitations 

As noted in our study methods section, our recruitment approach led to a sample of respondents 

who had a high proportion of graduate or postgraduate degrees, science and/or research 

professions, and positive environmental leanings. At the very least, then, our findings are relevant to 

highly educated, technical professionals with an interest in water and the environment. However, in 

some ways, this makes our survey results even more surprising. Our respondent pool had an 

admitted strong interest in water conservation and the environment but still had extremely limited 

water knowledge—most struggled to identify major water using fixtures in the home and could not 

accurately estimate the amount of water used by common, everyday activities such as showering 

and bathing. More research is necessary to explore these same issues with other populations and in 

other cultures and countries.  

6.5 CHAPTER SUMMARY 

In summary, this chapter has shown a lack of knowledge and water literacy around common water 

usage activities in the home, even among highly educated and environmentally concerned 

individuals. This gap in knowledge points to the potential of water-based eco-feedback systems to 
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inform, educate and potentially promote more water-efficient usage behaviors in the home. To 

create effective eco-feedback systems for water, we first turn towards a new type of water sensing 

system called HydroSense that can monitor water usage at the fixture level (Chapters 7 and 8). In 

Chapter 9, we combine findings from this chapter and the sensing results from Chapters 7 and 8 to 

present a number of eco-feedback visualization designs for disaggregated water usage data.  



167 

 

 

  Chapter 7

HydroSense: Pressure-Based Sensing to 

Identify Water Usage Events in the Home 

 

This chapter presents HydroSense, a low-cost and easy-to-install solution for sensing water usage 

from a single installation point. HydroSense is based on the continuous analysis of pressure within a 

home’s water infrastructure. When a water fixture is opened or closed, its valve generates a unique 

pressure wave that propagates throughout the plumbing system. HydroSense observes these 

pressure transients and classifies them into fixture usage events (e.g., the upstairs bathroom toilet 

was just flushed). HydroSense also provides estimates of the amount of water being used at each 

fixture based on the magnitude of the resulting pressure drop within the water infrastructure during 

water usage events.  

     
Figure 7.1: HydroSense is a pressure-based sensing solution that disaggregates water usage at the fixture level 

from a single installation point. HydroSense uses a digital pressure sensor that can be installed onto (a) an exterior 

hose bib or (b) water heater drain valve in the same way that one would attach a garden hose. If these installation 

points are not available, HydroSense can also be installed at the 3/8” hose connection points of toilets (not shown), 

(c) kitchen sinks or (d) bathroom sinks. (e) An analog pressure gauge shown for comparison.  

 

a. b. c. d. e. 
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Figure 7.2: An illustrative schematic of a basic plumbing layout in a two-bathroom home. HydroSense can be 

easily installed at any accessible location in a home’s water infrastructure, with typical installations at an exterior 

hose bib (shown above), a utility sink spigot, or a water heater drain valve. By continuously sensing water pressure 

at this single installation point, HydroSense can both identify individual fixtures at which water is being used as 

well as estimate the amount of water being used. 

This work represents a significant advance over prior research in several regards: 

First, HydroSense can be easily installed at any accessible location within a home’s existing water 

infrastructure. Typical installations will be at an exterior hose bib, utility sink spigot, or water heater 

drain valve (Figure 7.1 and Figure 7.2). If unavailable or not easily accessed (e.g., in an apartment 

unit), HydroSense can also be installed at the water connection point for a dishwasher, clothes 

washer, or toilet. All of these are simple screw-on installation points, with no need for a plumber. 

Second, HydroSense’s analysis of pressure provides the unique capability of sensing both the 

individual fixture at which water is currently being used as well as an estimate of the amount of 

water being used. HydroSense is the first practical approach to enabling applications that require 

both. Our sensing of pressure is also less susceptible to ambient noise, as has been encountered in 

previous microphone-based infrastructure-mediated systems. 

Third, we evaluate HydroSense in ten very diverse homes, thus providing a more robust evaluation 

than any previous work on water-related home activity sensing. We demonstrate reliable 
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Figure 7.3: HydroSense identifies the unique pressure waves generated when fixtures are (a) opened or (b) closed. 

These waves propagate throughout a home’s plumbing infrastructure, thus enabling the single-point sensing 

approach. The two pressure waves shown in the figure are from kitchen sink open and close events. Our 

algorithm identifies that an event is occurring, segments the event (indicated by the green highlight) and then 

classifies the event according to its shape.  

segmentation of valve pressure events from the surrounding sensor stream, show reliable 

classification of valve open and valve close events, show the successful identification of individual 

fixtures with 96% aggregate accuracy, and show that an appropriately located and calibrated system 

can estimate water usage with error rates comparable to empirical studies of traditional utility-

supplied water meters. In addition, we present initial forward-looking analyses of compound event 

detection, a comparison of sensing at different locations, and a first look at the temporal stability of 

pressure event signatures. Our evaluation both validates the feasibility of our approach and 

provides a basis for future analyses and improvements. 

Figure 7.2 illustrates a typical plumbing arrangement in a two-bathroom home (discussed in greater 

detail in the next section). Figure 7.3 shows an annotated signal captured by our sensor. The signal is 

a kitchen faucet fixture being turned on, captured by our sensor at an exterior water bib. The 

remainder of this chapter first discusses the theory behind our approach, presents our sensor 

implementation, and summarizes our in-home data collections. We then present our analyses of 

individual fixture identification and water flow estimation, follow by a discussion of some important 

directions for future work. 

7.1 BACKGROUND AND THEORY OF OPERATION 

In this section, we provide background on residential water supply systems and in-home plumbing. 

We also introduce the basic theory of operation that motivates our approach. 

Households obtain water from one of two sources: a public water supply or a private well. Public 

water is distributed by local utilities, relying on gravity and pumping stations to push water through 

major distribution pipes. Residences are connected to a water main by a smaller service line, where 

the water meter is typically found. A backflow valve accompanying the water meter prevents 
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household water from flowing back into the main. Homes with private wells use a pump to draw the 

water out of the ground and into a small tank within the home. A pressure bladder pushes water 

from the tank when a valve in the home is opened. Private wells are typically unmetered. 

Figure 7.2 depicts a typical in-home plumbing system. Cold water enters through the service line, 

typically at 50-100 pounds per square inch (psi34) depending on such factors as the elevation and 

proximity to a reservoir or pumping station. Many homes have a pressure regulator that protects 

the home from transients (or pressure spikes) from the main and also reduces the incoming water 

pressure to a level safe for household fixtures.  

After the regulator, there are two basic layouts found in typical residential piping, series plumbed 

and branched. Almost all multi-fixture homes have a combination. The cold water supply branches 

to the individual water fixtures (e.g., toilets, sinks, and showers) and into the water heater. A 

traditional water heater heats water in an insulated tank using electric coils or gas. When hot water 

is used, the pressure from the cold water supply line pushes hot water out of the tank and refills it 

with cold water. The cold water feed line stretches down to the bottom of the tank. Cold water 

remains at the bottom until it is heated (as cold water is denser than hot water) and the hot water 

line draws from the top of the tank. Every hot water tank has a pressure relief valve and a drain 

valve, which is important for maintenance as water heaters should be drained at least once a year to 

flush mineral deposits and increase operating efficiency. Many homes also have a thermal expansion 

tank connected to the water heater, providing space to store excess water as it expands during 

heating. Some homes instead use tankless heaters, which provide hot water on demand by 

circulating it through burners or electric coils. Both approaches connect cold and hot pipes of a 

home’s plumbing system. The pressure waves leveraged in our approach travel through this 

connection, enabling the HydroSense unit to detect both hot and cold water activity with a single 

sensor.  

In summary, the plumbing system forms a closed loop pressure system, with water held at a stable 

pressure throughout the piping when no water is flowing. Homes with a pressure regulator have 

stable pressure unless the supply pressure drops below the regulator’s set point. Homes without a 

regulator may experience occasional minor changes in water pressure depending on neighborhood 

water demand.  

                                                           
34 1 psi ≈ 68.95 mbar 
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Figure 7.4: (a) The transmission line equivalent network for a common bathroom fixture configuration. Only cold 

water is shown. In this analogy, pressure is analogous to voltage, water flow to electrical current, and the water 

valve and water pipe as shown in (b). 

For explanatory purposes, it is, perhaps useful to draw an analogy between a household water pipe 

network and its electrical equivalent (Figure 7.4). Water pressure is analogous to voltage, water flow 

to electrical current, and water valves to electrical switches with variable resistance. For example, 

water pressure regulated down to a constant 45 psi is analogous to a 45V DC voltage supply. Just as 

water flow occurs in the direction of higher pressure to a lower pressure, so does current flow from 

a higher voltage to a lower voltage: the greater the difference, the greater the flow. When an 

electrical switch is thrown, the value of the resistance controls the amount of current that escapes 

to ground (i.e., the same way that the size and amount that a valve is open controls the amount of 

water flow to a drain). In a simplified form, a water pipe is analogous to an electrical transmission 

line with an inductor and a capacitor (Figure 7.4b). In this way, the network of water pipes in a home 

can be modeled as a collection of electrical transmission lines (i.e., a linear system with a transfer 

function given by the interconnection and length of pipes). Although we continue to use some 

electrical analogies throughout the chapter, they serve only as an additional supplement to our 

explanations and are not necessary to fully understand the principles upon which HydroSense 

operates. 

7.2 IDENTIFYING AND ESTIMATING WATER USE AT THE FIXTURE LEVEL 

The instant a valve is opened or closed in a water fixture, a pressure change occurs and a pressure 

wave is generated in the plumbing system (Figure 7.3 and Figure 7.10). Transient pressure wave 

phenomenon results from the rapid change of water velocity in a pipeline. For example, when a 

running faucet is turned off, the valve closure abruptly stops the water flow. Flowing water in a pipe, 

however, has momentum and is compressible. So, rather than stopping outright, the momentum 

compresses a finite volume of water against the closed valve, which results in a buildup of pressure 

a. b. 
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at the valve head. Once this buildup reaches a critical point, the pressure at the valve head starts to 

decompress and the water flow is reversed until it reaches the backflow prevention valve of the 

house, where the cycle repeats. In the electrical analogy, this is analogous to the cyclic oscillation of 

charge and flow between inductors and capacitors in transmission lines. 

The water pressure wave phenomenon is often referred to as a surge or water hammer and can 

create a loud hammering noise as the wave travels through pipes. The magnitude of the surge is 

dependent upon the operating pressure of the home and the flow of water through the valve. The 

water hammer transient can have a positive or negative rate of change depending on whether a 

valve is being opened or closed. Appliances such as dishwashers or clothes washers control their 

valves mechanically and thus often create the most pronounced water hammer. An abrupt change 

in flow can create dangerously high pressure transients that exceed safe operating limits for 

residential pipes. A thermal expansion tank and water hammer arresters offer partial dampening of 

these transients. Without arrestors, the flow decreases so quickly that the resulting pressure wave 

can burst the pipe (like the arc voltage produced by opening a switch near an inductor). However, 

most valve openings/closings manifest as water hammer transients that are harmless but can be 

detected by a pressure sensor installed on the plumbing system. Water hammer typically lasts 

several seconds as the pressure wave oscillates back and forth through the pipes. We can detect this 

water hammer effect anywhere along the plumbing infrastructure (even with dampeners installed), 

thus enabling the single-point sensing approach.  

The unique transient or water hammer signature that we sense for a particular fixture depends on 

three factors: the valve type, the valve’s location in the home pipe network, and, to a lesser 

extent, the way in which the valve is opened or closed. Intuitively, you can think of each valve 

exciting the plumbing system differently along different points in its infrastructure, much like 

blowing a harmonica at different points produces different sounds. The physical reasons why these 

factors produce a unique transient, on the other hand, is best explained using the electrical analogy. 

The valve type controls the resistance of the analogous electrical switch. When the switch is closed, 

a low resistance path to ground is created suddenly generating an impulse which excites the 

network. Valves with lower resistances allow more water flow and create impulses with greater 

magnitude. The valve location changes where the impulse is applied. When the same impulse is 

applied in a different location, the path back to the sensor goes through a different set of 

transmission lines, altering the transfer function from the valve to the sensor and, thus, changing 
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the shape of the transient. Moreover, each transmission line has a unique resonance that is excited 

by the impulse. For example, in Figure 7.3  it is easy to see two resonant frequencies in each 

transient, the lower frequency resonance results from a long length of pipe (which excites a larger 

wavelength) and the high frequency resonance from a shorter pipe length. This point provides great 

discriminative power allowing us to distinguish between two fixtures of the exact same model such 

as the same toilet located in two different bathrooms of a home because each pressure wave 

traverses a different path before reaching the sensor. We have even observed that the pressure 

transient generated between two cold sink valves located in the same bathroom (such as those 

found in a “his and her” bathroom sink setup) have unique transients even though there is only a 

small additional length of pipe between them.  

Finally, for manually operated valves, the way the valve is operated can affect the impulse applied to 

the system in two ways: the speed at which the valve is opened affects the slope of 

the excitatory impulse and the flow rate the valve opens to affects the magnitude of the impulse. As 

the speed of the valve opening becomes slower, the input excitation is not modeled well by an 

impulse, and instead is better modeled by a ramp function. In practice, slowly opened valves are 

rare occurrences, but opening a valve to different flow rates is quite common (e.g., opening a 

bathroom sink cold valve full stop to fill a cleaning bucket vs. opening the cold valve partially to wet 

a toothbrush). As the magnitude of the impulse becomes smaller, the amplitude of the resonances 

excited in each transmission line also becomes smaller, but the resonant frequency does not 

change. The relationship between impulse magnitude and resonance amplitude is non-linear and 

system dependent. Transmission lines close to the switch are affected less than lines farther away. 

The algorithm outlined in this chapter does not address this issue directly, but we return to this 

phenomenon in the discussion section. 

Changes in pressure and the rate of transient onset allow us to accurately detect and identify the 

source of valve open and valve close events. They also allow us to estimate flow. This stems directly 

from our electrical analogy, where knowing the resistance and the change in voltage (i.e., pressure) 

allows one to determine the current (i.e., flow). Unlike current, however, water flow comes in two 

forms: laminar and turbulent, which affects the relationship between pressure and flow. 

Laminar flow is characterized by the movement of fluid particles parallel to each other, with no 

transverse movement or mixing. In contrast, turbulent flow is characterized by vigorous intermixing 

within the flow field resulting in small, random fluctuations in flow. Physically, the two flow states 
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are linked in that any laminar flow can become turbulent with a change in fluid velocity—think of 

the water flowing out of a typical bathroom faucet: when the faucet is opened partway, water flows 

in a clear, solid-looking stream and does not splash; however, when the faucet is opened all the way, 

the water flow turns more opaque, bubbly and chaotic.  

The conditions under which liquids transition from laminar to turbulent flow are characterized by a 

dimensionless value known as the Reynolds number (Reynolds, 1883), which is dependent on the 

kinematic viscosity ν of the fluid, the volumetric flow rate of the fluid in a pipe Q, and the radius of 

the pipe r: 

 
    

    

 
 (7.1) 

It is generally accepted that a Reynolds number less than 2,300 results in laminar flow and greater 

than 4,000 result in turbulent flow. In between there is transition between both (Reynolds, 1883). 

Using the most common flow rates for residential water fixtures, it is possible to calculate the 

Reynolds numbers for a typical home. The Reynolds numbers for water flow in a typical home are in 

the range of 1,000-50,000 for 3/8” diameter pipe segments and in the range of 400-22,000 inside 

the 1” diameter supply lines—which means fluid flow in a home can be laminar, turbulent, or a mix 

of both. We will address the laminar flow condition first, showing that the relationship between 

pressure drop and flow is linear. We then show that the nonlinearity induced by turbulent flow can 

be sufficiently modeled as linear, with minimal loss of accuracy. 

7.2.1 Laminar Flow 

When laminar, water flow is directly proportional to the pressure drop sensed at the HydroSense 

unit. Poiseuille’s Law offers a precise definition of this relationship: when the flow through a pipe is 

laminar, the volumetric flow rate of fluid in a pipe Q is dependent on the radius of the pipe r, the 

length of the pipe L, the viscosity of the fluid μ and the pressure drop ΔP from the start and end of 

the pipe length:  

 
   

        

     
 (7.2) 

Note how increasing pipe length reduces flow (by creating more resistance) and increasing the pipe 

radius pipe increases flow. Pipe length has a linear relationship with flow; if you double the pipe 

length, the flow is halved. If, instead, you halve the pipe diameter, flow is reduced by a factor of 
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sixteen. Poiseuille’s law can be simplified by the fluid resistance formulation, which states that the 

resistance of flow is proportional to the drop in pressure divided by the volumetric flow rate. 

 
    

  

 
   

     

     
 (7.3) 

Thus, we can use fluid resistance to abstract some of the variable complexity from Poiseuille’s law, 

resulting in: 

 
   

   

  
 (7.4) 

This is analogous to Ohm’s law (I = V / R). HydroSense measures the change in pressure ΔP from the 

pressure regulator to the sensor. In order to compute Q, we must estimate the remaining unknown 

Rf . Rf is bounded by two factors: (1) water viscosity, which can easily be calculated according to 

temperature and (2) the radius of residential pipes, which are either 1/4” or 3/8” in diameter (1” for 

supply lines in an apartment). This leaves L, the length of the pipe, as the main unknown. L will 

change depending on the water fixture being used, as each path from intake to fixture is different. 

7.2.2 Turbulent Flow 

When the flow of water through the pipes is turbulent instead of laminar, Poiseuille’s law does not 

directly apply. Turbulent flow results in a non-linear relationship between pressure and flow. Instead 

of pressure being proportional to flow, the relationship becomes such that P is proportional to Q1.75. 

The mixing induced in turbulent flow dissipates the force from the head pressure, requiring that 

more pressure be exerted to sustain the same flow of water. The relationship between pressure and 

mean flow can be determined empirically, and is given by: 

 
      

           

    √  
 

 (7.5) 

where ρ is the density of the liquid. This is known as the Blasius formula (Blasius, 1911) and is valid 

for liquid flow with Reynolds numbers less than 100,000. The pressure and flow relationship given 

by the Blasius formula is plotted in Figure 7.5 (blue). Also shown is the typical operating range for 

flow in a household and the best fit linearization (black) of the Blasius formula in the most common 

operating range (top left inset). If we assume laminar flow, the slope of the black line is proportional 

to the estimated Rf from Poiseuille’s law. The actual Rf is proportional to the instantaneous slope of 

the blue line. The worst case approximation error of Rf is 70% at a flow rate of 10 gpm. However, 
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Figure 7.5: The pressure versus flow in a 1” diameter pipe of length 6.5’ using the Blasius formula (blue) and the 

linearization of the equation (black) around the point of most common fixture usage. Also displayed are the most 

common fixture flow rates. The (*) denotes a fixture built before the 1992 Energy Policy Act, requiring US 

manufactured fixtures to use less water. 

this only results in an error in ∆P of 0.11 psi. Because the pressure drop, ∆P, at the HydroSense unit 

is the sum of the pressure drop at the valve (on the order of 5-20 psi) and the pressure drop along 

the pipes (in this example, below 0.11 psi), the resulting error in Q is between 0.5-2.2%. Of course, 

as the pipe length increases, this error increases. Even still, with a pipe length of 50 ft., the error is 

still less than 10%. Thus, the linear model can be applied with minimal loss of accuracy even when 

the water flow through the household is turbulent.  

7.2.3 Characterizations 

We note that these equations are not comprehensive. They do not account for the smoothness of 

the inner pipe surface, the number of bends, valves, or constrictions in pipes, nor pipe orientation 

(e.g., the forces of gravity and changes in barometric pressure). While many of these factors can be 

estimated using home size, type of plumbing (PVC, copper, etc.), and number of fixtures, we have 

found these effects can be treated as negligible for home pipe networks. We simply estimate    for 

each home by sampling flow rate at strategic locations (varying distances from the supply inlet).  

7.3 PROTOTYPE SENSOR DESIGN 

Our prototype HydroSense sensor implementation consists of a customized stainless steel pressure 

sensor, an analog-to-digital converter (ADC) and microcontroller, and a Bluetooth wireless radio (see 

Figure 7.6). We built two different HydroSense prototypes: one with a pressure range of 0-50 psi 

and the other 0-100 psi. The higher dynamic range is useful for homes with high supply pressure or 



177 

 

without a pressure regulator. The pressure sensor is a P1600 series manufactured by Pace 

Scientific™. It comes standard with a built-in ¼” NPT male connector, which we fitted with a ¾” 

brass adaptor and Teflon tape. This allows us to easily install our sensor at any ordinary water spigot 

or outlet. The sensor has an operating temperature of -40 to 257°F and a pressure response time of 

less than 0.5 milliseconds. The theoretical maximum sampling rate is therefore 2 kHz, but we found 

1 kHz more than sufficient.  

    

Figure 7.6: (a) An early HydroSense implementation. (b) HydroSense pressure sensor (foreground) with 3D-

printedenclosure protecting electronics (background). (c) Installing HydroSense on a ¾” hose spigot. (d) Once 

screwed on tight, the water valve must be opened to allow the sensor to sense the indoor plumbing pressure. (e) A 

schematic of HydroSense including the Pace Scientific pressure sensor, the 16-bit Texas Instruments ADS8344 

ADC and AVR microcontroller, and the Class 1 Bluetooth radio. 

The pressure sensor’s output is ratiometric to the 5 VDC supply voltage (the output voltage is a ratio 

of the supply). The sensor is connected to a 16-bit Texas Instruments ADS8344 ADC and AVR 

microcontroller, with a resolution of approximately 0.001 psi for the 50 psi sensor and 0.002 psi for 

the 100 psi sensor. The microcontroller is connected to a Class 1 Bluetooth radio implementing the 

serial port profile. It can reliably sample and stream pressure data over the Bluetooth channel. We 

use a 5V low-drop power regulator and the entire unit operates on a single 9V battery.  

The pressure sensor has a mechanical shock rating of over 100g, making it insensitive to pipe 

vibration occasionally caused by some water hammer events. Although the pressure sensor comes 

calibrated and tested for linearity from the factory, we confirmed the output of our entire sensor 

system using known pressure loads. Ten samples were taken with our sensor connected to a 

pressure-regulated water compressor. All measurements were well within the pressure sensor's 

tolerance of 0.25% at 25° C. The entire unit is weatherproof and can be installed in damp locations. 

  Pressure 
Sensor  16-bit ADC 20 MHz 

Microcontroller 
Class 1 Bluetooth 

Radio 

3D-Printed Enclosure 

a. b. c. d. 

e. 
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Our current implementation does not offer a pass-through solution (i.e., allowing the installation 

fixture to be used as normal), but this modification is trivial. 

7.4 PILOT TESTING 

Before installing HydroSense into homes to collect data for our classification experiments, we 

created a test harness to test our HydroSense hardware and data logger software as well as to 

perform some preliminary experiments in a controlled fashion (Figure 7.7). The test harness includes 

a pressure regulator, a GPI TM Series inline electronic water meter (1/2”), five valves, one 

detachable faucet outlet, and roughly 20 feet of pipe with a branch. The test harness is also 

reconfigurable to experiment with different branching and pipe length setups (Figure 7.7a and b).  

In our preliminary experiments using the test harness we validated the flow rate equations from the 

previous section, fleshed out bugs with our hardware and data logger, and informally tested how 

different pipe configurations shaped the resulting pressure transients. 

 
Figure 7.7: The HydroSense test harness created to empirically test our hardware and explore flow calculation 

algorithms in a controlled fashion. (a) The full test harness. (b) A reconfigured (short) version of test harness. (c) 

Using the test harness for preliminary experiments. 
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7.5 IN-HOME DATA COLLECTION 

Once we had completed pilot testing HydroSense in a laboratory environment, the next step was to 

collect data in real homes and test and iterate on our classification algorithms. To validate our 

general approach, our sensor implementation, and our algorithms, we collected labeled data in four 

cities using ten homes of varying style, age, and diversity of plumbing systems (see Table 7.1: ). 

Homes H1-H9 used metered water from the public utility, whereas home H10 used a private well. 

ID / 
Water 
Supply 

Style / 
Built / 

Remodel 

Size / 
Floors / 
Fixtures 

Exp. Tank/ 
Regulator / 

Recirc. 
Pump 

Water  
Heater / 

Plumbing/ 
Static PSI 

Sensor 
Install 
Point 

H1 
Public Utility 

Single-Family 

2002 

3200 sqft 

2 flr + bas 

12 fixture 

Yes 

Yes 

No 

Tank 

PVC 

46 psi 

Hose Bib 

H2 
Public Utility 

Multi-Family 

1909/96 

2160 sqft 

2 flr + bas 

5 fixtures 

No 

No 

No 

Tankless 

Copper 

46 psi 

Hose Bib 

H3 
Public Utility 

Single-Family 

2003 

4000 sqft 

2 flr + bas 

6 fixtures 

Yes 

Yes 

No 

Tank 

Copper 

41 psi 

Hose Bib 

H4 
Public Utility 

Single-Family 

1921 

1630 sqft 

1 flr + bas 

4 fixtures 

No 

No 

No 

Tank 

Galvan. 

43 psi 

Hose Bib 

H5 
Public Utility 

Single-Family 

1913 

2000 sqft 

2 flr + bas 

5 fixtures 

No 

No 

No 

Tank 

Copper 

55 psi 

Hose Bib 

H6 
Public Utility 

Single-Family 

1974/85 

3100 sqft 

2 flr 

8 fixtures 

Yes 

Yes 

Yes 

Tank 

Galvan. 

46 psi 

Hose Bib 

H7 
Public Utility 

Apartment 

1927 

746 sqft 

1 flr 

5 fixtures 

No 

Yes 

No 

Tank 

Copper+Galvan 

33 psi 

Water 
Heater 

H8 
Public Utility 

Single-Family 

1922 /  
2006 

3650 sqft 

2 flr + bas 

3 fixtures 

Yes 

Yes 

Yes 

Tank 
Copper 

75 psi 

Utility 
Sink 

Faucet 

H9 
Public Utility 

Single-Family 

1904 /  
95 est. 

1790 sqft 

2 flr + bas 

4 fixtures 

No 

No 

No 

Tank 
Copper 
72 psi 

Hose Bib + 
Water Heater 

H10 
Private Well 

Resort Cabin 

1950/80 

900 sqft 
1 flr 

4 fixtures 

No 

No 

No 

Tank 
Galvan. 
65 psi 

Hose Bib 

Table 7.1: A summary of the homes in which we collected data, including the style, size (1 sqft ≈ .093 sqm), age of 

the home, how many fixtures we tested, characteristics of the plumbing system, and where we installed our sensor. 

For each home, we first measured the baseline static water pressure and then installed the 

appropriate HydroSense unit (0-50 or 0-100 psi) on an available water hose bib, utility sink faucet, or 

water heater drain valve. Each collection session was conducted by a pair of researchers: one would 

record the sensed pressure signatures to a laptop while the other activated the home’s water valves 
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Figure 7.8: The HydroSense Logger tool was used to collect staged water usage event pressure stream data that 

were manually annotated with ground truth labels. (a) Five bathroom sink on/off water usage events followed by 

five bath on/off water usage events, and 3 toilet flushing events. (b) Parts of the pressure stream could be selected 

and annotated. The yellow time-series highlights show the boundaries of labeled events (the icons at the top 

correspond to the type of water usage event). The light blue highlight at the far right is the pressure wave 

currently selected for annotation in the modal dialog box. 

  

a. 

b. 
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(Figure 7.8 and Figure 7.9). The pressure signatures were recorded using a graphical logging tool, 

which also provided real-time feedback of the pressure data via a scrolling time-series line graph. 

We conducted five trials per valve on each fixture (e.g., five trials for hot water and five trials for 

cold water; see Figure 7.8). For each trial, a valve was opened completely for at least five seconds 

and then closed. For the toilet trials, the toilet flush and full fill cycle were logged. Note that for the 

faucet experiments, we did not collect data on partially opened valves nor the speed with which 

they were opened. We return to this issue in the discussion section. 

In four of the ten houses (H1, H4, H5, and H7), we also collected flow rate information for the faucet 

(kitchen and bathroom) and shower fixtures. In addition to logging sensed pressure, we measured 

the amount of time it took to fill a calibrated bucket to one gallon (a method preferred by water 

utilities for accurately measuring flow). This was repeated for five trials for each valve—see Figure 

7.9c. 

In total, our in-home data collection yielded 775 fixture trials and 155 flow rate trials across 76 

valves and 51 fixtures. 

   
Figure 7.9: Collecting controlled experimental water usage trial data using the HydroSense Logger tool visible in 

(a) and (b). In (c), collecting flow rate data in addition to logging sensed pressure. 

7.6 ALGORITHMS FOR CLASSIFYING WATER USAGE EVENTS  

Given our collected data, we now pursue a three-step approach to examine the feasibility of 

identifying individual fixture and individual valve events according to the unique transient pressure 

waves that propagate to our sensor. Recall that each valve event corresponds to a pressure wave 

when a valve is either opened or closed. We first segment each individual valve event from the 

stream, identifying its beginning and end to enable further analysis. We then classify each valve 

event as either a valve open or a valve close event. Finally, we classify the valve event at two levels 

of granularity: (1) according to the individual fixture that generated it (e.g., bathroom sink vs. 

a. b. c. 
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kitchen sink) and (2) according to the individual valve that generated it (e.g., kitchen sink cold water 

vs. kitchen sink hot water). 

7.6.1 Transient Event Segmentation 

Before analyzing the characteristics of a valve event, we first segment it (i.e., isolate it) from the 

surrounding sensor stream. Segmentation must be effective for many different types of events, and 

so it is important to consider only features that are likely to be most typical of all valve events. Our 

approach is illustrated in Figure 7.10. The raw signal is smoothed using two low-pass linear phase 

finite impulse response filters with different cutoff frequencies (1 Hz and 13 Hz, black and blue lines 

in Figure 7.10, respectively). Almost all the spectral energy is below 10 Hz. Thus the 13 Hz filter 

captures a de-noised version of the transient. Below 1 Hz the relative decrease or increase in 

pressure is more apparent which aids in classifying the transient as a valve open or valve close 

event. The derivative of the filter is also calculated using a windowed ideal differentiator filter with a 

cutoff of 2 Hz (i.e., the optimal differentiator in terms of squared error). The smoothed signal and its 

derivative are then analyzed in a sliding window of 1000 samples (one second of sensed pressure). 

The beginning of a valve event corresponds to one of two conditions. The most common is when the 

derivative of the smoothed signal exceeds a specified threshold relative to static pressure, indicating 

a rapid change. For H1 (static pressure of 45 psi), this value was found empirically to be 

approximately 2 psi/sec. For generalizing to other homes, this value was scaled by the home’s actual 

static pressure. The less common second condition is when the difference between the maximum 

and minimum pressure values in the sliding window exceeds a threshold relative to static pressure, 

indicating a slow but substantial change (approximately 1 psi for a home with 45 psi static pressure, 

scaled by the actual static pressure).  

Each transient represents a damped sinusoid. After the beginning of a valve event is detected, the 

next change in the sign of the derivative represents the time at which the extreme value of the 

pressure transient occurs (which may be a maximum or a minimum). This extreme value is used to 

assist in the calculation of the end of the transient. The end of a segmented valve event is typically 

detected as the first point at which an extreme of a fluctuation (a change in the sign of the 

derivative, dP/dt) is less than 5% of the magnitude of the first extreme following the beginning of 

the event. It is also possible for an event to be ended by a rapid increase in the magnitude of 
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fluctuation. This corresponds to the occurrence of a compound event, as we will discuss in greater 

detail in a later section. 

 
Figure 7.10: Several sensor pressure streams from our in-home data collections. Each stream corresponds to a 

water valve being opened, remaining open for some amount of time, and then closed. Both raw pressure (shaded 

blue lines) and filtered pressure (black) are shown. We separately segment the valve open and valve close events 

from the sensor stream, as indicated by the highlighted regions of the streams. We estimate water flow to the valve 

based on the stabilized pressure drop while the valve remains open (the difference in pressure before the valve 

opens versus after it). 

Applying this method to our collected in-home data yielded appropriate segmentations of 100% of 

our valve events from their surrounding sensor stream. Additionally, this method was effective at 

finding leaky flapper valves in toilets. After our initial data collection, we noticed that this method 

segmented multiple valve closings when a particular toilet in H2 was flushed. Further inspection 

revealed that the flapper valve of the toilet was loose, resulting in two concurrent valve closings. 

7.6.2 Classifying Transient Waveform as an Open or Close Event 

After segmenting each valve event, we classify it as either a valve open or a valve close event. We 

apply a classifier that first considers the difference in the 1 Hz smoothed pressure at the beginning 

and the end of the segmented event. If the magnitude of this difference exceeds a threshold 

(approximately 2 psi for a home with 45 psi static pressure, scaled by the actual static pressure), the 

event can be immediately classified (a pressure decrease corresponds to a valve open and a 

pressure increase to a valve close). Otherwise, the event is classified according to the average value 

of the derivative between its beginning and its first extreme. A valve open creates an initial pressure 
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decrease (a negative average derivative), while valve close events create an initial pressure increase 

(a positive average derivative). Figure 7.3 and Figure 7.10 illustrate this observation. 

Applying this method to the segmented valve events from our collected in-home data yields 100% 

correct classification of valve open and valve close events. We note that this method and our event 

segmentation method described above require only knowledge of the static pressure in the home, 

which can be easily and automatically derived. HydroSense can thus be used immediately and 

without supervision to detect fixture openings and closings in a home. Fixture- and valve- level 

classification, however, require a supervised calibration process. 

7.6.3 Valve- and Fixture-Level Classification 

The final step in our three-step approach is to identify the valve and fixture source of the segmented 

open and close events. Here, we use a template matching approach. Before going into our analysis 

in detail, it is worth discussing the ways in which water is used in the home that can impact 

classification. First, note that valves can be divided into two groups: automatically (or electro-

mechanically) controlled valves such as those found in dishwashers, laundry machines, and ice 

makers, and manually controlled (or human operated) valves such as those found in kitchen sink 

faucets, bathroom sink faucets, showers, and tubs. Toilets are a hybrid between manually and 

mechanically controlled valves. Manually operated valves can produce slightly different transients 

depending on the speed and flow rate at which they are operated, while mechanical valves produce 

a more distinct transient at a single flow rate. Our database of events contains both mechanically 

and manually operated fixtures, but our data collection did not explicitly control for different usages 

of hand operated valves. We address this limitation further in the discussion section. 

Our classification approach, template matching, assumes that the transient (i.e., the template) for a 

specific fixture or valve stays relatively constant between different trials. In Chapter 8, we instead 

use a probabilistic-based classification approach, which we found to be more robust to signal 

distortion from compound events and differences in transients due to differences in the manual 

operation of valves. We have also experimented with using Hidden Markov Models (see Larson et 

al., 2010).  

Note that our template classifier relies solely on the pressure signal for input. Although 

incorporating contextual factors such as time of day and fixture usage duration would likely boost 

classification accuracies, these factors are irrelevant in our dataset because our data was collected 
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under controlled experimental conditions. In Chapter 8, we include such factors in our probabilistic 

approach. 

We return now to the details of the template classifier. When supplied with an unknown open or 

close event from the preceding step, we first filter potential templates according to four 

complementary distance metrics:  

The first distance metric we use is a matched filter (North, 1963). Very common in signal detection 

theory, the matched filter is the optimal detection mechanism in the presence of additive white 

noise. Its primary limitation is that the signals we want to differentiate are not orthogonal. It is 

possible to make the signals orthogonal (e.g., using principal component analysis: Pearson, 1901 ), 

but we found this type of analysis to be unnecessary. Instead, we transform the data into more 

orthogonal spaces. 

Our second distance metric is a matched derivative filter. We include this because the derivatives of 

our events always resemble exponentially decreasing sinusoids. It is therefore reasonable to believe 

the derivatives are more orthogonal than the original pressure signals, and that this filter might 

provide value distinct from the above filter. 

The third distance metric is based on the real Cepstrum, which is the inverse Fourier transform of 

the natural log of the magnitude of an event’s Fourier transform. This approach attempts to 

approximate the original version of a signal that has been run through an unknown filter (the valve 

event we are trying to classify has been transformed by propagation through an unknown path in a 

home’s water pipes). It can be shown that, for linear systems, the lower coefficients of the Cepstrum 

result largely from the transfer function (an event’s propagation through a home’s pipes) and the 

higher coefficients largely from the source (the original impulse at the valve) (Oppenheim and 

Schafer, 2004). We are interested primarily in the transfer function (in part because it allows 

differentiating among multiple instances of identical fixtures in a home), so we truncate our 

Cepstrum to the lower coefficients. The resulting space is highly orthogonalized (a common property 

of the Cepstrum), yielding a third effective and complementary matched filter. 

Finally, our fourth distance metric is the simple mean squared error, computed by truncating the 

longer of two events. 
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Similarity thresholds used to filter potential templates based on these distance metrics are learned 

from training data (filtering templates whose similarity to the unknown event are less than the 

minimum within-class similarity in the training data). If no template passes all four filters, the 

unknown event is not classified (an application might ignore the event, prompt a person to label an 

unrecognized fixture, or consider the possibility that the new event indicates the presence of a leak). 

If templates corresponding to multiple fixtures pass all filters, we choose among them using a 

nearest-neighbor classifier defined by the best performing distance metric, the matched derivative 

filter. 

7.7 EVALUATION 

In this section, we examine the performance of our water usage event classification algorithms as 

well as our flow inference algorithms. We investigate valve vs. fixture-level classification accuracies, 

classification performance on hot water events vs. cold water events, and flow calculations with 

minimal and full calibration data.  

7.7.1 Valve-Level and Fixture-Level Classification 

We evaluate valve-level classification and fixture-level classification using an experimental design 

selected to demonstrate robustness of learned model parameters across the multiple homes in our 

collected data. Specifically, we conduct a cross-validation experiment that folds our data according 

to the home in which it was collected.  

For our template based classifier, there are ten trials in the cross-validation, with each trial using 

data from one home as the test data and data from the other nine homes as the training data. After 

learning model parameters from the test data (the four similarity filter thresholds), we classify each 

event in the test home using a leave-one-out method. Each test home event is classified using the 

other events as templates together with the model parameters learned in training. 

Table 7.2 presents the results of this evaluation. In particular, the table shows the identification 

percentages for classifying each valve and fixture in a home. The main advantage of valve-level 

identification is that hot and cold water usage can be disambiguated. A kitchen faucet, for example, 

is a single fixture that has two valves, one for hot water and one for cold. The table shows the 

accuracy of classification for open and close events within each home (and thus each test fold of the 

cross-validation), as well as the aggregate accuracy of classification. Accuracies for H9 are shown for 

two different installation points of the sensor, hose bib (H9A) and hot water heater (H9B). Because 
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of the fixture types within H1 and H3 (all single handle), we did not perform experiments on more 

than one valve at any fixtures in these homes (thus the valve results and the fixture results are the 

same). 

Analysis of valve and fixture classification reveals that the template classifiers perform well on H1 

through H8 and on H9A. However, performance dropped on H10 and on H9B. The relatively poor 

performance in identifying valve-level events in H10 was due to noise from the eleven cabins that 

share the same supply line at the resort. Because the cabin was not separately metered our sensor 

was picking up water events from a portion of these cabins during data collection. When looking at 

fixture-level performance for H10, the classification accuracies increase markedly. This is an 

indication that noise in a multi-unit domain (e.g., a duplex, small apartment building) may have 

more effect on valve-level identification than fixture-level identification.  

 Valve-Level  
Classification Results 

Fixture-Level  
Classification Results 

Home 
Installation 

Point 

Valves 
Tested 

Valve Open 
Identification 

Valve Close 
Identification 

Fixtures 
Tested 

Fixture Open 
Identification 

Fixture Close 
Identification 

H1  Hose Bib 12 100.0% 100.0% 12 100.0% 100.0% 

H2  Hose Bib 8 96.4% 100.0% 5 96.4% 100.0% 

H3 Hose Bib 6 100.0% 100.0% 6 100.0% 100.0% 

H4 Hose Bib 5 100.0% 100.0% 3 100.0% 100.0% 

H5 Hose Bib 9 100.0% 100.0% 4 100.0% 100.0% 

H6 Hose Bib 8 100.0% 97.5% 5 100.0% 97.5% 

H7 Hose Bib 8 100.0% 100.0% 5 100.0% 100.0% 

H8 Utility Sink 6 100.0% 97.1% 3 100.0% 97.1% 

H9A Hose bib 7 97.1% 97.1% 4 97.1% 97.1% 

H9B Water Heater 7 88.6% 71.4% 4 88.6% 74.3% 

H10 Hose Bib 7 75.7% 43.8% 4 94.6% 75.0% 

Aggregate  83 96.2% 91.8% 55 98.0% 94.7% 

  94.1% 96.3% 

Table 7.2: In a cross-validation test of the robustness of learned models across multiple homes, the template 

classifier resulted in accuracies above 94% for both valve-level and fixture-level classification granularity. 

We note that the valve-level results presented here differ from our UbiComp 2009 publication 

(Froehlich et al. 2009b), which presented similar analysis on the same dataset. We report 75.7 and 

43.8 percent accuracy for H10 whereas the previous reporting was 97.1 and 77.1 for H10. The 

reason for this is twofold: firstly, the learned model parameters have changed in the cross-validation 

because a new home (H9B) was added. Secondly, Froehlich et al. (2009b) reported results for H10 at 

the fixture-level, rather than valve-level, a mistake which is remedied here (and corrected in Larson 

et al., 2010). More work is needed to disambiguate signals in a single-meter multi-unit domain, but 
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these results indicate a single sensor may be sufficient to sense fixture-level detail across more than 

one housing unit on a shared supply line, a somewhat different conclusion than that presented by 

Froehlich et al. 

Valve Level Confusability Matrix 
Fixture Type Accuracy Confusion 

Faucet 95.3% 424 6 6 9 

Toilet 99.3% 136 0 0 1 

Clothes Washer 100.0% 15 0 0 0 

Dishwasher 100.0% 6 0 0 0 

Tub 100.0% 36 0 0 0 

Shower 82.4% 112 0 12 12 

Confused for: 

 

Correct 

Sim
ilar 

A
ppliance 

H
ot/Cold 

D
iff. 

A
ppliance 

Table 7.3: A different view of the results, showing accuracy of identification of individual valves by fixture type, 

and confusability of different fixtures. 

The poor performance on H9B is largely due to the installation point (on the water heater). Although 

events are transmitted through the water heater, many events are significantly dampened. This 

dampening suppresses some of the defining characteristics of the transients, making them more 

similar to one another. This sort of dampening can occur during compound events as well—when 

one fixture is actively flowing while another is opened or closed. The pressure transient from this 

event is dampened due to the active water movement in the plumbing system. We explore this 

effect in more detail in Chapter 8. 

To investigate performance further, it is interesting to look at how different valves are confused in 

each home. Table 7.3 presents a different view on the same data, showing the accuracy of valve-

level classification for different types of fixtures across homes. Also shown is the number of times a 

valve is confused according to three categories: (1) the valve is confused for a fixture of the same 

type, (2) the valve is confused for the hot or cold valve from the same fixture, or (3) the valve is 

confused for a different type of fixture altogether. Notice that similar appliances are rarely confused 

for one another (e.g., two different sinks or two different toilets). Instead, the source of confusion 

comes from the proximity of two valves in a home. For instance, the main source of confusion in the 

table comes from a sink and shower in H9B that are consistently confused with each other. The 

valves are positioned extremely close to each other and within 10 ft. of the water heater. The valves 

already have similar characteristics because of their proximity, and the water heater acts like a large 

low-pass filter, dampening out most of the characteristics that make the pressure waves 
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identifiable. Other sources of confusion in the table are largely due to classification errors in H10. 

However, there is no pattern to valve confusion in H10, supporting the notion of noise from other 

cabins being the main culprit. 

Valve-Level Classification  
Split by Hot and Cold Water Activations 

Home Installation Point 
Valve Cold 

Identification 
Valve Hot 

Identification 

H2 Hose Bib 97.3% 100.0% 

H4 Hose Bib 100.0% 100.0% 

H5 Hose Bib 100.0% 100.0% 

H6 Hose Bib 98.3% 100.0% 

H7 Hose Bib 100.0% 100.0% 

H8 Utility Sink 97.6% 100.0% 

H9A Hose bib 100.0% 93.3% 

H9B Water Heater 75.0% 86.7% 

H10 Hose Bib 62.8% 57.7% 

Aggregate  94.6% 92.9% 

Table 7.4: A different view of valve-level classification separated for hot and cold valves in a home. 

Table 7.4 shows the accuracy for classification of hot water valves and cold water valves separately. 

H1 and H3 are excluded because, as previously mentioned, we did not independently test hot and 

cold water valves (both homes had only single handle faucets/shower making this particular 

experiment challenging). No real pattern presents itself from the data. Both hot and cold valves can 

be classified with similar accuracy. Despite these similarities, we remind the reader that our 

experimental data collection did not control for the speed at which manually controlled valves were 

opened, or when multiple valves are running in the household. More examination is needed to 

investigate what effect, if any, hot vs. cold water mixture has on classification accuracy. 

Our overall valve-level and fixture-level classification across all homes is above 90%, including a 

number of cases where classification accuracy is 100%. All of these results are equal to or better 

than prior results by Fogarty et al. with microphone-based sensors (2006). Of particular note is our 

ability to reliably distinguish among different sinks within a home, as Fogarty et al. found that their 

microphone-based sensors did not capture enough information to reliably make this distinction. Our 

dataset contains only a few instances of clothes washer or dishwater use, in part due to time 

constraints during data collection and in part because Fogarty et al. found these fixtures can be 

easily recognized by their structured cycles of water usage (an approach that can be combined with 

ours). However, we note that our approach is independent of the number of fill cycles (important if 

a dishwasher is sometimes run with a pre-rinse cycle) and allows recognition as soon as these 
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appliances first use water (in contrast to being able to recognize them only after their pattern of fill 

cycles becomes apparent). 

7.7.2 Evaluation of Flow Estimation 

As previously discussed, the volumetric flow rate Q is proportional to the change in pressure ΔP 

divided by a resistance variable Rf (Q =  ΔP / Rf). We calculate the change in pressure ΔP by 

measuring the difference between the pressure at the onset of a detected valve open event and the 

stabilized pressure at the end of the segmented valve open pressure wave impulse. The resistance 

variable Rf cannot be directly measured, so we instead learn it empirically by capturing ground truth 

flow rate information together with the corresponding change in pressure for each valve. This 

section considers two scenarios with regard to learning Rf. In the first, we assume a single calibration 

of flow for every valve of interest. In the second, we attempt to use information from the calibration 

of some valves to estimate Rf at valves that have not been calibrated. In both scenarios, we assume 

laminar fluid flow. 

7.7.3 Estimating Flow at Individually Calibrated Valves 

Home 
Avg Error 

(GPM) 
Stdev Error 

(GPM) 
Avg Error 

(%) 
Stdev 

Error (%) 

H1 (7 valves) 0.17 0.13 7.3 6.7 

H4 (6 valves) 0.19 0.17 5.6 5.3 

H5 (8 valves) 0.13 0.11 4.5 5.5 

H7 (8 valves) 0.67 1.47 22.2 46.0 

Table 7.5: The results of our flow estimation analysis in four homes. In homes H1, H4, and H5, we are able to 

estimate flow at individual fixtures throughout the home with error rates comparable to that found in empirical 

studies of traditional utility-supplied water meters. In H7, placing the sensor on a hot water heater appears to 

result in a confounding of supply water main pressure with gravitational pressure due to the water in the tank. 

It is not unreasonable to imagine that the process of installing a system like HydroSense might 

include a single calibration of each fixture in a home. In such a scenario, each valve in the home 

would be labeled with a known Rf value which could be combined with the sensed pressure change 

ΔP to estimate water flow at those valves.  

We examined the accuracy of the flow estimation that might be obtained in this scenario using a 

cross-validation experiment to analyze the five calibrated bucket trials collected for each of the 

faucet and shower fixtures in H1, H4, H5, and H7 (as previously discussed in our in-home data 

collection section). Each trial in the cross-validation used a single calibrated bucket trial to infer a 

resistance variable Rf for the valve. The inferred value of Rf was then used to estimate flow in the 
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other four trials according to the measured change in pressure ΔP. We then noted the difference 

between these estimated flow rates (based on the inferred Rf) and their corresponding actual flow 

rates (obtained through the calibrated bucket trials). The results of this experiment are shown in 

Table 7.5. 

Three of four houses tested (H1, H4, H5) have error rates below 8% (or approximately 0.16 GPM**), 

comparable to the 10% error rates found in empirical studies of traditional utility-supplied water 

meters (Arregui et al., 2003). The fourth house (H7), however, had an error rate above 20%. We 

believe this is due to the installation location of the sensor. Whereas the first three homes had 

HydroSense installed on an exterior water bib, H7’s installation used the hot water heater drain 

valve. This results in two confounding pressure sources (the supply water main and the gravitational 

pressure of the water in the tank). As previously discussed, our simple pressure model currently 

assumes a straight pipe. It is likely this situation requires a different model of Rf, and it seems that 

the cold water valves in H7 were particularly affected. Indeed, removing H7’s four cold water valves 

from our analysis results in an dramatically improved average error of 0.15 GPM (SD=0.18), or 4.5% 

(SD=3.8%). Because our dataset includes only one home with both hot water heater installation and 

flow rate information, future work is needed to investigate the feasibility of measuring cold water 

flow using a sensor installed at the hot water heater drain. 

7.7.4 Generalizing to Uncalibrated Valves 

In a scenario where only some of the valves in a home have been calibrated, it is reasonable to 

attempt to build a model of fluid resistance for the entire home from that subset of valves. The key 

idea here is that, although the pathway to each valve in the home is unique, those paths also share a 

fair amount of spatial overlap in the length and overall layout of the piping. For example, the toilet 

and sink in a particular bathroom share the same branch.  

To examine this approach, we separated our calibrated bucket trials data into two datasets: a model 

and a test. The model was initially populated by a single randomly selected trial which was then 

used to infer a baseline Rf value. We applied this Rf value to calculate a flow estimate for each trial in 

the test dataset, comparing each to the corresponding actual flow. We next added a second random 

trial to the model (and removed it from the test dataset), then used the model to create a linear 

regression (Q = Rf * ΔP + b). This regression was used to calculate flow estimates for the remaining 

trials in the test set. This process was repeated until all trials had been sampled. To avoid a 

particularly fortunate or unfortunate random sampling, we repeated this process five times for each 
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home and averaged the results. Figure 7.11 presents the results (note we exclude the cold water 

valves from H7, consistent with our prior analysis). 

 
Figure 7.11: Because valves share a fair amount of spatial overlap in the length and overall layout of their piping, 

it is possible to generalize calibrations across valves. 

After sampling five trials, the average error dropped 74% to 0.27 GPM across the four homes and 

within 0.11 GPM of the more comprehensive Rf data from the previous analysis. This initial result 

indicates considerable potential for learning to generalize calibrations across valves in a home. 

7.8 DISCUSSION 

The initial results presented here show significant promise for single-point sensing of whole-home 

water activity via continuous monitoring of water pressure. We have presented a reliable method 

for segmenting valve pressure events from their surrounding sensor stream and for determining 

whether a segmented event corresponds to a valve being opened or closed. Using data collected in 

ten homes, we have shown >90% aggregate accuracy for identifying the specific fixture and valve 

associated with a transient using a template-based classification approach. Analyzing flow data 

collected in four of those homes, we have shown that an appropriately located and calibrated 

system can estimate water usage with error rates comparable to empirical studies of traditional 

utility-supplied water meters. Our ability to identify activity at individual fixtures using a single 

sensor is itself an important advance, and we are not aware of prior work even attempting single-

sensor estimation of the amount of water being used at individual valves throughout a home. A 

particular contribution of HydroSense over other methods (like flow trace analysis, see Chapter 2) is 

the ability to disaggregate hot and cold water events in a home. Previously, this type of 
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disaggregation required the use of two water meters, one connected to the water supply line into 

the home and another connected from the supply line of the water heater. 

Although our analysis focused on identifying valve events occurring in isolation, it is clearly 

important to consider the case where multiple events overlap, especially for multi-family homes and 

apartment units with shared plumbing systems. In Fogarty et al.’s prior work with microphone-

based sensing, they note an inability to even detect this situation (Fogarty et al., 2006). As an initial 

investigation, we collected six compound events in H1 (two each of shower/sink, toilet/sink, and 

shower/toilet/sink overlaps). Our event segmentation algorithm correctly segments these 

overlapping events (ending the ongoing event when it detects a rapid increase in the magnitude of 

fluctuation corresponding to the beginning of another event). Preliminary experiments suggest that 

the magnitude and shape of the events is indeed altered by the overlap. Some aspects of the 

frequency domain signature remain constant (i.e., high energy harmonics) but we do not have 

enough compound event data to convincingly evaluate the effectiveness of a classification 

procedure. Furthermore, events that occur at the exact same instant cannot be distinguished as 

separate events with our current segmentation algorithm. In any case, classification of compound 

events is a highly important direction for building upon our current results.  

An additional limitation relates to how closely our controlled experiments represent naturalistic 

usage of fixtures (e.g., how often do people partially open valves vs. open them full stop, how is the 

signal affected by the speed of valve opening or closure). These concerns primarily involve fixtures 

with manually controlled valves (e.g., bathtubs/showers/faucets) rather than mechanically 

controlled valves (e.g., dishwashers/toilets/laundry machines). For mechanically controlled valves, 

the transient is determined based on fixture type (e.g., dishwasher vs. laundry machine) and on its 

location in the home. For manually controlled valves, the way in which the valve is opened or closed 

is also a factor (e.g., the speed with which the valve is opened, how much the valve is opened). Our 

test dataset contains both mechanically and manually operated valves, but our data collection did 

not explicitly control for different usages of the manually operated valves. Thus, our classification 

analysis is a first step towards determining the viability of using water pressure waves to classify 

valves and fixtures in the home.  

To address the above limitations, we have conducted longitudinal deployments in multiple 

households collecting labeled, real-world water usage data. We report on our findings in the next 

chapter (Chapter 8). Furthermore, we note that the contextual behaviors of water usage are 
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important but not explored in this chapter. Factors such as the time of day (e.g., showers are more 

likely in the mornings: Mayer et al., 1999), the duration of usage (e.g., toilet refills last between 30-

60 seconds depending on the home’s water pressure), and temporally cyclic behaviors (e.g., 

dishwashers and laundry machines use repeated cycles that make identification easier) provide a 

rich knowledge about water usage and the context of human activity surrounding water usage. 

Again, these areas are further explored in the next chapter. 

In this chapter, we have found that reliable estimation of flow is sensitive to calibration, and we 

have noted that our segmentation and identification algorithms include threshold parameters that 

worked well in the homes we studied but are not necessarily ideal. We are interested in developing 

techniques for automatically calibrating our methods over the course of extended usage. For 

example, flow estimation could potentially be automatically calibrated through occasional 

knowledge of whole-home aggregate water usage. Continuing deployments of wireless utility 

meters make this an increasingly viable approach. We also have initial evidence that system 

behavior is stable over time, based on a second dataset collected in H1 five weeks after our original 

collection. We applied our fixture classification methods to this dataset using templates from the 

opposite dataset (classifying unknown events using templates collected 5 weeks apart), finding no 

degradation in fixture identification performance. Another argument for stability comes from 

preliminary analysis of our longitudinal dataset (currently being collected). It shows that static water 

pressure and outside temperature largely do not affect generated water transients. This preliminary 

analysis suggests system behavior might be stable enough to apply a variety of machine learning 

methods for auto-calibration.  

Our in-home data collection included installations at several different types of fixtures (hose bibs, 

utility sink faucets, and water heater drain valves) with generally good results except in houses H9B 

and H10. There are many examples in Table 7.2 where our current approach differed in its ability to 

identify the fixture associated with valve open and close events. To help increase the accuracies in 

H9B and H10, a possible approach is to look at both open and close events together before 

classification. Because events obviously come in a series of opening and closing, it seems natural to 

pursue an approach that classifies pairs of open/close transients rather than individual transients. 

To investigate the implications of this pairing in H9B and H10, we looked at the number of times a 

valve open and valve close event is classified incorrectly in the same stream (an upper bound on 

how pairing might perform). Pairing before classification of valve-level events could increase 
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accuracies in H9B to 83% and could increase accuracies in H10 to 81%. We explore pairing in more 

detail in Chapter 8. Many other factors could be used to increase identification and flow rate 

accuracies. For example, we currently estimate flow independent of fixture identification, but the 

two are clearly related and an improved method could consider them simultaneously. 

7.9 CHAPTER SUMMARY 

We have presented a new approach to single-point infrastructure-mediated sensing of whole-home 

water activity. Our initial results for the template-based classifier both validate the effectiveness of 

our approach and provide a basis for future analyses and improvements. The pressure-based 

sensing strategy shows significant promise as a practical, low-cost, and unobtrusive approach to the 

broad deployment of sensing-based ubiquitous computing applications in activity inference and 

real-time eco-feedback. In particular, our approach validates how a single sensor can be used for 

disaggregated hot and cold water usage, enabling broader and more in-depth studies of the end use 

of water. In the next chapter, we address many of the limitations enumerated above in a real-world 

longitudinal deployment of HydroSense. 
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  Chapter 8

A Longitudinal Evaluation of HydroSense 

with Real-World Water Usage Events 

In the previous chapter, we introduced HydroSense, a pressure-based sensing solution that 

disaggregates water usage at the fixture level from a single installation point. HydroSense identifies 

the unique pressure waves generated when fixtures are opened or closed. These waves propagate 

throughout a home’s plumbing infrastructure, thus enabling the single-point sensing approach. In 

this chapter, we move from evaluating HydroSense under controlled conditions in staged 

experiments to evaluating HydroSense via real-world deployments in three homes and two 

apartments over a five-week period.  

At each deployment site, we installed both pressure sensors and a distributed ground truth sensing 

network directly wired on individual fixtures throughout the home (e.g., kitchen sink, toilet, 

dishwasher) to provide ground truth labels on the pressure stream. The ground truth sensors were 

designed to track both hot and cold water usage at their respective fixtures. This allowed us to 

investigate not only whether the pressure signal could be used to infer fixture-level water activity 

but also whether it could be used to determine hot and/or cold water usage at each fixture. This is 

an important capability, as noted in Chapter 2, as water heating alone is responsible for 12.5% of 

residential energy consumption (U.S. Department of Energy, 2001). To our knowledge, our ground 

deployment represents one of the most comprehensive real-world studies of hot and cold water 

usage in residential homes and apartments ever performed. 
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Figure 8.1: A pressure stream with ground truth labels from deployment site H2. The blue line is the cold water 

pressure (sensed from a hose spigot) and the red line is the hot water pressure (sensed from a water heater drain 

valve). The pressure transients are also highlighted and colored according to fixture. Note how rapid increases 

and decreases in pressure correspond to opens and closes and how transient waveforms are dampened when they 

occur in compound. 

Over five weeks, we collected approximately 15,000 ground truth labels for the opening and closing 

of fixture valves (e.g., Figure 8.1). The scope and size of this dataset allows us to examine the 

practical challenges in constructing water usage activity inference algorithms and to highlight 

problems that any indirect water sensing method must address. We show, for example, that 

compound events (when two or more water fixtures are operating at the same time) constitute 

37.1% of all bathroom sink activity and nearly 20% of overall water usage activity. Such prevalence 

suggests that compound events should be specifically addressed and evaluated by any water 

disaggregation technique; however, this has rarely been the case (e.g., Fogarty et al., 2006; Kim et 

al., 2008; Wilkes et al., 2005). Thus, our ground truth data serves both as a resource to inform the 

design of our classification algorithms as well as to evaluate their performance. 

We use the ground truth labels along with the pressure stream data to design and evaluate a novel 

pressure-based water usage inference algorithm. Although the template matching of pressure wave 

transients used in the previous chapter worked well for controlled experiments, we show that a 

template-matching approach alone is insufficient for the variety of signal distortions that occur 

during real-world water use. For example, the speed with which a faucet handle is turned and 

whether an event occurs in isolation or in compound can change the shape of the pressure transient 

thereby rendering the naïve template matching approach inadequate. Consequently, we extend and 

adapt the original HydroSense algorithms to use a probabilistic model based in part on speech 

recognition algorithms. We show how the addition of a language model and contextual priors (e.g., 

fixture usage duration, and maximum flow rate) can boost classification accuracies by an average of 
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6% with real-world water usage data. We also show that the introduction of a language model and 

priors decreases the amount of training data relative to a template-based approach alone. Our 

current analysis provides pre-segmented pressure transients to our classification algorithm, leaving 

segmentation to future work. In this way, our classification results can be seen as an upper bound.  

In summary, the contributions of this chapter are: (1) The most comprehensive dataset of labeled 

real-world hot and cold water usage events ever collected in homes and apartments; (2) An analysis 

of our new real-world dataset to uncover challenges that any indirect sensing water disaggregation 

method must overcome; (3) A new probabilistic approach to water usage classification that is highly 

extensible and incorporates a language model, grammar, and contextual priors; (4) An evaluation 

showing that this new probabilistic approach performs significantly better than previous template-

based methods. 

8.1 DATA COLLECTION AND DEPLOYMENT 

To evaluate the performance of a pressure-based approach using real-world data, we deployed a 

large ground truth water usage sensing network in three homes and two apartments. At each 

deployment site, we installed two pressure sensors and directly instrumented all water fixtures and 

appliances with custom wireless sensors that provided ground truth labels of water usage activity 

for the pressure stream. Here, we describe the ground truth data collection system and the five 

week study deployment. 

8.1.1 Acquiring Ground Truth Labels in a Real-World Deployment 

A key challenge in evaluating any new sensing technique is acquiring ground truth data. In the 

original HydroSense work (Chapter 7), the team manually labeled the pressure stream during their 

staged experiments, which clearly would not work for a real-world evaluation. Thus, an automated 

method for labeling must be derived. An ideal labeling system would accurately detect when 

fixtures are turned on/off, be easy to install, work across a large variety of fixtures, and preferably 

provide flow and temperature information for each fixture valve. An accurate and direct approach 

would be to install small, wireless flow meters at each hot and cold fixture inlet (e.g., a sink would 

require two flow meters). Unfortunately, inline flow meters could actually distort the very 

phenomena we are interested in studying by impacting the pressure-wave signal itself. Instead, we 

instrumented fixtures externally, such as on faucet and toilet handles, so that we did not disturb the 

water stream. 
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We designed an array of ground truth sensors to accommodate the variety of home water fixtures: 

from hand operated fixtures like sinks to electromechanical appliances such as dishwashers. Even 

for a single fixture type, design variation affects how flow and temperature are selected and how 

they can be sensed. For example, some single-handle faucets move left to right for temperature and 

up or down for flow while dual-handle faucets select both temperature and flow by the open 

position of each handle.  

Figure 8.2: The ground truth water usage sensors directly attached to (a) fixtures and (b) appliances and 

monitored valve openings and closings. The “wake-up” sensors would activate on handle movement causing the 

fixture usage sensor board to read from one or more of the fixture handle position sensors. This data was then 

transmitted wirelessly in real time via an XBee wireless modem to an onsite data logger. 

8.2 WATER USAGE ACTIVITY GROUND TRUTH SENSORS 

We developed seven ground truth sensors to accommodate all fixtures across our deployment sites. 

Each interfaced with a parent sensor board (wireless platform Figure 8.2a, top right) to 

communicate water usage data in real time. At a minimum, we tracked when each valve was 

opened or closed and categorized temperature into hot only, cold only, and mixed. The parent 

sensor board was placed in a location protected from water and preferably next to a power outlet (5 

of 33 ground truth sensor boards relied on battery power). All sensors and parent boards were 

weatherproofed to protect against water damage. XBee Pro wireless modems (Figure 8.2a, top left) 

transmitted sensor state to a logger on a laptop installed at each deployment site. The sensor 

boards were configured to transmit a watchdog signal once every four minutes so failures could be 

quickly identified and corrected. The ground truth architecture and sensors went through several 
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design cycles and took approximately three months to build and evaluate before being deployed in 

this study. 

  
Figure 8.3: (a) Accelerometers were used on single handle faucets to track flow and temperature position; (b) A 

modified Kill-a-Watt tracks the laundry machine’s energy use to indirectly monitor water consumption—a 

thermistor was placed in the drain pipe to discriminate temperature settings. (c) In H1, we used a reed switch 

configuration to track refrigerator dispenser water usage. 

For sinks, showers, and toilets, sensors to detect handle position were affixed directly to the fixtures 

themselves and linked to the wireless parent board via low-voltage wires (Figure 8.3 and Figure 8.4). 

We used three types of handle sensors: reed switches (N=34 sensors deployed), accelerometers 

(N=14), and hall effect sensors (N=3). Reed switches are electrical switches that react to the 

presence of a magnetic field and produce binary output: on or off. They are inexpensive, robust to 

water exposure, and provide easily analyzable data. For toilets, we instrumented the flush handle, 

which only provided data on the beginning of the fill and not on the end. We discuss how this end fill 

information was recovered in the next section. 

For faucets where a single handle controls flow rate and temperature, the reed switches were 

insufficient. Instead, we used three-axis accelerometers (e.g., Figure 8.3a, Figure 8.4a, b, and f) to 

measure acceleration and interpret the handle’s flow position (typically up and down movement) 

and temperature (typically left and right movement). Finally, we used hall effect sensors for sensing 

faucets which control temperature using planar rotation but control flow through an up/down 

motion (i.e., where an accelerometer alone could not sense the planar motion). A hall effect sensor 

provides a voltage difference representing the distance between two magnets, so we placed 

magnets on both sides of faucet handles and attached the hall effect sensor to the handle itself. 

 

 

 

a. b. c. 



201 

 

Figure 8.4: A sample of instrumented fixtures from our ground truth deployments. Note how different sensors 

(e.g., accelerometers and reed switches) are used to accommodate the variety of fixture types. 

Additionally, each hand-operated fixture had at least one omni-directional ball switch (N=39) that 

acted as a vibration sensor and woke the parent board to read and transmit handle position sensor 

data. This allowed us to limit power consumption and unnecessary XBee wireless traffic.  

For washing machines and dishwashers, we used three types of sensors: power usage sensors (N=7), 

push buttons (N=2), and thermistors (N=3). Power consumption patterns were used to reconstruct 

when appliances used water. We could not gain access to the power outlets in two cases 

(deployment site A1’s washing machine and H1’s dishwasher), so we used push buttons and a note 

reminding the resident to “please push button when turning on <appliance>.” For sites with washing 

machines, we also attached thermistors to the water drain pipe to measure the temperature of the 

previous fill cycle and infer machine settings (e.g., Hot/Cold or Warm/Cold).  
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8.2.1 Pressure Sensors and Software Tools 

Figure 8.5: Two pressure sensors were installed at each deployment site (one on a hot water access point, one on a 

cold) to study the effect of installation points on classification accuracies. 

The above sensor network was deployed at each deployment site to provide ground truth labels for 

our pressure sensors. For our pressure sensors, we used Pace Scientific P1600s with a resolution of 

0.03 psi (the same hardware from Chapter 7). Each was connected to a 16-bit Texas Instruments 

ADS8344 ADC and AVR microcontroller, which interfaced with a Class 1 Bluetooth radio 

implementing the serial port profile with an approximate wireless range of 10m. This is the same 

setup as the original HydroSense study with three exceptions. First, instead of one pressure sensor, 

we connected two sensors to collect data from hot and cold water access points simultaneously 

(Figure 8.5). This allowed us to investigate the effect of installation point as well as the effect of two 

pressure streams compared to one on classification performance. Second, the original HydroSense 

work tested only 3/4” water access points (e.g., hose spigot). We built adapters to connect to 3/8” 

access points, which allowed us to install pressure sensors below kitchen and bathroom sinks (Figure 

8.5, right). This was particularly important for the apartment installations, which did not have 

accessible 3/4” access points. Finally, we used a sampling rate of 500Hz rather than 1,000Hz, as we 

found 500 Hz was more than sufficient to capture these pressure waves. 

To communicate with the ground truth sensor network and the pressure sensors, a 2GHz Dell 

Inspiron 1545s laptop running Windows XP was deployed at each site. The laptops were configured 

with a USB XBee wireless modem and Bluetooth dongle. The laptops continuously ran a custom data 

logger written in C#, which received, compressed and archived data locally for backup. This was 

pressure 
sensor 1 

(hot point) 

pressure 
sensor 2 

(cold point) 

Home 2 Apartment 1 

pressure 
sensor 2 

(hot point) 

pressure 
sensor 1 

(cold point) 



203 

 

uploaded to a backend webserver at 30-minute intervals. The server backend was implemented 

using Python and web2py. In addition to serving as a data repository, the backend automatically 

sent e-mail notifications when a ground truth sensor or pressure sensor was not heard from for 10 

minutes or more. For analysis, we constructed a suite of tools in Matlab and C#. Because not all of 

the ground truth sensors provided direct labels about water usage (e.g., the power usage sensors 

and toilet handle sensors), we also built a custom annotation tool in C# that allowed us to quickly 

review the ground truth sensor streams and semi-automatically annotate the pressure stream (see 

Figure 8.6, Figure 8.7, and Figure 8.8). 

 
Figure 8.6: The HydroSense longitudinal deployment infrastructure included: (i) a custom ground truth sensor on 

each water valve in the home; (ii) two pressure sensors: one installed on hot line, one on cold line; (iii) an updated 

version of the HydroSense Logger from Chapter 7 that communicated with the ground truth sensor network 

(XBee) and the pressure sensors (Bluetooth), visualized this data in real-time, and uploaded it to a web server; (iv) 

a Python web backend that received data from each deployment site in 30-minute chunks and also served as a 

watchdog service to alert research team of possible sensor failure; (v) a HydroSense Visualization and Annotation 

tool that allowed us to explore the gigabytes of collected pressure stream and ground truth data in a zoomable 

interface; (vi) a suite of Matlab analysis and visualization tools. 
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Figure 8.7: The HydroSense Visualization and Annotation tool was used to visualize the gigabytes of pressure 

stream data and ground truth data from each deployment site. The tool allowed us to semi-automatically convert 

the ground truth data to semantic labels. (a) Shows approximately four minutes of hot/cold pressure stream data 

and ground truth data from H2. (b) The same view with the ground truth data converted to labels.  
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Figure 8.8: Three different examples of pressure streams and accompanying ground truth data. (a) Kitchen sink 

usage in A1 with reed switch ground truth data visualized below. (b) Kitchen sink usage in A1 with hall effect 

ground truth data visualized below. (c) Washing machine usage in H3 (violet annotations) with Kill-A-Watt power 

consumption data visualized below. 
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8.2.2 Deployments 

We deployed the ground truth sensor network and two pressure sensors at five sites: three houses 

and two apartments. Each site was a home or apartment of one of the research team members. This 

was done because of the invasiveness of the direct sensing approach used for the ground truth data 

collection. There was, however, a large variation in the type, size and plumbing systems across the 

deployments sites (Table 8.1). The deployments began February 2010 and lasted for five weeks. 

It took approximately two full work days per deployment site for two people to install and test the 

ground truth sensors. After the five-week ground truth deployments ended, we used our custom 

annotation tool to convert the ground truth sensor stream to labels. This was accomplished in a 

semi-automatic fashion—the annotation tool visualized the ground truth sensor values and the 

pressure streams together in a common time-series view. The ground truth sensor values could then 

be automatically or manually converted to labels. It took approximately 8-12 hours per week of data 

collected for one research assistant to convert the sensor stream to labels. These labels were then 

reviewed by a second research assistant for consistency, which took roughly half the time (4-6 hours 

per week of data). 

8.3 ANALYSIS OF THE COLLECTED DATASET 

 H1 H2 H3 A1 A2 

# Residents 2 2 4 2 2 

Gender/Age/ 
Profession 

M/27/professor; 
F/29/professor 

M/31/professor; 
F/32/office worker 

4 Males/19-21/ 
undergrad students 

M/31/grad student;  
F/30/post-doc 

M/26/grad student;  
F/26/pharmacist 

Fixtures/Valves 17/28 8/13 13/21 6/10 (8/13)* 8/13 

Style/Built House/2003 House/1918 House / 1923 Apt/1920s Apt/2000 

Size/Floors 
3000 sqft/ 

2 floor + basement 
750 sqft/ 

1 floor + basement 
1200 sqft / 

1 floor + basement 
700 sqft/ 

3rd floor of 3 
750 sqft/ 

6th floor of 7 

Expansion Tank/  
Regulator 

Yes/Yes No/No No/No 
Unknown/ 
Unknown 

Unknown/ 
Unknown 

Water  
Heater Tank Size/ 

Plumbing 

50 gal/ 
Copper 

50 gal/  
PEX 

50 gal/ 
Copper 

Two 100 gal tanks/ 
galvanized 

Unknown/ 
PEX 

Pressure Sensor Install 
Point Hot/Cold 

Main floor 
bathroom sink/ 
outdoor hose 

spigot 

Water heater drain 
valve/outdoor hose 

spigot 

Downstairs 
bathroom sink/ 
outdoor hose 

spigot 

Bathroom sink 
hot/cold inlet 

Kitchen sink 
hot/cold inlet 

Table 8.1: Occupant demographics and deployment site characteristics. In A1, The toilet and shower head were 

replaced with low-flow equivalents ~3.5 weeks into the deployment. We discuss the effect of this change on 

classification performance in the results section. 

We collected a total of 16,056 labeled events across the five deployment sites. Table 8.2 provides an 

overview. Due to ground truth sensor failures, 2.9% of this data is marked as uncertain and is not 

used in our classification experiments. Nearly 80% of the uncertainties were due to malfunctioning 
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kitchen sink handle position sensors in H1 and H2, which were replaced within a few days of 

discovery. The dataset also includes unknown events (3.9% of our dataset), which are pressure 

stream transients whose origin cannot be determined because they occurred without accompanying 

data from the ground truth sensors. A1 has the highest proportion of unknown events (9.1%) 

because of water usage activity coming from other apartments. Although we do not attempt to 

classify uncertain or unknown events, they were not removed from the dataset and can impact 

classification performance when they overlap with other events. After accounting for 

uncertain/unknown events, we are left with 14,960 labels. 

 H1 H2 H3 A1 A2 Totals 

Days of Data 33 33 30 27 33 156 

Total Events 2374 3075 4754 2499 2578 14960 

Avg Events/Day 71.9 93.2 158.5 92.6 78.1 95.9 

Cold Only Events 855 (36.0%) 1418 (46.1%) 1637 (34.3%) 633 (25.3%) 1657 (64.3%) 6087 (40.7%) 

Hot Only Events 607 (25.6%) 1329 (43.2%) 1766 (37.5%) 1818 (72.8%) 498 (19.3%) 5870 (39.2%) 

Mixed Temp Events 912 (38.4%) 328 (10.7%) 1351 (28.2%) 48 (1.9%) 423 (16.4%) 3003 (20.1%) 

Isolated Events 1981 (83.5%) 2477 (80.6%) 4131 (86.9%) 1914 (76.6%) 2149 (83.4%) 12393 (82.8%) 

Compound Events 393 (16.6%) 598 (19.5%) 623 (13.1%) 585 (23.4%) 429 (16.6%) 2567 (17.2%) 

Transient Collisions 142 (6%) 72 (2.3%) 166 (3.5%) 219 (8.8%) 120 (4.7%) 701 (4.7%) 

Uncertain Events 22 (0.9%) 175 (5.3%) 189 (3.7%) 52 (1.9%) 37 (1.4%) 467 (2.9%) 

Unknown Events 52 (2.1%) 79 (2.4%) 184 (3.6%) 254 (9.1%) 85 (3.1%) 629 (3.9%) 

Table 8.2: High level ground truth data collection statistics. An event is one occurrence of either a valve open or a 

valve close. Uncertain and unknowns are not included in the totals events row. 

Table 8.3 shows valve activity at individual fixtures by temperature state (hot, cold, and mixed). We 

use M. for Master and S. for secondary to distinguish primary and secondary bathrooms. The M. 

Bath Diverter and S. Bath Diverter are for the tub/shower switch that diverts water flow from the 

bath to the shower and vice versa; we distinguish between a shower that is turned on straightaway 

and a shower that is diverted from a bath. The Other category includes data from only one 

deployment site, H1, and encompasses the Laundry Basin and the Refrigerator Water Dispenser. On 

average across all deployment sites, there is a nearly even proportion of cold and hot events (40.7% 

for cold only, 39.2% for hot, and 20% for mixed). This implies that any indirect water disaggregation 

sensing method, such as flow-trace analysis and HydroSense, must be equally capable of sensing 

usage regardless of temperature. The overall frequency of fixture usage follows a power-law 

distribution where the first four fixtures (kitchen sink, master bathroom sink and toilet, and 

secondary bathroom sink) account for 84.7% of the events in our dataset. For purposes of human 

activity inference, these fixtures are thus critically important. 
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Fixtures Count Total Hot Cold Mixed Compound Collision AvgDuration 

KitchenSink 5 5494 (36.7%) 2438 (44.4%) 1415 (25.8%) 1641 (29.9%) 342 (6.2%) 206 (3.7%) 22.4 secs 

M.Bathroom Sink 7 3934 (26.3%) 2114 (53.7%) 1294 (32.9%) 526 (13.4%) 1459 (37.1%) 185 (4.7%) 27.2 secs 

M.Bathroom Toilet 5 1886 (12.6%) 0 (0.0%) 1886 (100%) 0 (0.0%) 87 (4.6%) 117 (6.2%) 43.6 secs 

S.Bathroom Sink 4 1369 (9.2%) 618 (45.1%) 637 (46.5%) 114 (8.3%) 430 (31.4%) 57 (4.2%) 30.9 secs 

Washing Machine 4 430 (2.9%) 93 (21.6%) 325 (75.6%) 12 (2.8%) 12 (2.8%) 66 (15.3%) 1.6 mins 

M.Bathroom Bath 5 423 (2.8%) 224 (53%) 35 (8.3%) 164 (38.8%) 87 (20.6%) 20 (4.7%) 43.4 secs 

S.Bathroom Toilet 3 341 (2.3%) 0 (0.0%) 341 (100%) 0 (0.0%) 11 (3.2%) 21 (6.2%) 27.2 secs 

M.Bathroom Shower 5 261 (1.7%) 55 (21.1%) 4 (1.5%) 202 (77.4%) 30 (11.5%) 10 (3.8%) 8.7 mins 

Dishwasher 3 261 (1.7%) 261 (100%) 0 (0.0%) 0 (0.0%) 9 (3.4%) 6 (2.3%) 1.2 mins 

M.Bath Diverter 5 228 (1.5%) 17 (7.5%) 1 (0.4%) 210 (92.1%) 92 (40.4%) 5 (2.2%) N/A 

Other 1 181 (1.2%) 28 (15.5%) 149 (82.3%) 4 (2.2%) 0 (0.0%) 4 (2.2%) 8.2 secs 

S.Bathroom Bath 2 59 (0.39%) 5 (8.5%) 0 (0.0%) 54 (91.5%) 2 (3.4%) 2 (3.4%) 20.7 secs 

S.Bathroom Shower 2 47 (0.31%) 11 (23.4%) 0 (0.0%) 36 (76.%) 0 (0.0%) 1 (2.1%) 9.4 mins 

S.Bath Diverter 2 46 (0.31%) 6 (13%) 0 (0.0%) 40 (87%) 6 (13%) 1 (2.2%) N/A 

Totals 53 14960 5870 (39.2%) 6087 (40.7%) 3003 (20.1%) 2567 (17.2%) 701 (4.7%) 49.1 secs 

Table 8.3: A breakdown of valve activity by fixture, by temperature state (hot, cold, mixed) and by 

compound/collisions. The Count column tabulates the number of fixtures across sites. 

Although we ultimately used this data to evaluate our classification algorithms, an equally important 

goal was to identify potential challenges in classifying real-world water usage compared to 

simulated, isolated water events. A compound valve event is a valve event that occurs while another 

fixture is using water (e.g., the bathroom sink events in Figure 8.9a). A collision valve event is a valve 

event that occurs within two seconds of one or more other valve events (Figure 8.9b and c). Previous 

water disaggregation sensing approaches have performed poorly in the face of compounds and 

collisions (e.g., Fogarty et al., 2006; Wilkes et al., 2005). This is because compounds and collisions 

often mask or distort features used for classification. Although a collision is technically also a 

compound, for the purposes of our analysis we separate them to investigate the individual effect of 

each on classification performance. In our dataset, 17.2% of all valve events are compound while 

4.7% of valve events are collisions (Table 8.2 and Table 8.3). The most common compound/collision 

events are master bathroom sink opens and closes, comprising 41.8% of all bathroom sink activity 

and 11% of all valve activity overall (Table 8.3). 
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Figure 8.9: (a) Bathroom sink open and close transients occurring in isolation and in compound from H2. (b) A 

shower close and bathroom sink open transient in isolation and colliding from A2. (c) A toilet close and a 

bathroom sink close transient in isolation and colliding from H3. 

With the pressure-based approach, compound valve events result in a dampening and often a 

severe attenuation of the high frequency component of the pressure transient. As a result, the 

transient signal is homogenized, making it difficult to classify. With collisions, the two colliding 

transient waveforms become highly distorted; although it is rarely the case that two transients occur 

simultaneously (more often they are offset by 200-500ms), the distortions may still render the 

transient unrecognizable. In Figure 8.9b, the shower close and bathroom sink open occur 1.1 

seconds apart. In Figure 8.9c, the toilet close and bathroom sink close occur 200 milliseconds apart, 

making it unlikely that both will be classified. For these events to be classified correctly, less 

emphasis may need to be placed on template matching transient signatures relative to the original 

HydroSense work (Chapter 7). Our new algorithm specifically attempts to address this issue. 

8.4 VALVE EVENT CLASSIFICATION ALGORITHM 

To classify pressure transients as valve events, we apply a probabilistic approach using Bayesian 

estimation. Our particular approach is inspired by the dynamic Bayesian models used in speech 

recognition. Instead of recognizing words, we recognize valve events. Like many of the Bayesian 

approaches used in speech recognition, we incorporate a language model and grammar, which 

estimates the most likely sequence of valve events and defines permissible valve event pairings. This 

provides robustness against transient deformations that can occur during natural valve usage (e.g., 

brief water usage events, low-flow, and compounds). 
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At a high level, the classification algorithm works as follows: First, an incoming water pressure data 

stream is buffered and the pressure transients are segmented. This segmentation process currently 

uses the time series boundaries defined by the ground truth annotations but would be automated in 

an end-to-end system. We note, however, that the event identification and segmentation algorithm 

in Chapter 6 performed with perfect accuracy. More work will be needed for these algorithms to 

adapt to pressure streams that include compounds and collisions; we return to this limitation at the 

end of the chapter in the discussion section. Second, the segmented pressure transients are each 

compared to a library of labeled templates using a set of similarity algorithms. Third, a language 

model determines the likelihood of a given sequence of valve signatures and links open and close 

valve events into paired tuples. Fourth, we extract features from these paired tuples and compare 

them with smoothed probability distributions. For example, by pairing a bathroom sink hot open 

with a bathroom sink hot close, we can extract the duration of that event and estimate the total flow 

volume used and then obtain probabilities for those features. Finally, the probabilities from the 

previous three steps are multiplied together for each sequence and the sequence with the highest 

probability is selected. 

We now formally define our Bayesian model for classifying pressure transient sequences. In eq. (8.1) 

below, let V denote the pressure signature template library (a vector of labeled pressure transient 

signatures and their transforms) and S denote a sequence of unknown segmented pressure 

transients. Then, using Bayes’ theorem, the most likely valve sequence is defined as:  

 ( | ) ( )ˆ arg max ( | ) arg max
( )

P P
V P

P
 

S V V
V S

S
 (8.1) 

The conditional probability term P(S|V) describes the outcome of the template- and feature-based 

comparisons. The prior probability term P(V) describes the likelihood of the valve sequence (using 

bigrams) and the likelihood of each pairing in the sequence. Note that arg max simply returns a 

specific valve sequence rather than a probability estimate, thus the normalization constant P(S) can 

be discarded in practice. We can expand the numerator of eq. (8.1) to further highlight the four 

major components of our approach: 
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P(S|V) is now represented by the first term in eq. (8.2), which describes our set of R signal 

transformations and comparison algorithms (where fr is the comparison algorithm for the rth 

transformation). P(V) is expanded into three terms: our bigram language model, a grammar, and 

water usage event priors. We describe each term in the following. 

8.4.1 Term (i): Template- and Feature-Based Comparison 

Term (i) compares the segmented unknown pressure transient s with open and close valve 

templates in our library. Each comparison is broken into two parts: a signal transformation on s to 

achieve  ̂ and a similarity score calculation between  ̂ and a corresponding transformed valve 

template  ̂ in our template library. We use multiple signal transformations and comparison 

algorithms to produce a set of similarity scores for a given valve (each transformation and score is 

represented by fr in term (i)). These scores are converted into probabilities and multiplied together 

to form a single template-match probability between s and every valve v in the template library. This 

is similar to the original HydroSense algorithm works as described in Chapter 7 which used a 

hierarchical classifier to prune and classify these individual pressure transients. Unlike this earlier 

work, however, these similarity scores are incorporated into a probabilistic model. 

We use eight signal transformations—four filters and a Cepstral transform of each filter. Each 

attempts to emphasize a unique property of the pressure transient waveform. The first two filters, a 

1 Hz and a 13 Hz low-pass filter, allow us to explore the temporal shape of the transient signal. The 

next two filters are derivatives of the low-pass filtered signals, which help to uncover how 

resonances of the transient waveform decay over time. Specifically, we use a derivative of the 13 Hz 

low-pass filter and a bandpass derivative of the difference between the 1 and 13 Hz low-pass filters. 

Finally, we apply a constant-Q Cepstral transformation on each of the aforementioned four 

transforms.  

The constant Q transformation uses a filter bank with overlapping and logarithmically increasing 

bandwidths to break apart the frequency spectrum of the transient signal. After the filter bank, we 

apply a magnitude and log operation to turn multiplication of two systems in the frequency domain 

into addition operations. This has the effect of separating the “source” (an impulse or step into the 

plumbing system) from the “filter” (the physical bends and pipe lengths in the plumbing system). 

We then take the discrete cosine transform (DCT) of the constant-Q coefficients, which compacts 

harmonic structures down towards lower indices of the transform (commonly known as low-time 



212 

 

cepstral coefficients). We truncate these coefficients (known as low-time liftering) before applying 

similarity algorithms. For more information on our constant-Q transformations, see Chapter 7 and 

Larson et al. (2010). 

We use two similarity algorithms over the eight signal transformations: a matched filter and a 

Euclidean distance measure. The matched filter is an optimal similarity measure for orthogonal 

signals in the presence of white noise (North, 1943). Because our signals resemble decaying 

sinusoids, we can expect the above transformations to result in signals that are approximately 

orthogonal. The matched filter is used to compare the first four signal transformations, while the 

Euclidean distance measure is used for the four Cepstral transformations (given that the Cepstral 

space is already aligned, a matched filter type approach is unnecessary). A similar set of signal 

transformations and comparison algorithms were used in the original HydroSense work (Chapter 7). 

However, to ensure the approach works robustly with real-world data, we added the 4th signal 

transform above (the bandpass derivative) and eliminated the mean square error measure because 

it did not improve performance. 

After every {s,v} comparison has been made, we reinterpret the similarity scores as probabilities. For 

the matched filter comparisons, this is trivial as the matched filter already returns a similarity score 

between 0 and 1. For the real Cepstral transforms, we use Euclidean distance measures dm between 

each transient in S and template in V, such that         ( ̂| ̂)   
 |  | (a common interpretation of 

Euclidean distance as a probability in log-space: Chen and Rosenfeld, 2000). 

At this point in the algorithm we have an unknown transient s and the results of the four matched 

filter comparisons and the four exponential Euclidean distance comparisons (for every template in 

our library). To form a single template probability score, we multiply the comparisons of each 

template together. These scores are then grouped by valve (i.e., all “kitchen sink open hot” scores 

are grouped together; all “bathroom sink close cold” are grouped, etc.). We then take the argmax 

over each valve grouping to find the probability that a particular valve is the originator of s.  

Because we now have a single probability score for each valve, we can combine these with the 

probability of observing valve-specific features. These features are low dimensional vectors or 

scalars that are pre-calculated for each valve at a deployment site. In particular, we use two 

features: (1) stabilized pressure drop and (2) amplitude/resonance tracking; however, other features 

such as damping ratio and time of day used could be explored in the future. The stabilized pressure 
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drop can be calculated by assuming that the transient is an underlying step function with three 

parameters: (a) time at which the step occurs, t0, (b) magnitude of the step, A0, and (c) region, T, 

where the transient has many high frequency components and cannot be modeled by a step. These 

parameters can be solved for (in the mean square sense) using linear regression with a “don’t care” 

region. After regression, the stabilized pressure drop is the scalar value A0. For resonance/amplitude 

tracking we assume the transient can be modeled well by a four pole system and we use an auto 

regressive model to estimate the pole locations. Each pole represents the strongest resonances and 

resonance magnitude that can vary between valves.  

We train probabilities for these features by calculating the pressure drop and resonance values for 

all templates in our library and then using Gaussian kernel density estimation (KDE) (Bowman and 

Azzalini, 1997) to assign probability distributions to each valve in a non-parametric way. This results 

in a look-up table between feature observations and valve-level probability estimates. These 

probabilities are multiplied with the template probabilities to complete term (i). Note that when 

multiple pressure sensor streams are available, such as when two installation points are used, the 

probabilities for each stream can be multiplied together to form term (i). If we wish to use template 

comparisons only, we can simply choose the template with the highest probability. To incorporate 

with a language model, we use the best valve probabilities to enumerate the state space of a trellis 

in a bigram graphical model (where each valve is a separate state). 

8.4.2 Term (ii): The Language Model 

The language model assigns probabilities for possible valve sequences. This is performed using 

bigrams and is represented by term (ii) in eq. (8.2) (N represents the length of the sequence). Bigram 

analysis is commonly used in the statistical analysis of text to examine co-occurrences of words or 

letters. Here, our bigrams are groups of two sequential valve events; for example, toilet 

openbathroom sink valve hot open comprises a single bigram. The language model consists of 

transition probabilities for every valve pair 〈       〉 and is trained by counting the number of co-

occurring valve pairs in our library. These counts are smoothed using Katz smoothing, which is 

commonly used in speech recognition and works to assign a non-zero probability to every sequence 

(Chen and Rosenfeld, 2000). This is important for handling transition probabilities between two 

valves that rarely occur in our library. 
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Traditionally, language models use these transition probabilities to select the optimal word (valve) 

sequence from all possible word (valve) sequences. We maintain an n-best list of sequences using 

Viterbi-stack decoding (Chow and Schwartz, 1989). This allows us to dynamically reorder the most 

probable sequences as new valve events occur.  Crucially, it also allows us to reorder based on 

secondary knowledge sources—particularly term (iii) and term (iv) in eq. (8.2).  

8.4.3 Term (iii): The Grammar 

Term (iii) describes a grammar, which is typically used to define a set of structural rules that govern 

the composition of sentences, phrases, and words in a given language. Here, our grammar defines 

the possible ways in which valve sequences can be constructed. Our grammar rules are: (1) an 

opening of valve    must be followed by a closing of valve   ; (2) a valve’s closure must be preceded 

by its opening; (3) and the temperature state of a valve must be consistent—e.g., a kitchen sink hot 

open event cannot be closed by a kitchen sink cold close event. Rather than eliminating impossible 

valve sequences (such as a close before an open or an open with no close), we use a soft grammar 

which applies a penalty to any valve sequence that violates a rule. In this way, sequences which 

contain grammatical errors but have the likeliest probabilities from the other terms can still be 

selected as correct. The grammar is applied to each sequence in the n-best list, resulting in a set of 

paired valve tuples  . In eq. 8.2, the term fp penalizes all unpaired valves (those not in  ). 

These paired tuples now bind together specific valve open and close events to form a full water 

usage event structure. For example, given the valve event sequence v1v2 v3 v4 where v1=toilet 

open, v2=bathroom sink open, v3=toilet close, and v4=bathroom sink close, our pairing algorithm 

might link the two toilet events into  ̂  ⟨  |  ⟩ and the two bathroom sink events into 

 ̂  ⟨  |  ⟩. These linkages are critically important because they allow us to compute an 

additional feature set (described in term (iv)) that is dependent on knowing the beginning and 

ending of a water usage event. We note that the language model and pairing is a novel aspect of our 

system. The original HydroSense had no notion of either and thus could only identify individual valve 

events but not the relationships between those events. 

8.4.4 Term (iv): Paired Valve Tuple Priors 

By pairing valve events, we not only have the ability to link open and close transients together but 

also to compute classification features, such as water usage duration and relative estimates of water 

volume, which are not possible without a pairing methodology. For every paired valve tuple in  , we 
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compute K features over the entire water usage event, denoted as fk in eq. (8.2). Similar to the 

transient features used in term (i), a probability density is calculated using KDE and the example 

water usage events in our library. For example, given a particular draw length for an unknown tuple, 

we can use the usage durations for all kitchen sinks in our dataset to lookup the probability that the 

usage event is a kitchen sink. Once all paired prior probabilities have been multiplied together, the 

n-best list is reordered and the likeliest valve sequence is chosen. 

We use two paired valve priors selected experimentally using one week of data from each 

deployment site: usage duration, the amount of time the given valve pair is drawing water and flow-

trace max, an estimate of the maximum amount of flow used over the duration of the event (a 

feature also used in flow-trace analysis: DeOreo et al., 1996a). 

8.5 ANALYSIS AND RESULTS 

We compare the performance of three classification algorithms: a template classifier (term (i)); a 

classifier that adds a language model and grammar: templ+LM (terms (i, ii, iii)); and our full classifier 

templ+LM+priors (the complete eq. (8.2)). For baseline performance, we include chance and a 

majority classifier, which always selects the most likely result based purely on frequency. We were 

most interested in how the templ+LM+priors approach compares to the template approach. 

Additionally, we investigate the performance of each algorithm when using a single pressure sensor 

(hot or cold) versus dual pressure sensors. For the single sensor analysis, we chose the sensor (hot 

or cold line) that performed best. This was the cold line for all sites except for A2, where the 

majority of events were hot water use only. 

To understand how the algorithms perform at different granularities, we conduct valve level, fixture 

level, and fixture category level classification. For valve level, the algorithm must identify the correct 

fixture responsible for the pressure transient, whether it is an open or a close, and its temperature 

state (hot, cold, or mixed). Fixture level ignores temperature state. Finally, for the fixture category 

level, we use the same categories as flow-trace analysis (e.g., Mayer et al., 1999). The algorithm 

must correctly classify open/close events as bath, clothes washer, dishwasher, faucet, shower or 

toilet. Note that the same models were used to train and test all three different granularities; 

however, temperature errors were ignored in the case of fixture and category level.  
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                      Average Classification Accuracies 

 

chance 3.0% 5.1% 6.2%  3.0% 5.1% 6.2% 
majority 6.5% 18.5% 34.2%  6.5% 18.5% 34.2% 
template 70.2% 83.4% 93.6%  78.1% 89.6% 96.2% 

templ+LM 72.5% 88.0% 95.4%  79.4% 92.0% 97.1% 
templ+LM+priors 75.5% 89.5% 95.9%  82.4% 93.5% 97.7% 

Figure 8.10: Average classification results across the five deployment sites comparing algorithm, single vs. dual 

sensor, and different granularities (valve, fixture, fixture category). 

We first focus on pre-segmented classification performance using data from a single pressure 

sensor. Figure 8.10 displays the results of a 10-fold cross validation experiment over the full five 

weeks of data using the three classification algorithms and two baselines. In general, the best 

performing algorithm is templ+LM+priors, which resulted in an average overall classification 

accuracy of 75.5%, 89.5%, and 95.9% for valve, fixture, and fixture-category level, respectively, 

across the five deployment sites. The best performing home, H2, resulted in 89.4%, 94.3%, and 

98.4% classification accuracies. In contrast, the worst performing home, H1, resulted in 66.6%, 

79.6%, and 91.0% accuracies because of the lack of cross talk between hot and cold plumbing lines 

and the logarithmic pressure falloff during usage. Surprisingly, the two apartments, A1 and A2, both 

performed reasonably well with a single sensor: 77.3%, 89.7%, and 95% for A1 and 78.7%, 94.3% 

and 96.9% for A2. This is despite the pipe length distance between the hot and cold lines in an 

apartment being much longer than in a house.  
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Figure 8.11: A confusion matrix that averages the confusions for fixture-level templ+LM+priors classifications 

across deployment sites. Note that averaging makes it such that the percentages do not add to 100%. 

To examine how events were misclassified, we calculated a confusion matrix for templ+LM+priors (), 

averaging the classification percentages at the fixture level across the five deployment sites. In 

general, classification accuracies are quite good—the most frequently used fixtures: kitchen sink, 

bathroom sinks, and bathroom toilets have an average classification accuracy of 90%. Confusions 

tend to occur within fixture categories (e.g., between sinks) and between fixtures that are situated 

close together with respect to plumbing layout. For example, the faucet in the secondary bathroom 

is misclassified as the master bathroom faucet 7% of the time while the dishwasher is misclassified 

as a kitchen sink 11% of the time (dishwashers are only a small distance from kitchen sinks). Recall 

from Table 3 that the other category involves data from only one home (H1) and is for the laundry 

basin and refrigerator water dispenser, which were classified correctly 86.1% and 98.6% of the time. 

However, the washing machine was confused as a laundry basin 30.1%, which is visible in Figure 

8.11—this confusion can be attributed to their valve’s proximity in the plumbing system.  

With regards to compound and collision events, the two language model-based algorithms tend to 

perform better than the templ algorithm (Figure 8.12). This is likely due to the transition 
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probabilities of the language model and the paired valve priors in term (iv). Both reduce the weight 

placed on template-matching the distorted transient. 

As expected, the addition of a second pressure sensor improves the overall classification accuracies 

for each algorithm and sensing resolution granularity: an average of 10% for valve level, 5.5% for 

fixture level and 2.1% for fixture category level across the three algorithms (Figure 8.10). The templ 

algorithm benefited the most from the addition of the second sensor. Similar to the single sensor, 

the templ+LM+priors algorithm performed the best with overall accuracies of: 82.4%, 93.5%, and 

97.7% for valve, fixture, and fixture category levels. Because of the lack of cross talk between hot 

and cold pressure lines, H1 and the apartments benefited the most from the addition of a second 

sensor, especially for valve level classification (an increase of 9.5% vs. 3.1% for the other two sites). 

Two sensors also increase compound and collision accuracy by 5.3% and 4.4%. Finally, as noted in 

Table 8.1, the toilet and showerhead were replaced with low-flow equivalents in A1 approximately 

three and a half weeks into the deployment. After training on these new fixtures, we were able to 

correctly classify their usage despite being in the same fixture category and installed in the same 

location as the previous fixtures. For example, the new toilet was correctly classified 90.2% of the 

time and classified as the old toilet 8.2% of the time (we kept the old fixture templates in our 

database for all classification experiments). 

 
Figure 8.12: (a) The error rates for fixture-level performance broken down by algorithm and whether the error 

occurred on an isolated, compound, or collision event. (b) The results of our amount of training data experiment; 

1,3,5,7 and 10 days were used to test a two week period. Note that we offset the data points slightly for each 

algorithm to improve the readability of the graph. Error bars reflect one standard deviation above and one 

standard deviation below the mean. 
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To test whether templ+LM+priors offered a significant overall improvement over templ (the 

approach used by the original HydroSense work described in Chapter 7), we conducted a three-way 

repeated measures ANOVA. We used the 10-fold classification accuracies as the dependent variable 

and sensing resolution, number of sensors, and algorithm (templ vs. templ+LM+priors) as within-

subjects factors. Because we were only interested in the comparisons between the two algorithms, 

we report only main and interaction effects with algorithm. We found a significant main effect of 

classification algorithm (F1,4=21.76, p=.010), indicating that templ+LM+priors improved performance 

over templ. No interaction effects with algorithm were significant, which means that two algorithms 

were not affected differently based on the sensing resolution or the number of sensors.  

To investigate how the amount of training data impacts performance, we trained models with one, 

three, five, seven, and ten days of data. The amount of data is divided by days, not number of 

templates, as the language model requires contiguous blocks of events for training. All were then 

tested on 14 non-overlapping days. The results are presented in Figure 8.12b. Significant 

improvements in classification accuracy are seen with only a small number of training days. On 

average, templ+LM+priors outperforms templ by 4.5%, 7.4%, 8.3%, 6.9% and 6.2% as the number of 

training days increases from one to ten. Note that both of the LM-based algorithms perform better 

throughout training though the templ+LM algorithm slightly outperforms templ+LM+priors with 

minimal training because it does rely on trained probability distributions for priors.  

8.6 DISCUSSION 

This research is the first to use pressure-sensing to disaggregate real-world water usage. Using 

longitudinal data collected from ground truth deployments across five residences, we showed that a 

single pressure sensor was sufficient to classify pressure transients with accuracies between 76% 

and 96% depending on granularity (i.e., valve, fixture, or fixture category). With two pressure 

sensors, the accuracies rose to between 82% and 98%. To achieve these results, we introduced a 

new type of water usage inference algorithm inspired by research in speech recognition. Unlike the 

original HydroSense work described in Chapter 7, this new algorithm is probabilistic and leverages a 

language model, grammar, and prior probabilities to better handle pressure transient variability and 

to increase robustness in the face of compound events and collisions.  

Despite these advances, there are important opportunities for future work. Our current analyses 

used pre-segmented pressure transients (i.e., the start and end of waveforms are marked by the 

ground truth labels). Working with pre-segmented events allowed us to focus specifically on 
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analyzing the discriminability and consistency of real-world water usage pressure transients. As such, 

our results demonstrate an upper bound of classification performance for our particular feature set 

and approach. Overall classification rates will likely drop once segmentation is implemented because 

of segmentation errors. This could be especially true for apartments which, depending on the 

plumbing structure, can be particularly sensitive to noise from other units in the building. 

With that said, the original HydroSense work segmented staged water usage data with 100% 

accuracy, so segmentation of real-world data should be possible. The key challenge will be properly 

segmenting compound and collision events, particularly in apartments with a much noisier pressure 

signal. We note that our Bayesian approach is amenable to many common speech recognition 

detection techniques such as keyword spotting. As such, the classification and segmentation tasks 

could likely be combined to make the algorithm more robust to sources of ambiguity such as 

transient collisions. Indeed, most optimal statistical signal processing strategies become sub-optimal 

after separating segmentation and classification, which means the classification algorithms 

presented in this chapter may need adjustment once incorporated with an imperfect segmentation 

scheme. 

In terms of training, we evaluated the classification algorithms using real-world data for both 

training and testing. For practical end-user deployment, we might expect a small amount of staged 

training data per fixture. Future work is necessary to establish what will be the most effective staged 

training data for accurate classification of real-world data. For example, our current approach trains 

the language model and priors using data from the home where it is deployed. A more general 

approach could leverage usage patterns and priors (such as duration of use) across different homes, 

thus reducing system calibration. It may also be the case that certain fixtures, such as toilets and 

dishwashers, require less calibration because of more consistent transients. Furthermore, 

unsupervised learning approaches may allow detection of previously unknown fixtures. An interface 

to allow correction of misclassifications and training of the algorithm over time may also prove 

beneficial.  

Finally, our work underscores the importance of conducting longitudinal evaluations out in the wild 

(as argued by others as well, e.g., Rogers et al., 2007). Although challenging and resource-intensive, 

such studies are critical in providing a sound scientific basis for the sensing work that we do in the 

Ubicomp communities. In our case, studying the real-world uses of water, rather than only staged 
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experiments, uncovered crucial limitations of past approaches and allowed us to characterize 

general challenges for water disaggregation research. 

8.7 CHAPTER SUMMARY 

In summary, this research is the first to demonstrate that sensing pressure is a viable technique for 

inferring real-world water activity. We used labeled pressure stream data collected through five-

week ground truth water sensor deployments across five sites to evaluate the performance of a new 

probabilistic method for inferring water usage from a single pressure sensor. To our knowledge, 

these ground truth deployments represent the most detailed investigation of residential hot and 

cold water usage (and their classification potential) ever performed.  

In the next chapter we explore how a water sensor, like HydroSense, can be used to provide eco-

feedback to residents about their water usage. In particular, we describe the design and evaluation 

of a range of eco-feedback displays that visualize fixture-level details on consumption from real-time 

disaggregated water usage data.  



222 

 

 

  Chapter 9

Design and Evaluation of Eco-Feedback 

Displays for Fixture-Level Water Usage Data 

   
Figure 9.1: In this chapter, we explore eco-feedback displays for disaggregated water usage data. We evaluate 

different visual designs informed by Chapters 4 and 6 as well as how the eco-feedback data should be accessed 

and where the displays may fit in the home. 

In this chapter, we apply the design considerations and formative insights from Chapters 4 and 6 to 

the design and evaluation of a set of novel eco-feedback displays for household water consumption. 

These displays are also based on an underlying water sensing system like HydroSense (from 

Chapters 7 and 8) that can provide real-time, fixture-level water usage data (e.g., Figure 9.1). 

The displays themselves were created through iterative pilot testing and explore a range of points in 

the eco-feedback design space including data granularity, temporal granularity, and type of 

comparison (e.g., to neighbors or demographically similar households). By creating a set of designs 

that target different points in the design space, we were able to compare the impact of these 

different design dimensions across a variety of subjective measures including perceived usefulness, 

understandability, and aesthetic. We evaluated these designs in an online survey with 651 

respondents and through in-person interviews with 10 households (N=20 adult participants). In 
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subsequent text, the survey is referred to as the Display Evaluation Survey and the interview study 

as simply the Interview Study. 

The survey was designed to both quantitatively and qualitatively assess reactions and preferences to 

a range of designs presented in a controlled fashion. As the survey was conducted online, it was our 

intent to receive a large number of respondents in order to analyze trends in the response data. In 

contrast, the interviews were focused on understanding differences in perspective and preference 

for different water feedback designs within members of the same household.  

The contributions of this chapter are threefold: 

 A set of novel eco-feedback designs for water usage, which explore a broad set of 

dimensions and themes within the eco-feedback design space.  

 Findings from a large-scale online survey, which carefully controlled the presentation of our 

designs to allow us to identify and uncover particularly promising designs and/or design 

elements. 

 Findings from a set of household interviews, which explored a larger set of novel eco-

feedback designs than the survey and did so within the interviewees’ own homes. 

Consequently, we were able to not only derive more qualitative feedback about our designs 

than is possible through an online survey but we could also contextualize such feedback and 

explore how, if, and why the designs actually fit in domestic spaces. 

This research not only has implications for those interested in designing water feedback systems but 

also, more generally, for those working in other areas of eco-feedback (e.g., electricity or gas). In 

addition, some of our findings are relevant not just to designers and HCI researchers/practioners but 

also to those in the water industry involved in billing and consumer-facing website design. 

9.1 DISPLAY DESIGNS 

Based on the design space in Chapter 4 and the formative survey findings from Chapter 6, we 

created two sets of water consumption feedback displays. Displays in the first set were designed to 

isolate and examine a subset of the eco-feedback design dimensions introduced in Chapter 4 within 

the context of water usage. The dimensions examined here include data and temporal granularity, 

comparison, goal-setting, and measurement unit. Displays in the second set were created as design 

probes to target and provoke discussion around complex issues such as privacy, competition, 

motivation (e.g., conservation versus cost), and household social dynamics.  
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For both design sets, the primary goal was not simply to evaluate a particular instantiation of a 

design idea but rather to study the reaction that it provoked and the general themes that emerged. 

As such, not all of our designs were technically practical. Instead, they were meant to explore 

different points within a large design space. Our primary intent was to evaluate water usage 

feedback specifically, but many of the designs and our design findings have implications for other 

sorts of eco-feedback.  

The designs described in the following sections were evaluated in the Display Evaluation Survey and 

the Interview Study. In this section, we include all of the final designs used in either evaluation. For 

some of the design dimensions we explored design options through textual questions in the online 

survey without varying the visual display, which we note where appropriate. The evolution of some 

of the more complex designs can be found in Appendix D, while the final designs used for the 

interviews are found in Appendix I.  

9.1.1 Isolating Design Dimensions 

From the list of eight design dimensions in the eco-feedback design space presented in Chapter 4, 

we selected a subset (4) to explore in the context of water usage feedback displays. To pursue these 

explorations, we created one base design—a bar graph—that could be varied across various 

dimensions of interest. In this way, we could study how people reacted and responded to different 

variables in the design space with only one or a few changes to the look and feel of the interface. 

For example, we could show respondents a bar graph design that displays water usage by fixture 

type as well as a design that also incorporates temperate (hot and cold water use) information 

without fundamentally varying the design (Figure 9.2c and Figure 9.2d). We examined four aspects 

from the design space: Data Granularity, Temporal Granularity (called “temporal grouping” in 

Chapter 4), Comparison, and Measurement Unit. Our aforementioned base design had been iterated 

on via informal pilot testing and design critiques within our research group. 

9.1.1.1 Data Granularity 

Data granularity refers to the degree with which data is sub-divided or grouped. We explored three 

different levels of data grouping (Figure 9.2)  (i) the Individual Fixture View displays water usage at 

each individual fixture (e.g., upstairs bathroom toilet, downstairs bathroom toilet); (ii) the Fixture 

Category View displays water usage grouped by each type of fixture (e.g., all toilets in the home are 

combined, all showers are combined); and (iii) the Activity View displays water usage grouped by 
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activity rather than fixture (e.g., cooking and cleaning, lawn watering, personal hygiene). The 

Individual Fixture View and the Fixture Category View could be implemented with current sensing 

technology (e.g., HydroSense in Chapters 7 and 8); the Activity View, however, would require higher 

level machine learning models and, most likely, additional sensors in the home to detect and infer 

activities. For our investigations here, however, we ignored such technical challenges and focused 

instead on evaluating the idea of presenting water usage data grouped by activity. 

  

  
Figure 9.2: The four Data Granularity views: the Individual Fixture View, the Fixture Category View, the Activity 

View, and the Hot/Cold Breakdown View. 

We also examined interest and reactions to including temperature information in the feedback 

display via the Hot/Cold Breakdown View (Figure 9.2) Water heating accounts for 10-15% of the 

energy expenditure in the average American home (U.S. Department of Energy, 2001). Thus, hot 

water is not only more expensive but also has greater environmental impact through energy-based 

CO2 emissions (see Weber and Matthews, 2008). Hot water is also interesting from a behavioral 

point-of-view because two heavy hot water uses—showering and laundry—can be changed via 

either curtailment or efficiency behaviors. For example, hot water use can be reduced by the 

installation of low-flow showerheads or a new, more efficient laundry machine (efficiency 

a. b. 

c. d. 
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behaviors) or curtailment behaviors: shorter or less frequent showering, only doing laundry on a full 

load, and/or washing clothes on the cold water setting. 

For the temperature design and for many others in the Isolating Design Dimensions section, we used 

the Fixture Category View as the base design. The Fixture Category View was selected because it was 

a clear, concise display with little visual noise. We used the same base design to maintain 

consistency throughout our evaluation. 

9.1.1.2 Temporal Granularity 

   
Figure 9.3: The three Time Granularity views: (a) By Day; (b) By Week; and (c) By Month. Recall that these are 

realtime displays that update immediately with water use so the displays show water usage so far today, this week 

and this month. 

Temporal granularity refers to the time window with which data is calculated and presented. We 

explored three different temporal granularities: (i) By Day; (ii) By Week; and (iii) By Month—see 

Figure 9.3. Each time window presents a different tradeoff between the ability to observe small, 

immediate updates versus the ability to observe general usage patterns. For example, some water 

usage activities such as using the laundry machine or lawn sprinkler may not occur every day. The 

impact of these activities on consumption is more clear in a By Week view or a By Month view than 

in a By Day view. In addition, most of us are used to thinking of our home resource consumption in 

terms of months rather than days as this is the traditional time window used in billing. So, we 

thought that users might prefer a month-view of their water usage data for consistency and billing 

purposes. 

9.1.1.3 Comparison 

As noted in the eco-feedback design space chapter, comparison is, perhaps, the most fundamentally 

important part of any feedback display. By presenting comparison data, a display can reveal what is 

typical or normal usage. In this way, comparisons can actually diminish the importance of 

understanding particular measurement units (e.g., what is a gallon?) in favor of emphasizing 

whether usage is more or less than usual. Chapter 4 covers a large spectrum of the possible 

a. b. c. 
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comparison targets that one could use as a basis for comparison such as comparing to past 

performance or the performance of others. Within each of these comparison targets, there are a 

variety of possibilities: for example, in comparing with oneself—or in this case with one’s own 

household—the comparison could be based on various temporal granularities of data (e.g., a daily 

or weekly average for example) as well as different time windows of data (e.g., this daily average is 

based on the last 30 days of data). Thus, the complexity and, possibly, motivating influence of a 

comparison is dependent on how comparisons are calculated and how this calculation is presented 

to the user. 

  

  
Figure 9.4: The Comparison views: (a) the baseline Fixture Category View, (b) the Self-Comparison View 

comparing current usage to a daily average, (c) the Goal-Comparison View comparing current usage to a daily 

goal, and (b) the Self- and Social-Comparison View comparing current usage to a daily average and the daily 

average of other households. 

For our purposes here, we wanted to focus both on how to best represent comparison data in a 

visual bar graph display as well as to investigate what sort of comparisons people are interested in 

for water usage data. Towards the first goal, we conducted pilot testing with 17 participants to 

select and iterate on a visual technique for presenting comparisons. Our focus, primarily, was in 

a. b. 

c. d. 



228 

 

exploring methods to visualize comparison values along with current values for each bar in the bar 

graph (e.g., using tick marks, lines, or an additional bar in a bar chart). We also investigated whether 

and how to depict water use exceeding the comparison value. Full details of the pilot tests are found 

in Appendix C. Overall, from our pilot tests, we found that participants felt that the comparison 

value displayed as a second bar alongside the current value bar was the most intuitive of the 

options; however, having two bars of equal visual weight was deemed distracting. Thus, our final 

comparison design, shown in Figure 9.4b uses a two-bar visual design where the comparison value 

(the second bar) is smaller in size and darker in hue than the current value bar. 

Self-Comparison 

In terms of investigating what to compare, we investigated self-comparison, social-comparison and 

comparing to goals. For self-comparison, we presented only one visual scenario—the ability to see 

daily averages next to current usages for each fixture type (Figure 9.4a). This scenario was selected 

because of its simplicity. In pilot testing, we explored using other values for self-comparison 

including medians, average values at the current time-of-day, daily averages constrained to the last 

few weeks of data, and daily averages from a 30-day interval from the previous year. However, 

these calculations were not well understood and provoked frustration rather than constructive 

feedback on the self-comparison concept. The need to ensure that the displays were simple and 

easy to understand was particularly important given our survey-based evaluation method—

respondents would likely spend but a few seconds thinking about and looking at each design. For 

designs that were overly confusing, a respondent could simply give-up in frustration preventing us 

from using their data in our analysis. Thus, much of our pilot testing focused on eliminating 

confusion and simplifying our designs in order to prepare them for the survey evaluation. We return 

to this issue in the findings section. 

Goal-Based Comparisons 

Comparing to goals is a unique form of self-comparison where instead of using past performance as 

the comparison point, a specific goal target is set (e.g., “we want to take 12 gallon showers” or “we 

only want to water our lawn once a week”). These goals can also incorporate past usage data: “we 

want to use 5% less water than usual.” For goals, we not only asked about whether people were 

interested in setting water usage related goals for their household but how these goals should be 

set (see Consolvo et al., 2009 for a discussion of goal-setting considerations for persuasive 

technology). In particular, we explored the following goal-setting scenarios in the online survey: 
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 Manually set by a member (or members) of the household    

 Automatically set by the display system to be 5% less than my daily average   

 Automatically set by the display system to the water usage amounts of my most water 
efficient neighbors      

 Automatically set by my water supplier (e.g., a public utility) 

 Automatically set by my local government 

As with self-comparison, we used a single visual design to portray the overall goal-based comparison 

concept and then textually described the above scenarios. 

Social-Comparisons 

Finally, the last type of comparison that we explored was social comparison. Here, we investigated 

whether people were generally interested in comparing their household water usage to others. We 

also examined particular scenarios such as comparing to geographically proximal versus 

demographically proximal neighbors. This latter type of comparison has been met with great success 

in the normative graphs on OPower bills (Laskey and Kavazovic, 2011). Again, we used a single visual 

design and textually described the scenarios below: 

 The average of other households that are geographically close to my house (e.g., my 
neighbors)  

 The average of other households that are demographically similar to my house (e.g., houses 
of similar size with the same number of occupants)    

 The average of other households that are conservative with water (i.e., water efficient 
households) 

 Households of family or friends that I choose     

 The average of other households in cities across my country     

 The average of other households in cities across the world 

In addition, we also asked a privacy-related question. Specifically, we inquired about the 

respondent’s comfort with sharing their own household’s water usage anonymously to enable these 

sorts of comparisons. 

9.1.1.4 Measurement Unit 

Measurement unit refers to the metrics used to measure and present usage. For water, this could 

include volume-based measures like CCFs, gallons, or liters or flow-rate measures such as gallons- or 

liters-per-minute. Given that many people pay for their water supply, one might instead emphasize 
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Figure 9.5: The Measurement Unit views: (a) the Fixture Category View by gallons, (b) by water cost, (c) by water 

and sewage cost, and (d) by gallons and water cost. Note that the display time window is by month and that it is 

currently the middle of June (the 15th). The y-axis was removed in (d) to reduce clutter and eliminate the need for 

a secondary y-axis on the right side of the graph, which was found to be distracting and confusing in pilot testing. 

 cost—e.g., the cost per day, week or month of water usage. With disaggregate water consumption 

data, one could even present the cost per day, week or month of specific activities such as 

showering. Finally, the fourth common measurement unit as noted in the design space chapter is an 

equivalance or metaphorical unit. These types of measurement units are designed to make usage 

amounts more understandable and/or provocative. For water, this might mean creating an 

equivalence between the total amount of water used for the day and the number of toilet flushes 

required to reach this amount (e.g., your household has used 213 gallons so far today, which is 

equivalent to 133 toilet flushes). Unlike energy, water has a myriad of common, everyday tangible 

manifestations that one can rely on for equivalence units—such as a one gallon milk jug or a five 

gallon water jug. These have strong visual associations making them conducive to serving as 

metaphorical units. 

a. b. 

c. d. 
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In the Display Evaluation Survey we examined gallons and cost as measurement units (Figure 9.5). In 

the interviews, we also explored a variety of metaphorical units in various designs. These are 

discussed in the Volumetric Displays subsection of Design Probes. 

9.1.2 Design Probes 

We move now from exploring specific design dimensions to, instead, exploring interfaces that 

integrate multiple dimensions within the same visual frame and are meant to be more provocative 

than the previous designs. The Design Probes were meant to explore various points in the large 

design space around water usage feedback and to elicit reactions around various underlying themes 

such as privacy, competition, motivation, and household social dynamics. Many of the design 

dimensions discussed above and in the eco-feedback design chapter are intergrated into these 

design probes. 

We created seven design probes in all: Time-Series, Spatial, Per-Occupant, Aquatic Ecosystem, 

Rainflow, Geographic Maps, and Volumetric. The first three (Time-Series, Spatial, and Per-Occupant) 

were evaluated in the Display Evaluation Survey. In the interviews, we evaluated all seven. We 

briefly describe each in turn. 

9.1.2.1 Time-Series 

Time-series visualizations are, by nature, good at presenting trends, which allow users to determine 

general patterns in usage. For water consumption, there are three major temporal trends: time of 

day, day of week, and season. For time of day, there are generally three peaks of water usage: a 

sharp spike in the morning and two other peaks that correspond to dinner time and bedtime (see 

Chapter 6). For day of the week, residential water consumption can increase on the weekends with 

chores (e.g., laundry, gardening, and lawn watering) and because people spend more time at home. 

Finally, in many climates, the summer is the highest season of use as people increase the frequency 

and amount of outdoor water usage for lawn and garden watering and other activities (e.g., washing 

the car). We were interested in creating displays that revealed these sorts of trends and allowed 

people to observe differences in their own patterns across various time windows. 

Depending on the time window of focus, different usage patterns are more immediately accessible. 

For example, a time-series line graph showing water activity during the day can make it easy to 
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Figure 9.6: The Time-Series views include: (a) a per-day view that shows the rate of which water is used (top, 

gpm) along with a cumulative view of this consumption (bottom, gallons)—note the comparison-tick on the 

cumulative graph, which reveals the typical water use amount at the current time of day;  (b) a per-month view 

over past year that uses a stacked-line graph to show longitudinal disaggregated water use patterns—again, the 

comparison tick reveals typical use at that the current time in the month (June); (c) a view which combines (a) 

and (b); and (d) a disaggregated per-day view that shows water usage rates by fixture type along with a total. The 

combined view (c) was evaluated in the Display Evaluation Survey and the others were evaluated in the Interview 

Study. 

 determine what consumed the most water and when (Figure 9.6a). A graph showing a year’s worth 

of usage, however, is much better for determining whether a household’s use is decreasing or 

increasing and if the household is using less than the previous year over the same period (Figure 

9.6b). These time windows also have different implications for privacy. For example, a time-of-day 

(e.g., Figure 9.6a and d) view makes it easy to see when people get up in the morning, how long 

their showers are, when they leave and get home from work and when they go to bed. This could be 

perceived as intrusive or potentially create conflict in the home. We were interested in exploring 

whether these sorts of issues arose in our survey and interviews—in other words, do people realize 

or think about the implications of these water usage feedback systems beyond water conservation?  

To make this more concrete, imagine a scenario in which a mother notices water usage at 12:30PM 

on a school day in her son’s downstairs bathroom (which would be easily viewable in a display like 

that shown in Figure 9.6d). In this way, the display is revealing information not just about 

consumption but also about various activities and trends in the home. This information could have 

a. b. 

c. d. 
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unintended consequences. In our scenario, it appears that the son has just skipped part of the 

school day, which is observable solely by examining water use activity visualized in the display. This 

sort of observation, however, is much less salient if not impossible to see in the per-month 

visualization. So, there is clearly a tradeoff between awareness of water usage patterns and 

potential for invasiveness. It is not just that a smaller time window of data could be more revealing 

but the way in which that data is presented (e.g., a bar-graph view rather than a time-series view 

over the same time window could potentially reveal much less invasive information). Many of these 

issues exist for the other Design Probes as well. 

For the survey, we evaluated Figure 9.6c. The interviews included all four designs shown in Figure 

9.6. 

9.1.2.2 Spatial 

In their formative work exploring electricity feedback in the home, Riche et al. (2010) note how 

occupants draw relationships between locations in their home and activities. They suggest that floor 

plans are common when representing homes and afford an easily understood mapping between 

place and activity. Consequently, they recommend spatial-based presentations of electricity 

feedback in the home, particularly for feedback that disaggregates at the appliance- or device-level. 

We were similarly interested in exploring the affordances of floor plans and space for presenting 

water usage feedback. Unlike with electricity where there are electricity-consuming devices and/or 

appliances in each room—there are only a few rooms in a home that use water: namely, bathrooms, 

kitchens, laundry rooms, and outdoor spaces. So, perhaps, reactions to the spatial-based design will 

differ. 

With our spatial-based designs, we were interested in exploring whether the information felt more 

intuitive and understandable than other presentations of the information (which would agree with 

Riche et al.’s findings for electricity). We were also interested in whether people perceived a privacy 

risk with a room-based view because particular activities (or lack of activities) could become clear. 

For example, depending on the data presented in the spatial-view, where and when people are in 

some rooms may become visible as well as particular hygienic practices. For instance, whether or 

not bathroom faucets were used after toilet flushes (i.e., “did you not wash your hands after going 

to the bathroom?”) or whether or not someone bathed/showered that day (e.g., “Mom, Jimmy 

didn’t shower today!!!”). 
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Figure 9.7: The Spatial views. Both views provide small bar graphs that show fixture usage so far today as well as 

daily averages. The view on the right, which was used in the Display Evaluation Survey, includes these bar graphs 

for the room as well. 

In pilot testing, we found that people did not like the inclusion of timestamps, which allowed users 

to determine when a fixture was last used because it felt overly invasive. We also found that a 

single-bar comparison visualization technique was not nearly as well understood as a two-bar 

comparison even though a single-bar approach greatly reduced visual clutter (similar findings were 

noted in the Comparison section above). Our final design presented current usage data by fixture 

and by room along with comparison information for both (Figure 9.7). 

9.1.2.3 Per-Occupant 

The per-occupant display shows water usage broken down by user rather than just by fixture. The 

per-occupant view, perhaps more than any other, allowed us to specifically explore particular 

themes of interest including competition, accountability, blame, and privacy. In terms of its 

technological feasibility, one could argue that activity-recognition technology is progressing towards 

being able to track this sort of data (e.g., using depth cameras for activity and identity recognition: 

Shotton et al., 2011). However, we were not concerned with the practicality of this display but 

rather the reactions that it elicited. Of all of the designs, we expected this one to be the most 

provocative and polarizing—in fact, it was designed to be this way. 

We were particularly interested in investigating if/how notions of competition would arise from 

looking at these displays and if people would be concerned about how much information was 

revealed about their daily patterns and routines. In addition, as per-occupant displays have not been 

explored before for eco-feedback in the home, we wanted to investigate whether people were 

generally interested in the concept. 

a. b. 
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In early designs, we specifically delineated between personal usage and communal usage (i.e., usage 

that involved household chores like dish washing, laundry, or lawn watering). Note, for example, in 

Figure 9.8a where you can see that Mom and Dad use the most water in the family but much of this 

is due to communal usage (column titled “Communal Usage”). However, although this distinction 

came up in our formative water use surveys described in Chapter 6, we found it difficult to depict in 

a simple and easy-to-understand manner. Thus, we ended up dropping it for our final design used in 

the Display Evaluation Survey (Figure 9.8d).  

 

  
Figure 9.8: The Per-Occupant views. The first three variations (a, b, and c) include notions of personal vs. 

communal usage in the household (to account for water use that benefited the entire household, e.g., laundry). 

This distinction was perceived as confusing in pilot testing. Design d was selected for the Display Evaluation 

Survey and shows overall water usage and shower usage with daily averages along with the last 30 days. 

9.1.2.4 Aquatic Ecosystem 

The most abstract and arguably most ambient of our displays is the Aquatic Ecosystem (Figure 9.9), 

which uses fish and plant life to depict water usage information in an artistic and ambient manner. 

In this way, the Aquatic Ecosystem is similar to the evolving ambient mobile phone display for 

transit activities in UbiGreen (Chapter 5 or the Fish’N’Steps display in Lin et al., 2006). Here, the 

focus is not on presenting raw data in a functional manner but rather to use sensed water usage to 

effect an outcome in an ongoing narrative—just as we did with sensed transit and the tree and polar 

bear storyboards. 

a. b. 

c. d. 
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In addition, unlike all the other displays, which focus on tracking consumption, the Aquatic 

Ecosystem focuses on tracking water savings and meeting water saving goals. These goals may be 

simple—e.g., reduce overall water use by 5% or outdoor water use by 10%—or more complex—e.g., 

take shorter showers five days in a row or only use the laundry machine on the cold/cold setting for 

the next 10 washes. These goals could be manually defined or automatically set by the system based 

on water usage areas that receive excessive use or both. 

 

  
Figure 9.9: The Aquatic Ecosystem is a “live” and “organic” reflection of water usage in the home. As water saving 

goals are reached, the ecosystem evolves in different, positive ways. In this case, once a water savings goal is met, 

“Frank the Fish” meets a new mate “Frannie the Fish.” After subsequent goals are met, the ecosystem continues 

to evolve—e.g., Frank and Frannie have children, new vegetation grows, or new fish arrive. 

When goals are met, the ecosystem evolves in a positive manner—for example, by adding more 

vegetation to the bottom of the waterbed or adding a fish to the display. We did not explore 

punishment scenarios—e.g., having water levels lower with sensed overuse or fish or plant life 

dying—as past work has questioned the use of punishment in creating long-term motivation 

(Consolvo et al., 2008). The key design goal for us was to create a positive, visually attractive and 

compelling ambient display of water usage that could appeal to children, those who are less “data-

centric,” or simply those that wanted a more fun, playful display. 

a. b. 

c. d. 
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Given the unorthodoxy of this display and the explanations required to understand it, this display 

was not evaluated in the survey. Instead, we used this display and the narrative described in Figure 

9.9 in our interviews. Given the different demographics and age groups within many households, we 

were particularly interested in exploring how this display might appeal to children as well as parents. 

We were also interested in investigating the use of gamification strategies in our design (see 

Chapter 4 for more information on gamification). 

The Aquatic Ecosystem also has an interactive component where users can touch fish—who either 

follow the user’s finger or swim away depending on simple behavioral models programmed into the 

design. 

9.1.2.5 Rainflow 

 

  
Figure 9.10: The Rainflow design. A particle system is used to simulate liquid, which flows out of the fixture type 

according to the amount used during the time period of interest (day, week, month). The cylinders at the bottom 

similarly fill up to represent the volume used—i.e., the cylinders are stylized bar graphs. Given that the cylinders 

have a max capacity, they can overfill as depicted in (b). The display is also interactive. The water flows can be 

touched and played with (c) and the average and goal lines can be toggled on and off—average tick marks are 

shown in (d). 

In a similar spirit to the Aquatic Ecosystem, Rainflow visualized water usage in a slightly more playful 

and fun manner than the other designs (Figure 9.10). Rainflow is a stylized and more ambient 

version of the Fixture Category View bar graph.  Water flows out of the fixture icons at the top of the 

display and into containers at the bottom of the graph, which fill according to use. Thus, the fill 

a. b. 

c. d. 
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amount in the container is like a bar in a bar graph. In addition, if water usage for the time period of 

interest (day, week, or month) exceeds a predefined level, the container overflows (Figure 9.10b, 

the toilet). Finally, like the Aquatic Ecosystem, the user can interact with the display—not just to 

acquire more information—but for playful purposes (e.g., the user can run their hands through 

water streams and bubbles/water droplets fly out). 

9.1.2.6 Geographic Maps 

  
Figure 9.11: The geographic map displays show current household usage compared to averages (a) across the US 

and (b) the world. Note that the information depicted in these displays is accurate and taken from Kenny et al. 

(2005) and Gleick et al., (2008). 

In the Formative Water Survey, we found that just 2.3% of respondents who receive and pay their 

water bill have social-comparison information and yet 66% stated that they would be interested in 

it. So, in addition to the comparison displays shown in the Isolating Design Dimensions section, we 

also created two geographic map based displays that compare the household’s current use to 

average use around the US (Figure 9.11a) and the world (Figure 9.11b). These were examined in 

interviews only (Figure 9.11). 

9.1.2.7 Volumetric/Metaphorical Displays 

As noted in the Isolating Design Dimensions section, water is a much more tangible resource than 

electricity. It can be felt, tasted, and touched. In addition, there are various metaphors that one can 

draw upon to make water use more understood (e.g., gallon jugs). With the Volumetric design 

probes (Figure 9.12), we were interested in whether people found these sorts of designs intuitive or 

useful—whether they prefer them over bar graphs and if they provoke a different kind of reaction. 

In particular, do people get a better sense of how much water we use in our homes from looking at 

these displays? Do they provoke a feeling of “awe” or “guilt?” 

 

a. b. 
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Figure 9.12 The Volumetric views. (a) A volumetric-based bar graph using one gallons jugs—the bright blue jugs 

represent current use and the darker jugs represent daily average. (b) An overall consumption this week 

visualization using 50 gallons bathtubs to depict use; again bright blue color represents so far this week and 

darker color represents average. (c) Similar to the previous display but using one gallon jugs instead of bathtubs 

and does not include comparison. (d) A water usage summary view showing average daily, weekly, monthly and 

yearly usage through the use of different sized pools from a 500 gallon hot tub to a 200,000 gallon pool. (e) Similar 

to the previous view but using other types of objects including a 42 gallon oil barrel, a 500 gallon hot tub, a 10,000 

gallon oil truck, and a 400,000 gallon water tower. 

9.2 DISPLAY EVALUATION 

To evaluate the displays, we conducted two studies: an online survey of 651 North American 

respondents and 10 in-home household interviews with 20 adults. Our goal was not only to evaluate 

the specific designs themselves (e.g., what levels of temporal granularity are considered useful and 

why?), but also to explore richer contextual themes surrounding the designs and potential use of 

the displays. 

9.2.1 Online Survey Study Method 

The survey was split into two parts. The first part evaluated a subset of the designs that isolated 

options within each of several design dimensions, including: data granularity (e.g., by fixture type or 

individual fixture, hot and cold water usage), time granularity (e.g., day, week, month), self- and 

social-comparisons, and goal-setting. The second part of the survey explored three of the design 

probes: the time-series view, room-based view and per-occupant view. These design probes were 

meant to elicit more complex issues and thoughts surrounding eco-feedback displays, such as 

privacy and household dynamics.  

d. e. 

a. b. c. 
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The results from this evaluation can help isolate particularly promising design elements and identify 

information that is particularly important to include in water usage feedback designs. In addition, 

the design probes are useful to begin teasing out tensions that exist between information and 

privacy, communal versus personal water use, and the perceived importance of time in 

contextualizing feedback.  

 
Figure 9.13: The introduction to the water usage feedback survey shown just after the consent form. We begin by 

describing our water usage feedback system and differentiating it from traditional forms of water feedback (i.e., 

bills). We make three important points: (1) that our system provides real-time feedback about where and how 

much water is being used in the home; (2) that this information can be accessed on a variety of devices some of 

which are shown in the images; and (3) that the survey itself is focused on exploring different ways of displaying 

water usage information, which is based on an average North American household of four people with two adults 

and two teenagers. 

The method of the Display Evaluation Survey largely followed that of the Formative Water Survey in 

terms of the hosting site (SurveyGizmo), participant recruitment, randomization of questions, and 

strategies to improve answer quality. Since the Display Evaluation Survey took longer to complete, 

we increased the amount of the random drawing from a $50 Amazon gift certificate to $100. We 

only describe key methodological differences between the two surveys here. The details common to 

both surveys’ methods can be found in Chapter 6. 

Upon starting the survey, respondents first answered a series of demographic questions and were 

introduced to the notion real-time water usage feedback (Figure 9.13). The two main parts of the 
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survey followed: (1) isolating individual design dimensions and (2) evaluating the design probes. All 

survey questions and displays can be found in Appendix E. 

9.2.1.1 Technical Details 

Since the water usage feedback designs were the primary focus of our questions, we had to develop 

a mechanism to present these designs in a clean and simple manner. Ideally, respondents would be 

able to view and inspect images of our designs and compare them to one another with little-to-no 

scrolling. The challenge here though is that the online computing eco-system is rich and diverse—

there are not only a variety of browsers but also devices with varying screen sizes. We needed to 

accommodate all of them. We were particularly concerned about laptop screen sizes because of 

their lower resolutions making it difficult to present more than one design within a viewable 

window. 

  

  
Figure 9.14: Using custom CSS and HTML code in SurveyGizmo, we were able to create mouseover interactions 

of thumbnails, which showed enlarged versions of the moused-over design in the middle of the browser window. 

This allowed respondents to quickly compare and contrast the different designs presented on each page.  

Consequently, we focused on developing a method to present multiple water usage feedback 

designs within a shared visual space. This allowed our respondents to interact with multiple designs 

at one time. We accomplished this via a custom CSS template that supported mouseover zoom 

interactions. Respondents could maneuver their mice over thumbnail-sized images of our designs on 
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the left side of their browser window and see an enlarged version of the currently “moused-over” 

design in a reserved space in the middle of the window (Figure 9.14). This interaction provided a 

simple mechanism with which respondents could easily compare and contrast various designs 

without scrolling. We tested the mouseover functionality in all of the major browsers including 

Internet Explorer, Chrome, Opera, FireFox, and Safari on both PCs and Macs. The thumbnails were 

displayed with the dimensions 150x94 pixels and the enlargements 700x437.   

9.2.1.2 Part 1: Isolating Design Dimensions 

This survey evaluated the impact of the following design dimensions on a variety of subjective 

measures. The specific dimensions examined were: 

1. Data Granularity: water usage data broken down by individual fixture, category of fixture, 

or activity as well as the inclusion/exclusion of hot water versus cold water usage 

information. 

2. Time Granularity: by day, by week or by month or all of the above. 

3. Measurement Unit: by gallons, by cost of water, by gallons and cost of water. We also 

explored the option of including sewage costs along with water consumption costs. 

4. Self-comparison: with or without comparison to past usage information. 

5. Goal-comparison: with or without comparison to a goal and along with an evaluation of 

preference for different types of goal-setting strategies. 

6. Social-comparison: with or without comparison to other households along with an 

evaluation of different definitions of “other households.” 

The set of displays used for each of these dimensions is shown in the Display Designs section (as 

previously mentioned, the survey itself is available in Appendix E). To mitigate order effects, the 

design dimensions were presented in random order and the display options within each factor (e.g., 

individual fixture, category of fixture and activity) were also presented in random order. This was 

done via custom scripting within SurveyGizmo. 

Within each design dimension, respondents were asked to select their preferred display for helping 

them to conserve water and why. In addition, each of the Data Granularity designs were ranked on a 

5-point Likert scale from “Strongly Disagree” to “Strongly Agree” across five subjective attributes: (i) 

Thought-provoking; (ii) Easy-to-understand; (iii) Attractive; (iv) Informative/Useful; and (v) 

Overwhelming/Confusing. These five-point subjective measure attributes were ordered randomly on 

each use. They were also used in the second part of the survey, which we describe next. 
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9.2.1.3 Part 2: Evaluating Design Probes 

The second part of the survey evaluated three design probes: Time-Series View, Spatial View, and 

the Per-Occupant View. These designs were selected and refined through pilot testing. The primary 

goal here was to use three designs from different points in the water feedback design space to 

ensure that we provoked a variety of reactions with regards to issues such as privacy, competition, 

and household dynamics. 

 
Figure 9.15: The beginning of the Design Probe evaluation part of the survey. We first presented the three design 

probes together on a single page to allow for comparison and then presented each design again in random order 

along with a standard set of questions between them. 

This survey section began by presenting all three design probes on a single page to allow them to be 

examined together. Then, the next three pages presented the design probes in random order along 

with a standardized set of questions including: the five-point subjective measure attributes, asking 

who they thought the display would appeal to in their home and why, and how often they would 

look at the display. In addition, we asked two different objective questions at the beginning of each 

design probe page that tested the respondent’s ability to correctly read the visualization (e.g., which 

room used the most water today or what month used the least amount of water in the past year?). 

Note that these objective questions were included both to test the legibility/comprehensibility of 

the displays as well as to encourage respondents to examine the displays closely. 
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9.2.1.4 Pilot Testing 

We pilot tested the Display Evaluation Survey to evaluate length, question wording and 

comprehension, and user understanding of the mouseover interaction. Seventeen participants were 

recruited via internal mailing lists and word-of-mouth. Our pilot testers included non-technical users 

and adult seniors. Similar to the Formative Water Survey, we pilot tested this survey using a 

staggered participation approach such that pilot testers were always seeing the most recent version 

of the survey. There were five iterations of the Display Evaluation Survey in all. Based on feedback 

from these pilot tests, we reduced and simplified the amount of text in each section and added “all 

of the above” options to some of the design preference questions. We also found that the 

mouseover interactions were not only understandable but preferred over other more static 

presentations of the designs.  

9.2.1.5 Data Analysis 

In all, there were 63 questions in Display Evaluation Survey. Although we used branching to ask 

some questions in random order, all questions were eventually asked for all respondents. The 

median survey completion time was 21 minutes. Of the 63 questions, 53 of these were mandatory 

and could not be skipped. The rest were optional, open-form response questions such as “why did 

you select this option” or asking the respondent to provide “additional comments.” We were not 

expecting a high response rate to these optional questions nor were we expecting long, detailed 

feedback from those that did choose to respond. We were surprised, then, to find that of the 3,906 

total optional open-form “Why?” questions, 2,608 had a non-blank response (66.8%). Of these, the 

average number of words provided per question was 24.4 (Median=20; SD=24). Combined with the 

other open-form questions, we received a total of 5,685 qualitative responses with an average word 

count of 21.2 (Median=15; SD=21.3; see Table 9.1). Given this large amount of qualitative data, we 

decided to change our coding approach from the Formative Water Survey. 

In the Formative Water Survey, we had two independent coders code all open-form responses. This 

was not practical for the Display Evaluation Survey data. Instead, for each of the 14 open-form 

response questions, 50 randomly selected responses were coded by two coders following the 

iterative coding process described by Hruschka et al. (2004). A Cohen’s Kappa test was used to 

examine inter-rater reliability; the average score was 0.75 (SD=0.19). The worst performing codes 

were “other” and “junk,” which were infrequent and are not reported on below. Once the iterative 

coding process completed, the two coders each received an additional independent set of 50 
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questions for the 14 open-form questions resulting in 150 coded questions in all (50 of which were 

redundantly coded; these were the questions that the Cohen’s Kappa test was computed over). 

 
Why  

(Optional) 
Why  

(Required) 

Additional 
Comments 
(Optional) Totals 

Num questions/survey 6 4 4 14 

Total times asked 3906 2604 2604 9114 

Total times answered 2608 2604 473 5685 

% answered 66.8% 100.0% 18.2% 62.4% 

Avg word count/answer 26.4 15.4 24.6 21.2 

Med word count/answer 20 10 19 15 

Stddev word count/answer 24.0 15.7 24.0 21.3 

Table 9.1: A statistical breakdown of responses to open-form questions in the Display Evaluation Survey. 

Note that throughout the presentation of our results, we simplify five-point Likert-scale responses 

to three-point to make our figures more legible. Thus, a “Strongly Disagree,” “Disagree,” “Neutral,” 

“Agree,” and “Strongly Agree” scale was reduced to “Disagree,” “Neutral,” and “Agree.” Our analysis 

was conducted on both the five-point scales and the three-point scales and our textual discussion 

includes both below. 

9.2.1.6 Participant Demographics 

We had a total of 712 completed surveys from respondents in countries such as China, Afghanistan, 

Australia, Brazil, Israel, England and Spain. An additional 140 people started the survey but did not 

finish, resulting in a drop-out rate of 16.4% (the Formative Water Survey drop-out rate was similarly 

low at 18%). We were pleased with this low drop-out rate, in particular, because the Display 

Evaluation Survey required more time to complete than the Formative Water Survey.  

In our analysis, we focus on the 651 completed surveys from the North American respondents. This 

was both to maintain consistency with the analysis in the Formative Water Survey as well as due to 

the cultural and regional differences in water usage attitudes and behaviors across the world, which 

may have affected the interpretation of the displays. Of the 651 North American respondents, 610 

(93.7%) were from the United States and 41 (6.3%) were from Canada.  

Unlike with the Formative Water Survey, we did not rely solely on URL referrer information to track 

how our respondents accessed our survey link. Instead, we created a number of unique URLs that all 

pointed to the Display Evaluation Survey and monitored traffic to each link. SurveyGizmo refers to 

these unique links as campaigns. We created six campaigns in all: (1) a link emailed to those who 

opted-in to receive a “follow-up survey” after completing  the Formative Water Survey; (2) a link 
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posted via various mailing lists; (3) a link posted to Craigslist; (4) a link posted to various social 

networking sites such as Twitter, Facebook and Google+; (5) a link provided at the end of the Display 

Evaluation Survey asking respondents to share the survey with their friends and family; and, finally, 

(6) a link provided at the end of the Formative Water Survey that was added when the Display 

Evaluation Survey was launched. 

The most survey traffic came from campaign (1), the follow-up link emailed to the Formative Water 

Survey respondents. Of the 656 Formative Water Survey respondents in Chapter 6, 586 (89.2%) 

opted to be contacted about the Display Evaluation Survey. Based on our URL campaign monitoring 

data, 238 (40.6%) of these ended up taking the Display Evaluation Survey. Overall, campaign (1) 

accounted for 36.6% of the Display Evaluation Survey completions, followed by mailing lists (22.4%), 

and Craigslist (14.1%)—see Figure 9.16a. These statistics are estimates, however, as the links 

themselves can be shared outside of their initial intended audience (e.g., someone could take the 

campaign (1) link and post it to their Facebook page). 

Perhaps because we relied on a similar recruitment method to the Formative Water Survey, the two 

surveys had nearly identical demographics. The average age of our Display Evaluation Survey 

respondents was 36.1 (SD=13.2; Min=18; Max=94) and 59.6% were female (N=388)—in the 

Formative Water Survey the average age was 36.7 and 62% were female. Like the Formative Water 

Survey, the Display Evaluation Survey respondents were highly educated—over 80% reported four 

year college degrees or more. A startling 45.3% reported having a graduate degree (this was 36% for 

the Formative Water Survey, which is also quite high). The top five most reported professions were 

student (18.1%), science/technology (17.7%), education (11.7%), research (8.9%), and other (7.7%). 

Household income was relatively evenly spread across different income categories; however, as 

noted in the Formative Water Survey analysis, this is not reflective of the general US or Canadian 

populations (DeNavas-Walt et al., 2010). Demographic breakdowns for education, profession and 

household income are plotted in Figure 9.17. 

In terms of our respondents’ attitudes and beliefs about water and the environment, we asked three 

5-point Likert scale questions: (1) “I consider myself a ‘green’ or ‘eco-friendly’ person;” (2) “I am 

concerned about global climate change;” and (3) “I am interested in conserving water in my home.” 

The responses are shown in Figure 9.16b. Similar to the Formative Water Survey where 88.4% of 

respondents reported interest in conserving water in the home, 91.4% reported interest in the 

Display Evaluation Survey. With regards to self-perceptions of “greenness,” 75.4% considered 
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themselves “green” and 87.1% reported concern for global climate change. As we noted in the 

Formative Water Survey, such a demographic is not surprising given that these surveys were opt-in 

and advertised as being about water usage.  

 
Figure 9.16: (a) A breakdown of the campaign URLs used to access the Display Evaluation Survey among 

completed surveys. (b) The responses to three questions about water and environmental beliefs/attitudes.  

  
Figure 9.17: The demographic makeup of the Display Evaluation Survey respondents including (a) education 

level, (b) the top 10 most reported professions, and (c) household income. In summary, our respondents were 

highly educated and primarily in science/technology and education-related fields. The household income was 

more evenly divided.  

9.2.2 In-Home Interview Method 

In addition to the survey, we conducted semi-structured in-home interviews with 10 households (20 

adults total). As with the survey, participants were recruited via email lists, word-of-mouth, and 

postings to websites such as Craigslist. Here, we specifically recruited families because we were 

interested in exploring differences in perspective within a household, including children’s reactions 

to our displays. In all interviews, at least two members of the household were present for the 

duration of the interview. Households were compensated $65 for participating. 

9.2.2.1 Interview Outline 

Two researchers conducted each interview; one led the interview and the other took notes on 

verbal and non-verbal interactions. Interviews were audio recorded for transcription purposes. At 
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the beginning of the interview, demographic information on the household (e.g., house size and 

number of bathrooms) and on each participant (e.g., environmental beliefs) was collected. The 

interview explored general water attitudes, knowledge, and practices across occupants of the home, 

and evaluated the eco-feedback designs. Participants were supplied with a touchscreen laptop 

loaded with the data granularity and comparison design dimensions as well as six design probes: 

Time-Series, Geographic Comparison, Rainflow, Metaphorical Units, Aquatic Ecosystem, and Per-

Occupant. Due to time limitations, Spatial was evaluated in some, but not all interviews. The 

interviewer used each design to elicit both positive/negative feedback as well as to encourage 

discussion about how the display might be used in the home. Interviewers also focused on involving 

all participants during the interview so that various perspectives could be heard. During the last 10 

minutes of the interview, participants were asked to select their favorite design overall and pick one 

or two locations in their home where they would install the display. Photos were taken of these 

areas with the display held in place (e.g., Figure 9.18). The full interview script is available in 

Appendix F and the displays used in the interviews in Appendix G. 

9.2.2.2 Data Analysis and Demographics 

Interviews lasted 90 minutes. Adult interviewees were aged 39 on average (Min=18; Max=62), 11 

were female, and 18 had four-year college degrees or more. Seven households had children (N=11), 

aged 2 to 12. In two homes, a child was present throughout the interview; typically, though, children 

spent 5-10 minutes with us. The average house size was 1850 sq ft with two bathrooms and 3.4 

occupants. Two households rented, the rest owned. All paid for water. Table 9.2 and Table 9.3 list 

the household and individual interviewee demographics in more detail.  

Our interview participants’ occupations included a massage therapist, two attorneys, three 

healthcare professionals, three engineers, two teachers, and an architect (among others). Similar to 

our survey, most participants were environmentally conscious: 90% indicated interest in conserving 

water in their home, all were concerned about global climate change and 85% considered 

themselves “green” or “eco-friendly.” Despite this interest, many had misconceptions about water 

usage amounts in their homes. For example, the mother in household three overestimated that her 

average morning shower used 400 gallons of water and many identified their dishwasher as their 

top water user (dishwashers account for 1% of water use in the average US home: Vickers, 2001). 

Interview data was coded and categorized into overarching themes. 
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Household 
ID 

Interview  
Length 
(mins) 

App. Sqft 
Residence 

# of 
Bedrooms 

# of 
Bathrooms # of Adults 

Total 
Occupants 

House/ 
Apartment Own/Rent 

Pay for 
water? 

1 86.4 1200 2 1 2 2 House Rent Yes 

2 57.8 1850 3 2.5 2 4 House Own Yes 

3 103.8 2800 3 1.75 1 2 House Rent Yes 

4 87.3 989 2 2.5 2 2 Condo Own Yes 

5 84.9 1850 3 1 3 4 House Own Yes 

6 80.3 1400 3 1.25 2 3 House Own Yes 

7 92.2 2500 4 2 2 4 House Own Yes 

8 104.3 2500 5 2.5 4 7 House Own Yes 

9 83.9 1900 3 2.5 3 3 House Own Yes 

10 77.9 1500 3 2 2 3 House Own Yes 

Table 9.2: Household demographics from in-home interviews. H8 has high occupant count because of tenants.  

Household 
ID 

Individual 
ID Age Gender Profession 

I am interested in 
conserving water in 

my home. 

I consider myself a 
"green" or "eco-
friendly" person.  

1 1.1 31 Female Science/Technology/Programming Strongly Agree Strongly Agree 

1 1.2 33 Male Research Strongly Agree Strongly Agree 

2 2.1 35 Female Education, Research Strongly Agree Agree 

2 2.2 38 Female Social service Agree Neutral 

3 3.2 56 Female Health Care, Other: Massage Therapist Strongly Disagree Strongly Agree 

4 4.1 28 Female Administration/Clerical/Reception Strongly Agree Strongly Agree 

4 4.2 26 Male Other: Communications Strongly Agree Agree 

5 5.1 32 Female Education Strongly Agree Strongly Agree 

5 5.2 32 Male Science/Technology/Programming Strongly Agree Strongly Agree 

6 6.1 41 Female Consulting Agree Agree 

6 6.2 41 Male Architecture/Design Strongly Agree Neutral 

7 7.1 41 Female Accounting/Finance/Banking Strongly Agree Agree 

7 7.2 44 Male Science/Technology/Programming Strongly Agree Agree 

8 8.1 44 Male Attorney Agree Agree 

8 8.2 47 Female Other: Public Policy and Law Strongly Agree Strongly Agree 

9 9.1 52 Female Health Care (Physical & Mental) Strongly Agree Strongly Agree 

9 9.2 62 Male Health Care (Physical & Mental) Strongly Agree Agree 

10 10.1 40 Male Education Strongly Disagree Agree 

10 10.2 37 Female Attorney Strongly Agree Strongly Agree 

Table 9.3: A subset of the individual demographics that we collected on our interview participants. Note that we 

instructed our participants that we would not look at their questionnaire responses until after we returned to our 

research lab. 

9.3 FINDINGS 

We now present findings from the online survey and the in-home interviews. We use respondent (R) 

and interviewee (I) to refer directly to a survey or interview participant. The word “participant” 

refers to both. We take care to explicitly specify the source when relevant. For the surveys, we 

captured both quantitative and qualitative data. The interviews, largely qualitative in nature, were 

meant to both contextualize our survey findings as well as to capture and probe more nuanced 

feelings about our designs. In addition, as the interviews took place in the interviewees own homes, 

we could better explore reactions to how the displays fit into domestic space. Note that percentages 

appearing in the text are from the survey only, unless otherwise noted. 
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Data Granularity N% Comparison N% 

Individual fixture 53.6% Self-Comparison 91.0% 

Fixture category 27.0% Goal-Comparison 68.2% 

Activity 19.4% Set manually 58.1% 

Hot/Cold Breakdown  Set by display 44.1% 

Hot/Cold always 47.5% Set to efficient neighbors 37.4% 
Switch between both 43.8% Set by supplier 21.8% 
No hot/cold info 8.8% Set by local government 16.9% 

Time Granularity  Social-Comparison 67.7% 

Switch between all 3 64.5% Demographically similar 73.0% 
By week only 15.5% Geographic neighbors 52.4% 
By month only 10.1% Households in other cities 35.6% 
By day only 9.8% Households in other countries 32.4% 

Measurement Unit  Select Family/Friends 35.2% 

Display both together 71.4% 
Comfortable sharing data 
anonymously to enable social 
comparisons 78.8% 

Gallons only 16.0% 

Cost only 12.6% 

Table 9.4: Survey responses (N=651) to our design dimension questions. The responses for each dimension in the 

left column were exclusive options; thus percentages add to 100. The comparisons (right column) were individual 

5-point agreement Likert scales (% here represents number of respondents who selected “Strongly Agree” or 

“Agree”). 

9.3.1 Isolating Design Dimensions Findings 

As the interviews primarily focused on the design probes, a majority of findings reported in this 

section are from the online survey with supplementary data from the interviews. Table 9.4 shows 

the preference breakdown for each dimension evaluated in the online survey.   

9.3.1.1 Data Granularity  

When asked about which data grouping display would be most useful in helping to conserve water, 

a slight majority of respondents (54%) preferred the individual fixture view (versus fixture category 

and activity). Most of these respondents mentioned advantages in the specificity of data that view 

provided, including the ability to target reduction efforts at certain fixtures and the ability to identify 

maintenance issues such as leaks. R536 provided a representative response incorporating these 

advantages:  

“It [the individual fixture view] would be easiest to tell if a certain fixture is leaking or 

inefficient, or if certain members of the household are using more water, etc. This display lets 

you more easily identify the specific areas that need attention” –R536  

The fixture category view was the second most preferred design, receiving 27% of the votes, most 

often because of its balance of information: “…just enough information to help me understand 

exactly where I'm using water without being overwhelmed” (R767). Many respondents also 

mentioned being able to switch to the individual fixture view when necessary: “I would like that to 
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be a secondary screen to hone in on data” (R363). Finally, 19% of respondents preferred the activity 

view. Overwhelmingly, these respondents expressed that this portrayal was the most actionable and 

intuitive because it emphasized behaviors rather than fixtures. For example, R48 mentioned: 

“[The activity view] makes it so much easier to visualize what actions I need to take in order 

to reduce water usage (e.g., ‘turn the tap off while shaving’ vs. ‘be careful running the tap in 

the second upstairs bathroom’).” –R48 

We found similar preferences in our interviews, though no one preferred the activity view because it 

seemed more difficult to determine where water use occurred. 

IMPLICATION: Although there is a general preference toward specific information at highly granular 

levels (e.g., at the individual fixture level), this data should be supplemented, when possible, with 

recommendations about what actions can be taken to reduce usage. 

9.3.1.2 Hot/Cold Breakdown 

Nearly all respondents wanted to see a hot/cold breakdown of water usage (91%), either on its own 

(48%) or with the ability to switch between the breakdown and overall usage (44%). For 

respondents who wanted hot/cold information, the relationship between hot water use and energy 

consumption was a commonly cited theme: 

“Hot water uses so much energy to produce and I think that it is interesting to see how much 

of each is being used… it might encourage people to use less hot water.”  –R668   

For the small portion of respondents that did not want hot/cold information (9%), popular 

responses included perceiving hot water use as a necessity or that water temperature was unrelated 

to water conservation. 

IMPLICATION: This is an important new finding; no past work has distinguished between hot and cold 

water usage amounts in their displays. Future systems should integrate this information. 

9.3.1.3 Time Granularity 

The majority of participants (65%) felt that being able to switch between days, weeks and months 

would be the most useful in helping them to conserve water. In general, these respondents 

recognized that there were advantages and disadvantages of each view in terms of the information 

afforded. For respondents who felt that the day view would be the most useful (10%), a commonly 

cited reason was the immediacy between individual actions and the feedback. Respondents who 

preferred the week view (16%) cited that it offered a balance between the immediacy of daily 
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information and the stability of monthly information. Finally, for respondents who preferred the 

month view (10%), two common reasons were that it paralleled their billing cycle and that they 

predicted that they would not be interested in looking at the display more frequently. For all time 

granularities, there was recognition that the time window selected would emphasize/deemphasize 

underlying temporal routines or patterns in the home and that this would influence when and how 

the information would be used. For example, R664 notes “We live our lives in cycles of weeks... 

seems like this view would most closely match other patterns in our lives” (ellipses from original 

quote).  

IMPLICATION: Different time windows are amenable to different actions and interest levels. Designers 

should make it easy for users to explore different temporal ranges, these “drill-down” actions will be 

infrequent, meaning that a reasonable default (e.g., week view) should be set. 

9.3.1.4 Measurement Units 

Similar to the above, most participants (71%) preferred to be able to switch between gallons and 

dollars, recognizing the usefulness of both metrics. R143 summed this perspective up well:  

“Seeing the gallon amount triggers the ‘save the environment’ impulse to conserve, while the 

dollar amount is helpful because almost everyone is motivated by money to some extent.” –

R143  

Respondents who preferred to see only cost (13%) commonly cited the understandability of dollars 

compared to gallons, CCFs or liters, and/or felt that money was a strong motivator. For example: 

“I don't think very well in ‘thousands of gallons’, but $20 I can understand. That’s a case of 

beer down the drain, if you will.” –R48 

In the interviews specifically, some interviewees observed how displaying cost information broken 

down by fixture would allow them to rethink the cost of water: “[it] puts a price on your activity. I’ve 

spent $14 on showers this month” (I1.1). Also in the interviews, we examined the use of visual 

metaphors such as gallon jugs to make water use seem more tangible (e.g., Figure 9.12). Although 

most interviewees responded positively to these representations and some found them “shocking” 

(I4.2), they did not think they were necessary to see all of the time.  

For those participants who did not want dollars as a measurement unit, many cited the low price of 

water as making cost irrelevant while others simply stated that conservation for ethical reasons was 

their main motivation. Interestingly, some respondents mentioned the potential negative effect of 
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water’s low cost on conservation, for example: “Water is cheap in some places, so I think seeing a 

low number for cost could be an anti-motivator” (R93). 

We also asked about the inclusion of sewage cost information: most respondents (61%) wanted the 

cost of sewage in the display with reasons including a more accurate depiction of the water bill cost 

and the belief that higher cost be an additional incentive to conserve. Others thought that cost, no 

matter what, was not a motivating factor or incorrectly thought that sewage was not relevant to 

water conservation. “Who cares? Doesn't have anything to do with consumption” (R197) and “the 

link between water conservation and sewage use is not clear” (R284). 

IMPLICATION: Water feedback displays should include both volumetric units and cost. However, water 

is cheap, especially when compared to energy, and may serve to discourage conservation for some 

people. Adding the cost of sewage and hot water heating may mitigate this issue. 

9.3.1.5 Comparison 

Comparisons were the most uniformly desired pieces of information of all the dimensions. In the 

survey, an overwhelming majority were interested in comparing their household’s current usage to 

the past (91%), followed by comparing to a goal (68%) and to others (68%)—see Table 9.4. A similar 

preference was found in the interviews; however, here, more people were interested in social-

comparison than goals, with some noting that they would never set goals. For those participants 

interested in self-comparison, popular reasons included that it contextualized or provided 

perspective on current usage, would motivate them to conserve (e.g., by “beating” their past 

performance), and/or would help identify where to target conservation effort, by showing typical 

use; for example, “[the comparison] helps me put the numbers in context so they mean something 

to me” (R2). 

Although a majority of participants were interested in comparing their usage to a goal, feelings were 

mixed about how this goal should be set. Most preferred having the goal manually set by members 

of the household compared to automatically by the display system or by the local government or 

water supplier (Table 9.4). Interviewees were more amenable to externally set goals if they were 

provided with a justifiable reason (e.g., low reservoir levels).  

In terms of social comparison, a majority of respondents agreed (68%) that they would want to 

compare their water usage with other households and 79% indicated that they would feel 

comfortable sharing anonymous fixture-level usage data to enable these comparisons. The most 
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popular social-comparison target in both the survey and interviews was demographically similar 

households (i.e., houses with similar size and number of occupants). Interestingly, comparing to 

geographic neighbors was less popular (52%). Most interviewees questioned the fairness of this 

comparison: “the thing is, you just don’t know if you are comparing apples to apples” (I9.2).  

IMPLICATION: Some form of self-comparison is important. Although social-comparisons are of interest 

and people are willing to share their fixture-level data to enable them, eco-feedback systems should 

offer a rationale for any external comparison targets. User control and system transparency are also 

important aspects for goal-setting. 

9.3.1.6 Summary of Findings 

Overall, there was a strong preference for specific, detailed information about water usage at the 

individual fixture level in both volume and cost metrics. Our participants also strongly preferred the 

ability to see their usage broken down by hot/cold and their usage contextualized by some sort of 

comparison data (self-comparison was most preferred). This level of specificity further motivates the 

need of the emerging, highly-granular water sensing systems (e.g., HydroSense, Chapters 7 and 8). 

In general, our participants also recognized the need for interactivity and wanted the option to view 

data with different time windows and measurement units; however, defaults should probably be 

the week view with both cost and volumetric information. 

9.3.2 Design Probe Findings 

In comparison to the design dimension displays, the design probes elicited a much greater range of 

responses. We first summarize reactions to these displays, and then focus on synthesizing higher-

level emergent themes such as competition, accountability, and playfulness. 

9.3.2.1 Specific Preferences 

At the end of the survey and interviews, we asked participants to select their favorite design(s). In 

the survey, respondents could choose between a bar graph view or one of the three design probes: 

Time-Series, Spatial or Per-Occupant. The majority preferred the bar graph (64%) because it was 

simplest and most glanceable. Among those respondents who preferred a different design, the 

votes were nearly an even split: 14% for Spatial, 12% for Time-Series, and 10% for Per-Occupant. In 

the interviews, each interviewee was asked to select their top three designs including the bar graph 

view and all of the design probes. The comparison based displays were selected most commonly (12 

times), followed by the Individual Fixture Bar Graph view (10), the Time-Series view (9), the Aquatic 



255 

 

Ecosystem (8) and the Fixture Category Bar Graph (7). Unsurprisingly, in 8 of the 10 homes, there 

was not perfect agreement among interviewees on which were the best displays. This suggests that 

multiple feedback options should be made available. 

For the Time-Series view, which was arguably the most complex, participants liked being able to see 

longer-term temporal patterns and the effect of reduction efforts in the graph. In contrast, the main 

reason stated for preferring the Spatial view was that the floorplan made information easier to read 

and understand: “The breakdown between rooms and appliances is clear and gives an intuitive 

sense of where water is being used” (R182). For those that selected the Per-Occupant view, primary 

reasons included notions of accountability (i.e., pinpointing who was using water) and competition. 

Finally, for Aquatic Ecosystem, interviewees were attracted to the idea of “turning consumption on 

its head and rewarding saving” (I1.2), because it was good for children, and/or because it more was 

ambient, “like a screensaver” (I5.2). In the next section, we further explore these reactions in the 

context of higher level themes. 

9.3.2.2 Emergent Themes  

Competition and Cooperation 

Competition was a polarizing theme that arose, most often with the Per-Occupant and Aquatic 

Ecosystem designs. Those who liked it pointed to motivating properties of competition, notions of 

gaming and beating past low usage scores, and creating “friendly competition” with others (R220). 

Those who disliked it felt household water savings was about cooperation rather than competition. 

They felt the Per-Occupant display “pits the family members against each other rather than 

encouraging collaboration.” (R485). Some worried how this display went against the non-

competitive ethic that they were trying to create in their home: “[it] sets up a ‘competitive’ 

environment that we are trying not to create in our household” (R493). In contrast, the Aquatic 

Ecosystem seemed to better support cooperation; for example, I1.1 thought that it was a “clever 

way of turning water usage into a game,” “kid-friendly,” and “a good way of working towards goals 

together.” 

IMPLICATION: Though competition was recognized as having motivating properties, some found it 

disconcerting and potentially inhibiting towards the goal of saving water. One simple solution here 

would be to make those elements or displays that specifically encode competition optional. Another 
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is to make the comparative elements stress collaboration rather than competition (e.g., by making 

the focus of comparison other households).   

Accountability and Blame 

As with competition above, the ability to observe who used water was polarizing. This was the case 

with Spatial view, and, most particularly, the Per-Occupant view. Some liked the ability to pinpoint 

who was using water (e.g., these designs made it easier to know who may need to reduce their 

water usage): “it holds each individual accountable for water usage” (R354). Some even offered 

pragmatic suggestions about how this data could be used: e.g., for bill splitting. However, there was 

a distinction between those who felt that this data could be used to hold people accountable for 

their behaviors and those that felt that this would lead to blame and household conflict. This was 

particularly true for Per-Occupant: 

“I don’t think there’s any reason to add an element of ‘blame’ to conservation efforts within a 

family. If I received information in this format, I would throw it away without looking at it” –R98   

“Would seem to lead to plenty of arguments about usage” –R144  

Participants also recognized that such inferences could be made with other designs (e.g., by 

observing who uses the master bathroom shower). 

IMPLICATION: There is a thin line between enabling accountability and introducing elements that 

could be perceived as blame inducing. As with competition, there is clearly a contingent of people 

attracted to the idea of knowing who uses water. However, any eco-feedback system that tries to 

encode accountability explicitly should make this part of the system optional. 

Simplicity and Glanceability  

Although we knew that some of our design probes were more sophisticated and visually 

complicated than the bar graph views, we did not expect such universal gravitation towards 

simplicity. This trend, perhaps, could be attributed to our evaluation methodology—given that we 

did not conduct field study deployments, the reactions we measured were based on first 

impressions and not on actual use experience. However, when a visualization was not immediately 

understood, it was often met with skepticism at best and disgust at worst. This will directly 

contribute to adoption and use of the display. For example, “I wouldn’t even spend the time [to 

figure it out]. I don’t even want to take the time to look at it” (I9.2). 



257 

 

Playfulness and Functionality 

The more playfully oriented designs were evaluated in the interviews only. The Aquatic Ecosystem 

and Rainflow elicited responses about playfulness and utility. Most interviewees reacted positively 

to the aesthetics and ideas of these two designs, particularly the Aquatic Ecosystem: “it’s clever, I 

love it” (I1.2) and “I like the idea of getting rewards for saving water” (I8.1). While 12 interviewees 

chose one of these designs in their top three, only 2 out of 20 chose one as their most preferred. 

The tension between utility and playfulness is embodied here:  

“It’s like unlocking badges in Foursquare. No matter how trivial it can be to make a fish 

appear on this screen, you still want to do it” –I4.1 

“It doesn’t appeal to me as much. I don’t do Foursquare. This distracts me a little bit and it 

doesn’t make me think about my usage.” –I4.2 

Similarly, for Rainflow, although many thought that it was “interesting”, “fun” and “pretty”, 

participants weren’t sure that it was functionally better than a normal bar graph: “it looks cooler, 

but I’m not sure it’s more useful than the bar graphs” (I8.1).  

For those households with children, many felt that these displays could be useful as an educational 

tool as well as to get their children involved in the concept of conservation at home. However, some 

worried that their children might become overly involved in trying to earn rewards by not cleaning 

themselves or flushing. Others were also concerned about how their children would react if a fish 

died or what would happen if they reached a minimal level of usage in their home. For Rainflow, 

some parents mentioned how it might actually encourage their children to use water just to see the 

pretty water flows. 

IMPLICATION: Playful and fun designs can be good at creating engagement and interest but the 

actionability of the data is what is paramount for most. In addition, designs that are more ambient 

need to take care not to look more visually interesting with increased consumption. 

Privacy 

Disaggregated water usage feedback can reveal information about otherwise latent patterns and 

routines about a household (e.g., where and when people are in the home). Such revelations can be 

obscured by simple changes to the interface: e.g., a bar graph view of a day makes it more difficult 

to assess when an occupant woke up, went to work, and went to bed, compared to a timeline view. 

Although some notions of privacy arose from our Time-Series and Spatial displays with references to 

a. b. c. f. 
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“big brother” (R826), “creepy” (R5), and being able to see when people were “regular” (I9.1), privacy 

was a major reason why some participants reacted negatively to the Per-Occupant display. Because 

this design emphasizes who is using water rather than what, it provoked the most comments about 

surveillance, intrusiveness and violations of boundaries:   

“It’s incredibly invasive. And other people’s water consumption is not my business.” –R25   

“water usage for many purposes can be very personal, and shouldn’t be automatically 

shared.” –R246  

Interestingly, some respondents recognized that similar information could be derived from other 

designs but that these did not feel as surveillance-oriented:  

“This display comes across more ‘big brotherish’ to me to assign usage to specific people and 

I didn’t feel that way when being assigned to appliances/faucets even though those can 

often be tied back to specific people” –R84   

In contrast with the survey results, most of the interview participants, when asked, had not even 

thought about the privacy implications of the designs. Even after providing specific scenarios about 

how people could be tracked (e.g., “see, here you could tell that your son skipped school because of 

his bathroom usage during the day”), privacy was not considered a significant issue.  

“Maybe if my daughter was a teenager, she wouldn’t want me to track her but I’m not that 

kind of Mom” –I3.2 

“We are more tightknit than the average family because of our house size and everything… 

we tend to know a lot about each other (laughter)”. –I1.2 

IMPLICATION: Privacy is an important aspect of future eco-feedback displays in the home, particularly 

as sensing systems become more granular. Designers need to take care to offer different levels of 

abstraction to make particular events in the home less visible in some views.   

9.3.2.3 Display Placement 

At the end of the interview, we asked participants to select one or two places in their home where 

they would install the water feedback display. The first choice was the kitchen (6), followed by a 

highly trafficked area of the home such as a hallway (5), near the thermostat (5), or in the shared 

upstairs bathroom (1). Reasons for these placements included being in an accessible location for all 

occupants to see and being able to see information multiple times a day at a glance (e.g., when 
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Figure 9.18: Preferred display locations in (a) H5, (b) H4, (c) H1, (d) H10, (e) H6, and (f) H8. Most selected a 

highly visible, easily glanceable location (e.g., H5 and H4 selected the kitchen and H1 and H10 selected hallways). 

H6 and H8, however, preferred behind the cupboard or in a closet next to the gas meter. 

cooking). Interestingly, two households selected locations that were inaccessible on purpose: H6 

wanted the display mounted inside their kitchen cupboard (Figure 9.18f) and H8 wanted it in their 

storage closet next to their gas meter (Figure 9.18e). The reason given for these placements was 

that they did not want technology infiltrating all aspects of their life, for example: 

“We would just pull it up [the water usage data] on our computer and would use the display 

occasionally if we had time and were curious.” (I8.2, Female, 47)  

When selecting a location, most homes took into account who could see the display—either other 

householders or guests: “[if we placed it here], the kids couldn’t see it” (I2.1). Some participants 

mentioned how guests may be able to see the data, which was perceived either positively or 

negatively. I7.2, for example, thought that the Aquatic Ecosystem could be used to “brag to our 

friends when they come by.” However, H9 took the opposite view:  

“If we hang it here [Bob] and [Jane] would come over and they would look at it. I’m not sure I 

like that.” –I9.1 

“Yah, if you just had Nemo floating around then you could put it here, but otherwise I 

wouldn’t necessarily want people to see it.” –I9.2 

a. b. c. 

d. e. f. 
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IMPLICATION: There was a preference towards placing displays in shared and highly trafficked areas of 

the home, yet a privacy tension exists since these are also the more “public” areas, viewable by 

guests. Future work should explore display form and placement more deeply, particularly since only 

bathroom feedback displays have been previously studied.  

9.3.3 Summary of Findings 

The design probes elicited strong and sometimes polarizing reactions. Although some designs 

provoked positive feelings of competition, accountability, and playfulness in some people; in other 

people, these same designs felt intrusive, blame-inducing, or antithetical to the goal of saving water. 

The key here is to realize that eco-feedback displays do not just visualize consumption, they 

document household activities. Consequently, designers have to take into account how their 

displays may affect underlying social dynamics in a household and expose otherwise latent routines. 

Our findings suggest that these issues could affect whether a display will be accepted into the home. 

9.4 LIMITATIONS 

One limitation of this research is that the study populations in both the survey and the interviews 

were skewed towards an environmentally interested demographic. While this sample may arguably 

be representative of early adopters of eco-feedback systems, studying reactions to the displays with 

a broader range of people, particularly, those who do not consider themselves eco-friendly, is an 

important area of future work. The study findings are also based on insights from the initial 

reactions of our designs rather than from real, long-term use. This may have placed an 

overemphasis on initial impressions: for example, many participants stated interest in having a data 

rich, detail oriented display; however, in a day-to-day usage, participants may prefer a more 

ambient display. Future work is needed to address this point. 

With that said, the methods used in this chapter allowed us to explore promising design dimension 

and themes, which we argue is particularly important given the lack of past work studying 

disaggregated resource consumption data. We also used the in-home interviews to complement the 

survey data, since the interviews more directly allowed families to consider how a physical eco-

feedback display would fit into their home. These methods follow from the participatory design 

process common in HCI and this chapter serves as an example about the ways in which we feel 

HCI/Ubicomp research fits into the eco-feedback design and evaluation process. Future work will 
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need to take the findings provided here and apply them in functioning, interactive systems, and, 

ultimately, field deployments. 

9.5 CHAPTER SUMMARY 

As the first work in the area of visualizing disaggregated water resource consumption data, this 

chapter explored a broad range of novel eco-feedback designs to examine and uncover particularly 

promising elements as well as to investigate how such granularity of data may affect household 

dynamics. Through the use of a basic bar graph design, we first examined and uncovered design 

dimensions perceived as particularly useful. We found widespread interest in displaying data at the 

individual fixture level with hot and cold information and comparisons used to contextualize 

performance. We then evaluated six design probes that integrated multiple dimensions and allowed 

us to examine more complex issues such as competition, motivation, and privacy. Our findings are 

relevant not only to HCI researchers interested in building future eco-feedback systems but also to 

utilities, billing services, and professional designers working in eco-feedback for electricity, gas, and 

water. 
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  Chapter 10

Conclusions and Future Work 

At a high level, the goal of this dissertation has been to design, develop, and evaluate sensing and 

feedback technologies to promote proenvironmental behavior and decision making. Our approach 

was fourfold: (1) to draw upon behavioral science, environmental psychology, information 

visualization and past Sustainable HCI research to create a series of guidelines and dimensions to 

help both the design and evaluation of eco-feedback systems; (2) to study environmentally 

impactful human behaviors around transit and water usage to help uncover insights into how eco-

feedback may play a role in increasing awareness and informing behaviors; (3) to create and 

evaluate new types of sensing systems to enable eco-feedback systems that were previously not 

possible; (4) and to design, develop and evaluate novel eco-feedback interfaces and systems 

themselves. Below, we first summarize the contributions of this dissertation before highlighting 

limitations and areas for future work. 

10.1 CONTRIBUTIONS 

In this section, we restate the contributions listed in the Introduction chapter and summarize how 

each of these contributions was achieved. Recall that the contributions are organized around three 

high-level areas: foundational contributions, sensing contributions, and feedback contributions.   

10.1.1 Foundational Contributions 

Our foundational contributions: (1) demonstrated and articulated the role of HCI/Ubicomp research 

in the design and evaluation of eco-feedback technologies; (2) uncovered attitudes, knowledge, 

behaviors, and perspectives around personal transportation and water usage in the home. These 
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contributions should be useful not only to shape the design of eco-feedback systems but also to 

guide general eco-feedback research agendas in HCI/Ubicomp. 

1. Assessing the role of HCI in the design and evaluation of eco-feedback systems. HCI/Ubicomp’s 

recent entry into the design and evaluation of eco-feedback systems compelled us to ask: what roles 

should HCI/Ubicomp play in this interdisciplinary research space and how can HCI/Ubicomp best 

leverage methods, approaches, and findings from other, more established fields in the design and 

evaluation of eco-feedback technology? We addressed these questions in Chapters 2, 3 and 4 by 

examining and comparing design approaches, artifacts, and evaluation methods of eco-feedback 

technology in HCI/Ubicomp compared with other disciplines.  

Our findings show that, although the environmental psychology community invests much effort in 

conducting longitudinal behavioral studies on the impact of eco-feedback, the design of the eco-

feedback interface itself is rarely evaluated. Fortunately, the visual design, form, and usability of the 

eco-feedback system and how these factors may impact behavior are core areas of HCI/Ubicomp 

research. In addition, whereas environmental psychologists typically evaluate existing, commercial 

off-the-shelf eco-feedback systems, HCI/Ubicomp researchers are not limited by current sensing and 

visualization techniques. Instead, as demonstrated by many of the examples in Chapters 2, 3 and 4, 

HCI/Ubicomp research has been active in generating new types of sensing systems, novel 

visualization strategies, and new types of interfaces and interactions for eco-feedback systems. In 

this way, HCI/Ubicomp can help push the field forward by pursuing more exploratory paths than 

would otherwise be taken. For the more promising novel systems, future research will need to move 

beyond short laboratory and field studies into longitudinal deployments that can assess how the 

eco-feedback systems will be adopted and, potentially, impact behavior. 

Finally, as an emerging area, the design processes and study methods used to design and evaluate 

eco-feedback systems are changing; however, the key takeaway here is that all disciplines working 

in this area (including HCI) should better integrate eco-feedback research findings from other fields. 

It is my hope that, in the future, HCI/Ubicomp researchers will initiate collaborations and work more 

closely with environmental psychologists (and other related disciplines) such that differences in 

expertise can be leveraged and, ultimately, eco-feedback designs and evaluations can be improved.  

2. Formative studies of personal transportation attitudes, behaviors and routines to inform the 

design of eco-feedback systems for transit. In Chapter 5, we performed two formative studies of 
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personal transportation practices. The first study, an online survey of 63 respondents, showed that 

few people considered the environmental consequences of a transportation decisions and less than 

half felt they were doing everything they could to travel in an eco-friendly manner. The second 

study, a one-week experience sampling (in situ) field investigation with seven participants, showed 

that people considered practical barriers (e.g., time-to-destination) and additional motivations (e.g., 

exercise gained from bicycling) in making their transit decisions. These findings suggest that 

demonstrating the benefits of eco-friendly travel in terms of additional factors such as efficiency, 

cost and exercise may be useful in motivating green travel. However, a major challenge for eco-

feedback transit tools is in overcoming barriers to green transit, some of which actually do exist and 

others of which may only be perceived (e.g., taking the train may actually be faster than driving 

during commuting hours). Findings from both studies were useful in guiding the design of UbiGreen, 

our mobile phone-based eco-feedback system for personal transit (contributions 4 and 7 below). 

3. Formative studies of residential water usage attitudes, behaviors and routines to inform the 

design of eco-feedback systems for water. In Chapter 6, we examined residential water usage 

through an online survey of 656 North American respondents. The goal was to uncover limits in 

knowledge as well as conceptions/misconceptions about water usage in the home with the intent of 

informing eco-feedback designs. The findings motivate the need for better water feedback systems 

in the home. One third of respondents received no monitoring or feedback about their consumption 

whatsoever. Respondents also had an inaccurate conception of what fixtures and appliances 

typically use the most water (e.g., reporting the dishwater to be a high water user when in fact it is 

typically very low). Finally, respondents grossly underestimated the amount of water required for 

common activities such as showering and lawn watering. These “water literacy” findings are 

particularly surprising given that the vast majority of our respondents had proenvironmental 

leanings and were, admittedly, interested in water conservation. Misconceptions about water are 

likely to be even more prevalent in a general population. 

The findings from Chapter 6 also have implications for water-based eco-feedback displays. For 

example, measures such as gallons or liters were better understood than flow rates (e.g., gallons-

per-minute). In addition, comparison, a well-known and effective motivation technique seems 

underutilized in the water industry; only 27% of respondents had some sort of comparison on their 

water bills. Respondents were also generally more interested in self-comparisons than social-

comparisons. Finally, we also reviewed literature from the water management community to 
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uncover factors that influence water consumption, how water is different from other resources in 

the home, and primary motivators for water conservation. To our knowledge, these factors, such as 

the low price of water have not been previously integrated into the design of water-based eco-

feedback systems. Combined, these formative studies and literature review can inform the design of 

eco-feedback systems for water usage and point to the potential of such systems for increasing 

consumption knowledge and water literacy. 

10.1.2 Sensing Contributions 

The primary sensing contribution in this dissertation is HydroSense: a system that significantly 

advances the state-of-the-art in water sensing by disaggregating water usage from a single 

installation point. A secondary sensing contribution is our novel sensing system for semi-

automatically tracking personal transportation routines in UbiGreen. Both systems provide 

unprecedented levels of sensing granularity and point to the potential of fine-grained granular 

sensing and activity inference to enable new types of eco-feedback interfaces and visualizations.  

4. A method for tracking transit behaviors using automated sensing and self-report. Our goal was 

to build an eco-feedback system that would sense and feedback information about everyday transit 

usage. Thus, we needed a sensing method capable of sensing a broad range of transit activities from 

car usage to walking to taking the bus. Although previous research has examined using wearable 

sensors, cell tower infrastructure, or self-report to track human transit patterns, our research is the 

first to combine these three methods into a single working system. 

5. Design and evaluation of a sensor for automatically determining fixture-level water usage 

events from a single, low-cost sensor. We introduced a novel sensing system called HydroSense 

(Chapters 7 and 8), which provides three main contributions: (i) a method for identifying and 

classifying water use through a pressure sensor installed in an arbitrary location on the home 

plumbing system; (ii) a method for calculating real-time flow estimates for disaggregated events 

(i.e., at individual fixtures) and (iii) a method for disaggregating overlapping or compound water 

events. Given sufficient calibration, HydroSense can also discriminate between hot and cold water 

usage. HydroSense represents the next phase in home resource consumption sensing with a focus 

on disaggregated usage data rather than aggregate usage, as has been the norm for a century or 

more. Easy-to-install sensing technologies such as HydroSense offer several benefits for eco-
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feedback systems since the homeowner maintains control of the data and can install/modify the 

sensing system at will. 

To validate HydroSense, we performed two evaluations: (1) a controlled experiment of staged water 

usage events in 10 homes (Chapter 7); and (2) a longitudinal five-week evaluation of real-world 

water usage in five homes (Chapter 8). In the controlled experiment, we showed that a template-

based classification approach classified individual fixtures with 97.9% aggregate accuracy. We also 

showed that an appropriately located and calibrated system could estimate water usage amounts 

with error rates comparable to empirical studies of traditional utility-supplied water meters (~10%). 

For the real-world water usage data collected in the second evaluation, our initial inference 

algorithm was no longer sufficient. As such, we moved from a strict template-matching approach to 

a novel Bayesian approach that incorporates template matching, a language model, grammar, and 

prior probabilities. We showed that with a single pressure sensor, the Bayesian approach could 

classify pre-segmented real-world water usage at the fixture level with 90% accuracy and at the 

fixture-category level with 96% accuracy. With two pressure sensors, these accuracies increased to 

94% and 98%, respectively. 

The algorithm adaptations required for the second HydroSense evaluation highlight a secondary 

contribution of this work: demonstrating the importance of field evaluations for novel sensing 

systems. Too often in Ubicomp research, sensing techniques are only evaluated under controlled 

conditions (such as we did in Chapter 7). Although these evaluations are useful in demonstrating the 

feasibility of a sensing method, accuracy rates can be artificially high and, in some cases, the 

algorithmic approach can be flawed because the controlled data is much easier to work with than 

real usage data. Thus, after assessing the feasibility of a sensing method, it is crucial that field 

deployments are conducted to provide ecological validity. 

10.1.3 Feedback Contributions 

For our feedback contributions, we designed, developed, and evaluated feedback systems for transit 

and water. Our goal was not to evaluate how these systems could change behavior specifically (a 

longitudinal behavioral intervention would be required here) but rather to lay the groundwork for 

such studies by uncovering factors that would limit the effectiveness of the feedback or challenge its 

adoption. In addition, through our feedback studies and those of other researchers, we synthesized 
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design approaches and possibilities in an eco-feedback design space that provides both a critical lens 

with which to analyze existing designs as well as a guide to help build and evaluate new ones. 

As eco-feedback is an emerging research area, our studies offer new strategies for eco-feedback 

evaluation that, to our knowledge, have not been previously conducted. For example, the use of a 

design space to direct and guide eco-feedback explorations, the use of online surveying to evaluate 

design dimensions, and in-home interviews with a prototype system to begin to tease out how eco-

feedback designs may fit into domestic space. Our own findings in Chapters 5 and 9 and the design 

space in Chapter 4 should be applicable beyond transit and water eco-feedback but to all eco-

feedback systems in general (including bills and online websites).  

6. An eco-feedback design space to guide the development and evaluation of eco-feedback 

systems. In the last decade, eco-feedback has become an active and burgeoning research area and 

commercial enterprise. Eco-feedback systems have taken many forms including: point-of-

consumption displays, information dashboards, mobile tools, ambient indicators, artistic 

visualizations, analytical interfaces, and feedback embedded in smart appliances. The design of 

these eco-feedback systems often requires a range of expertise spanning technical and non-

technical domains such as computer science, electrical engineering, environmental psychology and 

information visualization. As such, designing and evaluating eco-feedback is an enormous challenge. 

And yet, there have been few attempts at providing a theoretical foundation and a comprehensive 

framework to guide the design process. 

Based on a comprehensive literature review of eco-feedback technologies (parts of Chapters 2, 3 

and 4) and our own experiences designing and evaluating eco-feedback systems, we provided an 

eco-feedback design space in Chapter 4, which serves four high level goals: first, by offering a 

tangible structure with which to think about and understand various design elements, the eco-

feedback design space helps designers approach the eco-feedback design process and think 

concretely about various tradeoffs. Second, the design space materializes otherwise implicit 

assumptions about how feedback could be and should be structured. Third, it introduces a common 

vocabulary, which helps to critique, analyze, and compare eco-feedback designs. Finally, fourth, the 

design space is helpful in uncovering areas that have been underserved in research thus far, 

allowing researchers/designers to target areas that are potentially problematic and/or important. 
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7. The design, development, and evaluation of UbiGreen, an eco-feedback application to promote 

green transportation habits. In Chapter 5, we introduced UbiGreen, a novel eco-feedback 

application for mobile phones that semi-automatically senses and feeds back information on 

transportation routines and rewards green transit decisions. UbiGreen runs continuously in the 

background of the user’s mobile device and updates the background display (i.e., wallpaper) based 

on sensed transit. We created two versions of the display: a tree design that grows leaves, flowers 

and fruit, and an arctic eco-system that uses an ice floe and animals to represent green transit use.  

To explore how a mobile eco-feedback system would be perceived, used, and experienced, we 

evaluated UbiGreen in a three-week field study with 12 participants. We found that participants 

enjoyed the unfolding narrative of the background display based on their actions in the real-world 

and that, to maintain anticipation, participants wanted new “stories” downloaded on their phones 

every week. UbiGreen was a glanceable, ambient, and fairly artistic display; this glanceability and 

ambience was appreciated. However, the display itself did not provide enough quantitative 

information for participants to track different types of transit patterns, so it was difficult for 

participants to see if they were making greener transit choices as the study progressed. In summary, 

participants were positive about the glanceability and aesthetic of the display but wanted more 

actionable information. 

8. The design and evaluation of water usage feedback displays, studying specific dimensions of 

feedback (e.g., level of data granularity) as well as social and household context (e.g., issues of 

privacy). As the first work in the area of visualizing disaggregated water resource consumption data, 

Chapter 9 explored a broad range of novel eco-feedback designs through an online survey study 

with 651 participants and in-home interviews with 10 households. The goals were to examine and 

uncover particularly promising elements of the designs and to investigate how such detailed data 

may affect household dynamics.  

Through the use of a basic bar graph design, we first evaluated design dimensions participants 

perceived as particularly useful for disaggregated water data (e.g., temporal granularity at the level 

of day, week or month). We found widespread interest in displaying data at the individual fixture 

level with hot and cold information as well as the use of historic self-comparisons to contextualize 

usage over time. We then evaluated six design probes that integrated multiple dimensions and 

allowed us to examine more complex issues such as competition, motivation, and privacy. The 

design probes elicited strong and sometimes polarizing reactions. Although some designs provoked 
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positive feelings of competition, accountability, and playfulness in many participants, for others, 

these same designs felt intrusive, blame-inducing, or antithetical to the goal of saving water. The key 

here is to realize that eco-feedback displays do not just visualize consumption, they also visualize 

household activities. Consequently, designers should take into account how their displays may affect 

underlying social dynamics in a household and how they expose otherwise latent routines. In 

addition, we found widespread interest in simple, glanceable designs.  

10.2 DIRECTIONS FOR FUTURE RESEARCH 

In this section, we cover the primary limitations of this dissertation to both better frame and scope 

our contributions as well as to highlight opportunities for future work. We also provide perspectives 

on the future of eco-feedback research based on our experiences. As with the section above, we 

split our discussion of limitations and opportunities for future work by contribution area: 

foundational, sensing, and feedback. We end with some general challenges and opportunities for 

eco-feedback technology.  

10.2.1 Foundational Limitations and Future Work 

For our foundational contributions, we used a multi-faceted approach to investigate personal transit 

and water usage attitudes, routines and perspectives. This included surveys, interviews, and in situ 

experience-sampling field studies. A key limitation, however, is the bias in our participant base. For 

each formative study participants had preexisting proenvironmental attitudes and beliefs. Thus, our 

findings relate more strongly to populations that self-identify with eco-friendly perspectives. An 

interesting area for future work, and one that has been rarely addressed in the HCI literature, is to 

study populations that are neutral or uninterested with regards to the environment and how this 

may influence the design of eco-feedback. The key questions here are: how to best engage these 

populations in environmentally relevant topics and how to leverage this knowledge in the design of 

eco-feedback technology. 

A second opportunity for future work is in moving qualitative investigations outside of the single-

family detached home and into different sites and contexts such as: multi-family homes (e.g., 

apartment buildings), office buildings, and commercial buildings (e.g., grocery stores, cafes, and 

retail centers). Although some deployments of eco-feedback technology have occurred outside of 

single-family residential spaces (e.g., Siero et al., 1996, Peterson et al., 2007), few formative 

investigations have taken place that examine motivations for resource conservation in these areas. 
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We argue that these sorts of formative inquiries are important prerequisites before conducting field 

deployments of eco-feedback technology. Because of the resource intensiveness of eco-feedback 

field studies, it is paramount that researchers and designers familiarize themselves with the social, 

political, and environmental context of use before deployment. This can be achieved through 

ethnographic- or survey-based inquiries, through small, short-term deployments (such as we did 

with UbiGreen in Chapter 5) or via familiarization with relevant literature when available. 

In addition, for each of these different deployment contexts (e.g., residential vs. commercial 

building), there exist different tensions between a number of elements including: dweller control vs. 

third-party control (Pierce et al., 2008), responsibility of payment for the resources, and different 

avenues and opportunities for understanding consumption in these contexts. Dillahunt and 

colleagues have explored some of these tensions directly by examining resource use in low-income 

housing (e.g., Dillahunt et al., 2009; Dillahunt et al., 2010) but more work is needed. For example, 

how does the introduction of sub-metering into multi-family buildings change the perspectives and 

understandings of consumption among residents (e.g., see Mayer et al., 2004b)? And how do 

motivations, understandings, and perspectives of resource use change from the home to the 

workplace? Answers to these questions will help broaden the ways in which eco-feedback may be 

used to promote proenvironmental behaviors. 

10.2.2 Sensing Limitations and Future Work 

In this section, we discuss limitations and future work for sensing and inference systems for personal 

transportation and water usage. 

10.2.2.1 Transit Sensing 

Our personal transit sensing work had three primary limitations. First, although components of the 

underlying sensing system were evaluated in past work (e.g., Lester et al., 2005; Sohn et al., 2006), 

the accuracy of the transit inference system itself was not independently validated via 

experimentation (e.g., offline analysis with ground truth and sensor stream data). Instead, our 

validation extended from actual use of the UbiGreen application in pilot testing and field 

deployments. The primary metric of evaluation here, then, was the qualitative perceptions of the 

application’s ability to accurately infer travel mode (a majority of participants were positive about 

it). To compensate for inaccuracies and limitations in the sensing system, UbiGreen provided self-

report interfaces where participants could record their current transit activity.  
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Second, primarily as a reflection of when this research was conducted and the systems were built 

(circa 2007), our sensing system required a wearable device (the MSP) to operate. Because of its size 

and weight, the MSP was perceived as burdensome to wear (particularly for some clothing styles, 

e.g., skirts). In addition, since it was external to the mobile phone, some participants forgot to put it 

on in the morning when they dressed (though UbiGreen’s built-in warning system for this failure 

case was sufficient to prevent any of our participants from forgetting to wear the MSP throughout 

an entire day).  

Third, again as a reflection of the time period when this work was undertaken, we did not use GPS in 

our transit inference algorithms. As highlighted in Chapter 2, much work has emerged since the 

development of UbiGreen, which could be integrated into future systems. 

Looking forward, it is likely that any future personal transportation sensing and inference system will 

leverage all relevant sensors common now on mobile devices including accelerometers, GPS, digital 

compasses, and gyroscopes. This multi-modal sensor integration will likely improve transit inference 

accuracy and, perhaps, minimize training and calibration effort. However, as noted by Saponas et al. 

(2011), a major challenge faced by future human activity recognition systems is the battery life cost 

on the device. This is a significant issue because sensing and inference systems often require 

continuous operation to function. In UbiGreen, a person’s current transit mode was constantly being 

tracked, which resulted in ~8-12 hours of battery life from the MSP and ~24-30 hours of battery life 

on the mobile phone. These sorts of battery lifetimes were acceptable for short field studies but are 

on the short-end for commercial systems. The very fact that eco-feedback systems require power is 

somewhat of a paradox as this, in itself, is consumption that affects the environment. This problem 

highlights the need for life-cycle analysis (Curran et al., 2006) of eco-feedback systems. We return to 

this issue below in Section 10.2.4. 

10.2.2.2 Water Usage Sensing 

Our two empirical evaluations of HydroSense demonstrated promise for single-point sensing of 

disaggregated water usage via continuous monitoring of water pressure. Despite the algorithmic 

advancements we made in moving from controlled experiments (Chapter 7) to field deployments 

(Chapter 8), important areas of future work remain. 

Evaluating HydroSense across a greater range of conditions and installation sites. HydroSense has 

been evaluated in 15 study sites (12 homes, 3 apartments). However, more work is needed to better 



272 

 

define the strengths and weaknesses of the pressure-based approach across a broader range of 

homes and apartments. This research should document the installation location of the sensor, the 

type of plumbing system, house size, piping type (e.g., PVC, PEX, copper, galvanized, or manifold), 

hot water heater type and size, as well as the presence and type of pressure regulator, “water 

hammer” dampeners, recirculating pumps, and water heater expansion tanks (which may dampen 

or attenuate the pressure transient signal). The key is to uncover if there are certain physical factors 

that lead to increases or decreases in HydroSense’s performance.  

Similarly, even within one study site, more work is needed to assess the advantages/disadvantages 

of various installation locations both in terms of their ease with which to install and power the 

HydroSense device as well as in terms of performance. Although we experimented with a variety of 

installation locations across our experiments in Chapters 7 and 8 including below bathroom sinks, 

kitchen sinks, hot water heaters, at utility faucet outlets, and exterior house bibs, we did not 

comprehensively examine the effect of sensor location within a single site.  

For the above explorations, we would advocate that a more sophisticated form of our staged 

experiments in Chapter 7 be used rather than automated ground truth sensing networks because 

the latter is so resource-intensive, and the goal here is breadth of study across experimental sites. 

More particularly, we suggest that the ground truth data tables presented in Chapter 8 be used to 

guide the design of a more realistic staged water usage script including: compound and collision 

event testing at depths of two and three levels, at least five full laundry washes (ideally five full 

laundry washes on each laundry setting but this may be time prohibitive), at least five full 

dishwasher uses (again, ideally five full dishwasher uses on each setting), and the varied use of 

manually controlled valves including different temperature mixtures and flow rates. In addition, 

because many showers are bath/shower combinations, the diverter valve needs to be used to 

enumerate and test every possible combination of activations and deactivations (e.g., diverter valve 

starting in bath positionbath ondiverter valve switched to shower(8 minutes)shower off will 

result in a different pressure signature than diverter valve starting in shower positionshower 

on(8 minutes)shower off even though the correct inferred activity in either case is still 

“showering for 8 minutes”). Household interviews with home occupants are also important here to 

better understand different uses of water and common water usage activities within the home 

itself. In addition, demographic data similar to that discussed in Chapter 6 should be collected. 
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Given the above, however, staged experiments, no matter how sophisticated, will not be able to 

adequately collect data on certain features such as time of use and frequency of use. These 

contextual factors (and others) can only be gleaned through real-world deployments as we did in 

Chapter 8. Thus, a real-world field deployment evaluation of the sensing system with ground truth 

labels is the gold standard and, eventually, cannot be avoided. However, the choice to conduct a 

real-world evaluation depends on the research goals and the resources available. In the future, to 

mitigate costs, it may be possible to piggyback on pre-existing or planned water usage experiments 

where homes fixtures/appliances are already instrumented as appears to be the case in the Anglian 

Water experiments (see report: UK Parliament, 2000). However, if inline flow sensors are used for 

ground truth data collection, future research needs to explore what effect, if any, the presence of 

these sensors have on the pressure signal.  

Evaluating event identification and segmentation with real-world water usage pressure data. A 

second limitation and area for future work involves evaluating event identification and segmentation 

approaches using real-world water usage data. Although our first experiments (Chapter 7) examined 

a full end-to-end algorithm including: event identification, segmentation, and classification, in our 

second set of experiments (Chapter 8), we evaluated the classification phase only. That is, we used 

pre-segmented pressure transients fed into our classification algorithms (i.e., the start and end of 

waveforms were marked by the ground truth labels). This allowed us to focus solely on the 

classifiability and consistency of real-world water usage pressure events without potential 

complications from poor event identification/segmentation algorithm performance. However, by 

scoping our analysis in this way, we were unable to characterize the end-to-end performance of 

HydroSense with real-world water usage data.  

With that said, the original HydroSense work segmented staged water usage data with 100% 

accuracy, so segmentation of real-world data should be possible. The primary challenge will be 

properly segmenting compound and collision events, particularly in apartments where noisier 

pressure signals are possible because of crosstalk between apartments. As noted in Chapter 8, the 

classification and segmentation tasks could even be combined to increase robustness to sources of 

ambiguity such as transient collisions because many statistical signal processing strategies become 

sub-optimal after separating segmentation and classification. Future work is necessary to determine 

the best strategy for event identification, segmentation and classification, but our work in Chapters  
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Figure 10.1: A real-time end-to-end HydroSense system with event identification, segmentation, and classification. 

The monitor is displaying Matlab visualizations of different aspects of our algorithm with a C#-based 

visualization in the foreground (black window). The segmentation boundaries and inferred events are visible in 

the magnified inset. 

  
Figure 10.2: Magnified views of the real-time HydroSense end-to-end algorithm with event identification, 

segmentation and classification. Future work is needed to refine and evaluate this system. 
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7 and 8 provide a solid foundation for moving forward. We are currently implementing a real-time 

HydroSense system, which integrates a full, end-to-end algorithm (Figure 10.1 and Figure 10.2). 

However, this work is still in preliminary stages and not yet evaluated. 

Exploring a greater range of water-usage features, feature selection techniques, and methods to 

join various knowledge sources. Although we used a number of features in our classification 

algorithms including template-based features, transient-based features, transition-probability 

features, and paired-valve features (such as water usage duration), there is a much larger feature 

space to explore including contextual features (time of day or day of week) and more emphasis on 

smoothed pressure-delta related features (e.g., similar to flow-trace analysis, see Chapter 2). Figure 

10.3 highlights a list of potential classification features but there are likely even more. We note 

again that some features can only be evaluated using real-world water usage data. For example, 

staged experimental data is insufficient to explore how temporal features may impact classification. 

 
Figure 10.3: A one minute, 30 second pressure stream trace from our longitudinal deployment in Chapter 8 with 

red textual annotations describing possible classification features. 

In addition to investigating new features, more work needs to be done with regards to how these 

features are selected and combined; our Bayesian model applied equal weighting to all features and 

terms. Future algorithms may also want to explore a combined Bayesian and hierarchical model 

approach where, for example, compound transients are handled differently than transients that 

occur in isolation. Additionally, our Bayesian model is trained to fit the data (i.e., a generative 

algorithm), but more discriminative algorithms such as conditional random fields (CRFs), may be 

more appropriate for classification tasks (i.e., trained to fit separate classes in the data). We are 
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actively investigating discriminative classifiers like CRFs to better quantify relationships in the data 

and flesh out complicated relationships among potential features.  

Deeper evaluation of pressure-based flow inference. Most of our work focused on using pressure to 

classify water usage events but not to infer the amount of water used by those events. Although we 

investigated water flow rate inference in Chapter 7, this investigation was limited to four homes and 

staged experimental data under fairly constrained conditions: isolated events, near-maximum flow 

rates out of fixtures, only one temperature setting, and only in single-family detached homes (note: 

we could not evaluate flow in Chapter 8 as our ground truth sensors were not capable of recording 

flow rate information). Our flow-rate inference algorithm was also fairly simplistic: a straightforward 

linear regression model. However, as pointed out in Chapter 7, water flow in a typical plumbing 

system is laminar, turbulent, and sometimes a mixture of both. In each of these flow states, the 

governing equation between pressure and flow is different, and when the flow state changes from 

one mode to another, the relationship between flow and pressure-based features can be 

discontinuous. Consequently, more sophisticated flow inference models may be needed to handle 

these complications. In addition, more work is needed to evaluate the amount of training data 

necessary to reach flow rate calculations on par with traditional water meters.  

One potential direction here may simply be to combine data from a standard water meter (where 

flow rate information is basically free) along with a pressure-based sensing system. This combination 

could not only improve the quality of flow-rate information but also in disaggregation accuracy 

(features from the water meter could aid in classification). Smart meters could be used if their data 

is accessible; otherwise traditional water meters can often be non-intrusively instrumented from the 

outside using Hall Effect sensors (see Chapter 2)  

Future work is also needed to examine pressure-based flow calculations in different building settings 

(e.g., multi-family homes) and under varied flow rate and temperature settings for each fixture. 

Finally, although Chapter 8 explored differentiating between hot and cold water activations, we did 

not explore if HydroSense can differentiate between the amount of hot and cold water used and the 

number of pressure-sensors required to achieve reasonably good accuracy. 

Exploring techniques to ease the calibration burden. The cost and ease of installing HydroSense, 

including any required training or calibration, will directly impact its adoption. Our algorithms 

require a database of labeled water usage templates (signatures) for each home, which means the 
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user must activate and deactivate each fixture or appliance multiple times35 (to create a template) 

and provide a text (semantic) label for each activation (e.g., “upstairs shower” or “downstairs 

toilet”). Although initially burdensome, the calibration process should be necessary only once at 

installation and, perhaps, updated when a new fixture or appliance is installed. In either case, a 

mobile device such as a tablet or phone could run “training software” that guides the user in this 

process and serve as an interface for collecting text labels. 

Of course, this level of calibration is required only if the fixture or appliance’s disaggregation 

signature is different among homes. Unfortunately, based on our research, the shape of the water 

transients used by HydroSense appear to be affected by the plumbing layout of the home, making it 

unlikely that template signatures can be easily shared across homes. Indeed, in preliminary analysis 

we found little correlation between transient signals for similar fixture types across homes. Future 

work is needed to derive what aspects of the water pressure signal, if any, are invariant to a home. 

For example, water usage durations and relative pressure drops are much more robust cross-home 

signatures than the pressure transients themselves—e.g., a bath has a larger pressure delta than a 

shower when activated, while both have larger pressure deltas than a faucet. If particular features 

are identified as home invariant, a distributed crowd-sourcing approach for signature labeling could 

be used. Recently, researchers have begun exploring opportunities for cloud-based and crowd-

sourced classification models (e.g., Lane et al., 2011). However, we are unaware of any past work 

that attempts to share water usage signatures to ease calibration. 

Future work could also look at the feasibility of an unsupervised classification approach that does 

not require a user-created database of signatures and labels. Instead, such a system would learn 

signatures over time and acquire the labels later from the user by employing a carefully designed 

labeling interface. For example, the eco-feedback system might state, “The second-most water 

consuming fixture/appliance in your home has yet to be labeled. We think it’s the master bathroom 

toilet, which was last flushed 5 minutes ago. Is this correct?” In this way, the calibration effort would 

be amortized over a longer time. Roberts and Kuhns (2010) are in the early stages of evaluating an 

electricity-based disaggregation system that uses an unsupervised learning approach combined with 

                                                           
35 In fact, it is currently unclear exactly how much training data is necessary from each fixture/valve to reach reasonable 

levels of accuracy. We ran an “amount of training data” experiment on the five deployment sites in Chapter 8; however, this 

experiment was setup to test days of data necessary for training (so it more closely parallels a semi-supervised learning 

approach) rather than the number of samples necessary from each fixture/appliance. This is an open area for future work. 
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user intervention to provide semantic labels, but we are unaware of similar work for water-based 

disaggregation. 

Other classification and inference areas to explore. A number of other areas are worth exploring, 

such as: applying HydroSense to detect leaks, evaluating HydroSense’s ability to classify outdoor 

water usage, and combining a meter-based flow-trace approach with HydroSense to boost 

disaggregation and flow inference performance. As flow-trace analysis (see Chapter 2) is the closest 

disaggregation sensing technique to HydroSense, future work should also empirically compare and 

contrast these two approaches more directly. 

Applications of HydroSense beyond eco-feedback. Although this dissertation focused specifically on 

sensing to support eco-feedback on residential water usage, HydroSense has application to other 

areas as well. I will discuss two here: health applications and urban informatics applications. 

 
Figure 10.4: Future applications of HydroSense could attempt to infer higher level activities from water usage, 

which may aid assistive care applications. This figure shows a water usage pattern of a man shaving, which was 

taken from A1 in our real-world dataset from Chapter 8. The red pressure stream is the hot water line, the blue 

pressure stream is the cold water line. 

Low-cost and easy-to-install methods to monitor activity for elder care and assisted living 

applications have long been a focus of Ubicomp and HCI research. As the baby boomer population 

ages, this focus is likely to receive even more attention. Because water is fundamental to many 

activities of human life (e.g., bathing and cooking), sensing disaggregated water usage should be a 
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useful proxy for monitoring activities of daily living.36 As a first step, we plan to analyze and explore 

patterns of water usage in the longitudinal dataset we collected in Chapter 8. One goal is to see if 

we can use water usage inference to build models of higher level activities (e.g., cooking in the 

kitchen, shaving in the bathroom). As an example, Figure 10.4 shows a potentially identifiable 

pattern of a man shaving: a series of quick on/off water usages (12 times) at the bathroom sink. 

 
Figure 10.5: HydroSense can be used for applications beyond eco-feedback. For example, in this figure, 

disaggregated water usage is used in an envisioned assistive care application to automatically alert care givers to a 

potentially health threatening situation.  

Another one of our goals is to build water usage models to detect anomalous activity. An assistive 

care application, for example, could use this model to automatically detect when a person has not 

been following his/her morning routine (e.g., no bathroom water activity) and take appropriate 

action (e.g., alert a care provider). See, for example, Figure 10.5. We are also interested in 

investigating whether patterns in water usage can reveal issues with dementia (e.g., forgetting to 

flush the toilet or maintain proper hygiene is a common symptom) and to support studies of health 

and hygiene practices (e.g., looking at patterns of toilet and faucet usage, see: Wilkes, 2005). These 

potential directions are all enabled by disaggregated water usage sensing. Of course, these scenarios 

also re-emphasize the importance of privacy and security around disaggregated water data as it can 

be used to derive much information about a home and the activities therein. 

                                                           
36 Health professionals often use the ability or inability to perform activities of daily living as a measurement of the 

functional status of a person. 
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A second potential application area is in urban informatics. Urban informatics is the study and 

design of new urban experiences enabled by an increasingly digital environment (Foth, 2009). In this 

dissertation, we explored individual household uses of HydroSense but there is also the opportunity 

to sense patterns of use across the city by uploading data to a central repository (Figure 10.6). 

Water suppliers could use this information to better target and evaluate their conservation 

campaigns (e.g., determine how many households actually used the mailed low-flow fixture rebates 

and the effect this has on water usage). Even anonymous data could aid water suppliers in creating 

better demand prediction models and governments in mandating new types of plumbing codes and 

low-flow fixture regulations. Websites could provide interactive visualizations that allow interested 

citizens to gain a different perspective on water use and water infrastructure in their city.  

 
Figure 10.6: Sensing resource use on a collective scale can reflect new insights into the pulse and rhythm of a city. 

For example, this figure, released by EPCOR, the water utility in Edmonton, Canada, shows water usage during 

the 2010 Olympic gold medal hockey game between Canada and the United States. It appears that many 

Canadians timed their trips to the bathroom to correspond with breaks in the game (i.e., between periods). 

10.2.3 Feedback Limitations and Future Work 

We transition now to our last limitations and future work section. Rather than break-up this section 

to individually address limitations in transit and water usage feedback (as we did with the sensing 

work above), we combine the discussion of both here.  
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Evaluation methodology. While the goal of our feedback evaluations was to provide a solid 

foundation for designs to be used in future behavioral intervention trials, we did not conduct such 

trials ourselves. As discussed in Chapters 1, 3 and 4, behavioral intervention trials require a great 

deal of time, personnel resources, and cost. Thus, we have argued that it is of great importance, and 

one of the HCI/Ubicomp community’s strengths, to apply an iterative design process to evolve and 

polish feedback designs before such studies are undertaken. Our evaluations, for example, identified 

a number of important interface elements that designers should consider in any eco-feedback 

design including actionability, motivational strategies, simplicity, and a balance between pragmatic 

and artistic representations of information. Our hope is that the eco-feedback designs presented in 

Chapters 5 and 9 can be iterated upon based on our findings, then deployed and evaluated in 

behavioral intervention trials in collaboration with environmental psychologists. These longitudinal 

deployments are necessary to answer questions such as: which designs or design elements are most 

effective at impacting behavior? What sort of novelty effects exist? Once deployed, how are the 

eco-feedback systems perceived in terms of revealing private information either to members of the 

household or to guests/visitors? Do these findings differ from this dissertation’s survey and 

interview findings?  

To begin to address these issues, we have deployed an eco-feedback system for water usage in two 

researchers’ homes (see Figure 10.7; based on Chapter 9). Reactions from the four adult household 

members suggest that the display has a noticeable effect in making otherwise obscure household 

activities visible (e.g., a late-afternoon shower indicates one person has gone for a run) and that 

some display locations may feel more intrusive than others (e.g., bathroom vs. kitchen).  In addition, 

because HydroSense is a probabilistic sensing system, household members in both homes observed 

errors in the display. This issue suggests that representing confidence margins in the display may be 

useful, and highlights the need to determine to what degree, if any, users will accept inaccurate 

inferences in eco-feedback or are willing to intervene and correct inaccuracies. Future deployments 

are needed to explore these reactions and perceptions more deeply. 
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Figure 10.7: Prototype disaggregated water usage eco-feedback displays running in a researcher’s (a) kitchen and 

(b) bathroom. These systems have been running intermittently in two researchers’ homes for multiple months to 

debug the real-time sensing system, iterate on visual designs, and study in situ reactions to the displays. 

Study sample. As already mentioned in the foundational limitations section, most of our study 

participants were biased towards proenvironmental attitudes and beliefs. At worst, this limits our 

findings and implications to a narrower population: namely, those interested in the environment 

(though our sample likely represents early adopters of eco-feedback systems and thus offers a 

relevant perspective). In the future, it is important to extend our work to other types of study 

populations (e.g., those with neutral or negative environmental attitudes). We note, however, that 

certain findings will likely extend to more general user populations. We would expect those designs 

that tested poorly with self-interested participants will likely also not perform well on a neutral or 

disinterested population.  

An additional area of future work here is to compare and contrast eco-feedback techniques and 

designs across different cultures and regions of the world. For example, a well‐known finding in 

cross‐culture personality research is that Westerners (e.g., Americans) tend to be more individually 

oriented and that Easterners (e.g., Chinese) tend to be more socially oriented (Yang, 1986). A 

potential implication is that eco-feedback designs that focus on social groups or the larger collective 

may be a more effective motivator of pro‐environmental behavior for Eastern individuals than their 

Western counterparts. A second example involves the ways in which Western and Eastern cultures 

tend to react to feedback about the self. In an experiment conducted by Heine et al. (2001) 

participants from various cultural backgrounds received negative feedback about their performance 

on a task. Whereas North Americans tended to discount the significance of the negative feedback, 

the Japanese were highly responsive and showed evidence of reduced confidence in their ability to 

perform tasks similar to the experimental task. These sorts of findings demonstrate a need to think 

a. b. 
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about and study cross-cultural differences in attitudes and behaviors related to the environment as 

well as in how eco-feedback systems may be perceived and understood. 

10.2.4 General Challenges and Opportunities for Eco-Feedback Research 

A full life-cycle assessment of an eco-feedback system. For eco-feedback to be successful, it must 

result in a net reduction of environmental impact, including the cost of the manufacturing and 

distribution of the eco-feedback system, the energy used by the system over its lifetime, and the 

environmental impact of the eventual disposal of the device. This analysis is critically important, yet 

we are unaware of any eco-feedback work that takes it into account. Eco-feedback systems should 

be designed to be low power and with “green” materials, though admittedly these are two 

challenging design and engineering tasks. For HydroSense, we recently published preliminary work 

on a self-powered version called WATTr (Campbell et al., 2010). Another potential approach is 

simply to adopt existing systems for eco-feedback. With UbiGreen, for example, the primary 

interface was a standard mobile phone. Tools such as Bonnani et al.’s (2010) SourceMap, which 

relies on crowd sourcing to perform lifecycle assessment, could also be used in conjunction with 

eco-feedback pursuits. 

An (over)focus on the individual? Much eco-feedback research has focused on how to inform or 

modify individual behaviors that directly affect the environment. Individual actions have the 

potential to translate to much larger impacts, for example, in voting or participating in 

proenvironmental movements (Stern, 2000b) or when individuals influence the actions of 

organizations to which they belong—e.g., engineers may choose to use environmentally benign 

materials, designers may emphasize the material lifecycle of their products. The CHI 2011 

Sustainability Panel (Khan et al., 2011) attempted to further highlight this opportunity by examining 

ways in which HCI can target users beyond the end-consumer such as designers, architects, urban 

planners or even the construction workers and consider interfaces and interactions that support 

sustainable design, manufacturing and construction. This is eco-feedback on a broader scale, 

demonstrating the impact of organizational, political, or building decisions on the environment. 

Surveillance and regulation. In Chapter 9, we found that some participants reacted negatively to 

certain visual designs because they felt overly intrusive. Eco-feedback systems that sense and 

feedback disaggregate resource use are particularly susceptible to abuse because of the amount of 

information that is revealed about activities in the home. As Dourish (2010) notes, “technologies 
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designed to monitor and record actions, particularly with respect to their environmental 

consequences, are clearly also a natural path for various forms of surveillance and regulation.”  

Thus, security and privacy need to be important components of future system design. 

Moving towards the ideal eco-feedback system. The ideal eco-feedback system will likely be one 

that requires the least amount of effort and time to use. Eco-feedback designers should consider not 

just the best ways of representing consumption data but also how this data can be analyzed and 

used to recommend the best actions to take for the least amount of effort to reduce a person’s 

environmental footprint. These suggestions should be personalized based on the sensed activities of 

the individual and, perhaps, their demographics. In addition, in the case of home resource 

consumption, the eco-feedback display should not be seen in isolation but rather as a larger part of 

a home automation network that can automatically control devices and appliances in the home to 

increase efficiency.  

10.3 FINAL REMARKS 

We are at the precipice of a new era of computing; one where small sensors, sophisticated machine 

learning algorithms, and new types of interfaces will render otherwise latent patterns in our lives 

visible. These sensing and feedback systems will empower their users by providing new insights into 

the impacts of their behaviors on their health and the environment around them. As designers and 

HCI/Ubicomp researchers, it is our role to help define the future of these systems and determine the 

most effective strategies for sensing and feedback. One lingering challenge is how to reconcile all of 

these information sources to limit attentional demand. In this way, eco-feedback systems of the 

future should not simply be feedback systems, but rather, personalized recommendation engines 

guiding us to minimize our environmental footprint. 

Finally, eco-feedback is but one tool to effect change. Environmental sustainability is a complex, 

global problem that will require a combination of technical, behavioral, political, and socio-

economic solutions. Although most eco-feedback work, including our own, has focused on informing 

individual action, the true power of eco-feedback may ultimately be in the cascading effects of those 

actions on influencing larger-scale cultural change. 
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  Appendix A.

References Used for Comparative Eco-

Feedback Review 

The following list of references was used for the comparative review of eco-feedback research 

presented in Chapter 3. 
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0

6
 HCI/Ubicomp Papers Discussing Eco-feedback 

First Author Paper Title Venue Paper Type Year Eco-
Feedback? 

Artifact Primary Visual Representation Study 

Al Mahmud, A. iParrot: Towards Designing a Persuasive Agent 
for Energy Conservation 

Persuasive Short 2007 Yes Embodied Intelligent Agent Embodied Agent Yes, laboratory study to 
measure subjective response 

Aoki, P.M. A vehicle for research: using street sweepers to 
explore the landscape of environmental 
community action 

CHI Full 2009 Yes, citizen 
science 

   

Arroyo, E. Waterbot: Exploring Feedback and Persuasive 
Techniques at the Sink. 

CHI Full 2005 Yes Ambient Artifact Prototype Ambient Yes, qualitative laboratory 
evaluation 

Bang, M. The PowerHouse: A Persuasive Computer Game 
Designed to Raise Awareness of Domestic 
Energy Consumption  

Persuasive Full 2006 Yes, virtual Desktop Computer Game Game No 

Bang, M. Promoting New Patterns in Household Energy 
Consumption with Pervasive Learning Games 

Persuasive Full 2007 Yes Mobile Phone Game Game No 

Bray, R. Informative Smart Green Office Buildings UbiComp Workshop 2007 Yes Ambient Displays in Office 
Buidling 

Not disclosed No 

Brewer, R.S. Carbon Metric Collection and Analysis with the 
Personal Environmental Tracker 

UbiComp Workshop 2008 Yes Proposed Carbon Tracker Not disclosed No 

Chen, Z.C-L. Live Sustainability: A System for Persuading 
Users Toward Environmental Sustainability 

UbiComp Workshop 2008 Yes Proposed website to track 
CO2 

Website No 

Chetty, M. Getting to Green: Understanding Resource 
Consumption in the Home 

UbiComp Full 2008 Yes, essay    

Dada, A. The Potential of UbiComp Technologies to 
Determine the Carbon Footprints of Products 

Pervasive Workshop 2008 Yes, product 
lifecycle 

Mobile Phone Prototype 
Application 

Text No 

Dillahunt, T. Motivating Environmentally Sustainable Behavior 
Changes with a Virtual Polar Bear 

Pervasive Workshop 2008 Yes Flash-based virtual polar 
bear 

Abstract (polar bear) Yes 

DiSalvo, C. Nourishing the ground for sustainable HCI: 
considerations from ecologically engaged art 

CHI Full 2009 Yes, essay    

Dourish, P. Points of Persuasion: Strategic Essentialism and 
Environmental Sustainability 

Pervasive Workshop 2008 Yes, essay    

Fitzpatrick, G. Technology-Enabled Feedback on Domestic 
Energy Consumption: Articulating a Set of 
Design Concerns 

IEEE Pervasive 
Computing 

Magazine 2009 Yes, essay    

Froehlich, J. Sensing Opportunities for Personalized Feedback 
Technology to Reduce Consumption. 

CHI Workshop 2009 Yes, essay    

Froehlich, J. UbiGreen: investigating a mobile tool for 
tracking and supporting green transportation 
habits 

CHI Extended 
abstracts 

2009 Yes Mobile Phone Ambient 
Display 

Abstract (Tree and Polar Bear) Yes, primarily qualitative 

Gartland, A.A. Weigh your waste: a sustainable way to reduce 
waste 

CHI Extended 
abstracts 

2009 Yes Interactive touchscreen for 
garbage history 

Interactive Touchscreen Yes, qualititative evaluations  

Grevet, C. Workshop on Defining the Role of HCI in the CHI Workshop 2009 Yes, essay    
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Challenges of Sustainability: Position Paper 

Gustafsson, A. The power-aware cord: energy awareness 
through ambient information display 

CHI Extended 
abstracts 

2005 Yes Ambient Artifact Prototype Ambient Yes, qualitative laboratory 
evaluation 

Gyllensward, M. Visualizing Energy Consumption of Radiators Persuasive Short 2006 Yes Ambient Artifact Prototype Ambient Yes, qualitatative interviews 

Ham, J. Can Ambient Persuasive Technology Persuade 
Unconsciously? Using Subliminal Feedback to 
Influence Energy Consumption Ratings of 
Household Appliances 

Persuasive Extended 
abstracts 

2009 Yes Embodied Virtual Agent Embodied Agent Yes 

He, H.A. Motivating Sustainable Energy Consumption in 
the Home.  

CHI Workshop 2009 Yes, essay    

Hickey, S. Using Feedback to Enhance Use Phase Efficiency 
of Personal Computers 

IEEE Symposium 
on Electronics 
and the 
Environment 

Full 2009 Yes Computer Widget Graph and star rating No 

Hill, D. The New Well-Tempered Environment: Tuning 
Buildings and Cities 

Pervasive Workshop 2008 Yes Proprosed Feedback 
Interfaces for Buildings  

Not Disclosed (proposed system 
in text) 

No 

Holmes, T. Eco-visualization: combining art and technology 
to reduce energy consumption 

Creativity and 
Cognition 

Full 2007 Yes Ambient Eco-Visualizations Ambient No, art project deployment 

Holstius, D. Infotropism: Living and Robotic Plants as 
Interactive Displays 

DIS Full 2004 Yes Ambient Artifact Prototype Abstract (an actual plant!) Yes, both qualitative and 
quantitative 

Hooker, B. The Pollution e-Sign UbiComp Workshop 2007 Yes Ambient Artifact Prototype Ambient Yes, three public site field tests 

Kappel, K. "show-me": water consumption at a glance to 
promote water conservation in the shower  

Persuasive Full 2009 Yes Ambient Artifact Prototype Bar Graph Yes 

Khan, O. Promoting Environmentally Sustainable 
Behaviors Using Social Marketing in Emerging 
Persuasive Technologies 

Pervasive Workshop 2008 Yes, essay    

Kim, J-W. The Tenere: Design for Supporting Energy 
Conservation Behaviors 

CHI Extended 
abstracts 

2009 Yes Small Ambient Screen at 
Power Outlet 

Abstract (tree that changes based 
on energy usage) 

No 

Kim, T. Coralog: use-aware visualization connecting 
human micro-activities to environmental change 

CHI Extended 
abstracts 

2009 Yes Ambient Computer Widget Abstract (Coral Reef) Yes,  primarily qualitative 

Lin, H-C. GreenSweeper: A Persuasive Mobile Game for 
Environmental Awareness 

UbiComp Workshop 2008 Yes Game Game No 

Ljungblad, S. Everyday Visualization to Support a Sustainable 
Development 

UbiComp Workshop 2007 Yes Proposed vision  No 

Loke, S.W. Context-Aware Pervasive Persuasive Systems for 
Managing Water and Energy Usage, and CO2 
Emissions: Multi-Levelled Policies, Goals, and an 
Expert Systems Shell Approach 

Pervasive Workshop 2008 Yes, essay    

Luther, K. Pathfinder: an online collaboration environment 
for citizen scientists 

CHI Full 2009 Yes, citizen 
science 

   

Mankoff, J.C. Environmental sustainability and interaction CHI Extended 
abstracts 

2007 Yes, essay    

Mankoff, J.C. Leveraging Social Networks To Motivate 
Individuals to Reduce their Ecological Footprints 

HICSS Full 2007 Yes Proposed Carbon Tracking 
Social Network 

Website No 
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Mathew, A. Using the environment as an interactive 
interface to motivate positive behavior change in 
a subway station 

CHI Extended 
abstracts 

2005 Yes Proposed Ambient Systems 
to Motivate Transit 

Ambient No 

McCalley, T. Persuasive Appliances: Goal Priming and 
Behavioral Response to Product-Integrated 
Energy Feedback 

Persuasive Short 2006 Yes Lab Simulation Slides (e.g., conservation tips) Yes, laboratory 

Midden, C. Using persuasive technology to encourage 
sustainable behavior 

Pervasive Workshop 2008 Yes, essay    

Oakley, I. Motivating Sustainable Behavior UbiComp Workshop 2008 Yes, essay    

Odom, W. Social Incentive & Eco-Visualization Displays: 
Toward Persuading Greater Change in 
Dormitory Communities 

OZCHI 
Workshop 

Workshop 2008 Yes Feedback website for dorm's 
resource consumption 

Website Yes 

Paulos, E. Jetsam: Exposing our Everyday Discarded 
Objects 

UbiComp Extended 
abstracts 

2006 Yes Ambient Artifact Prototype Ambient Yes, qualitative deployment in 
city 

Paulos, E. Ubiquitous Sustainability: Citizen Science & 
Activism 

UbiComp Workshop 2008 Yes, citizen 
activism 

   

Paxton, M. Participate: Producing a Mass Scale 
Environmental Campaign for Pervasive 
Technology 

Pervasive Workshop 2008 Yes Mobile Phone Game 
Proposed 

Not disclosed: game elements No 

Petersen, D. WattBot: a residential electricity monitoring and 
feedback system 

CHI Extended 
abstracts 

2009 Yes Website Prototype Bar Graph Yes, website prototype 
evaluation 

Pierce, J. Energy Aware Dwelling: A Critical Survey of 
Interaction Design for Eco-Visualizations 

OZCHI Full 2008 Yes, essay    

Pousman, Z. The Design of Imprint: "Walk the Walk" and 
Other Lessons 

Pervasive Workshop 2008 Yes Touch screen display above 
printers (public) 

Graphs (bar, pie, stripmap) and 
numbers 

Yes 

Ravandi, M. Development of an Emotional Interface for 
Sustainable Water Consumption in the Home 

HCII Full 2009 Yes Ambient Display (LCD) 
Prototype 

Real-time & historical feedback; 
"emotional design" 

No 

Reitberger, W. The PerCues Framework and Its Application for 
Sustainable Mobility 

Persuasive Short 2007 Yes Proposed Mobile Phone 
Visualization 

Numeric and Abstract Data Yes, laboratory study using 
paratype method 

Shiraishi, M. Using individual, social and economic persuasion 
techniques to reduce CO2 emissions in a family 
setting (Eco-Island) 

Persuasive Full 2009 Yes Ambient Display (for living 
room) and Website 

Game with CO2 tracking Yes, both qualitative and 
quantitative 

Sohn, M. Designing with unconscious human behaviors 
for eco-friendly interaction 

CHI Extended 
abstracts 

2009 Yes Set of Proposed Feedback 
Ambient Feedback artifacts 

Ambient No 

Stein, J. TerraPed: A Design Concept for Sustainability Pervasive Workshop 2008 Yes Website Concept A variety (it's a website); basic 
visual portrayal is footprint 

No 

Strengers, Y. Challenging Comfort & Cleanliness Norms 
through Interactive In-Home Feedback Systems 

Pervasive Workshop 2008 Yes EcoMeter Line graphs Yes, ethnographic of people 
using EcoMeter 

Stringer, M. Kuckuck – Exploring Ways of Sensing and 
Displaying Energy Consumption Information in 
the Home 

UbiComp Workshop 2007 Yes Computer Interface for 
Electricity Usage 

Line graphs Yes, one household 

Tomlinson, B. Prototyping a Community-Generated, Mobile 
Device-Enabled Database of Environmental 
Impact Reviews of Consumer Products 

HICSS Full 2008 Yes, product 
lifecycle 

Mobile Phone Prototype 
Application 

Website and Mobile Yes, actual deployment 

Xiao, J. PrintMarmoset: redesigning the print button for CHI Short 2009 Yes Prototype: browser extension Casual information visualizations Yes, laboratory 
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sustainability (vague description: track print 
jobs and paper consumption over 
time) 

Yun, T-J. Investigating the impact of a minimalist in-home 
energy consumption display 

CHI Extended 
abstracts 

2009 Yes Two Ambient Artifact 
Prototypes 

Bar Graph Yes, quantative and qualitative 

Zapico, J.L. Climate persuasive services: changing behavior 
towards low-carbon lifestyles 

Persuasive Full 2009 Yes, essay    

 

Environmental Psychology (and Related) Papers Using Eco-feedback Technology 

Citation Year Number of Groups Num 
Participants 

Study 
Conditions 

Study Duration Resourc
e 

Compared To Device Type 

Brandon, G. and Lewis, A. (1999). Reducing household energy 
consumption: a qualitative and quantitative field study. Journal 
of Experimental Psychology, 19, 58-74. 

1999 7 groups (N=120): 
1. Self vs. others comparison 
(N=~17) 
2. Self vs. self (N=~17) 
3. Financial values (N=~17) 
4. Environmental values (N=~17) 
5. Leaflet presentation (N=~17) 
6. Electronic feedback (N=~17) 
7. Control (N=~17) 

120 7 ~9 mos Electricit
y 

Previous year over same time 
frame from utility data 
(weather corrected) 

PC 

Dobson, J.K. and Griffin, J.D.A. . (1992). Conservation effect of 
immediate electricity cost feedback on residential consumption 
behavior. Proceedings of the ACEEE 1992 Study on Energy 
Efficiency in Buildings, 33-35. 

1992 3 groups (N=100): 
1. Contact control (N=~33) 
2. Blind control (N=~33) 
3. Electronic feedback (N=~33) 

100 3 2 mos Electricit
y 

Previous year over same time 
frame from utility data 
(weather corrected) 

PC 

Hutton, R.B., Mauser, G.A., Filiatrault, P., and Ahtola, O.T. (1986). 
Effects of cost-related feedback on consumer knowledge and 
consumption behavior: A field experimental approach. Journal of 
Consumer Research, 13(3), 327-336. 

1986 4 groups (Quebec, N=271; BC, 
N=277, CA, N=236): 
1. Electronic feedback (Q=92, 
BC=93, CA=95) 
2. Education (Q=95, BC=92, CA=76) 
3. Control (Q=84, BC=92, CA=65) 
4. Blind control (N/A) 

784 4 12 mos baseline 
12 mos intervention 
12 mos post-
intervention 

Electricit
y and 
Gas 

12 months of baseline data  
prior to intervention 

LED Display 
with buttons  
for mode 
switching 

Keirstead, J. (2008). Behavioural responses to photovoltaic 
systems in the UK domestic sector. Energy Policy, 35, 4128-4141. 

2007 1 group (N=118 but 91 responded) 
and 63 interviews 

91 N/A Questionnaires Electricit
y 

 1 line LCD 
display 

Kohlenberg, R., Phillips, T., and Proctor, W. (1976). A behavioral 
analysis of peaking in residential electrical-energy consumers. 
Journal of Applied Behavior Analysis, 9(1), 13-18. 

1976 N = 3 3 3 3 months 
2 weeks baseline 
2 weeks information 
instructions 
2 weeks feedback 
2 weeks baseline 
2 weeks incentive w/ 
feedback 
2 weeks baseline 

Electricit
y 

Baseline collected in three 2-
week periods throughout study 

Lightbulb 
would light 
up when use 
within 90% of 
peak from 
baseline 
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McCalley, L. T., and Midden, C. J. H. (2002). Energy conservation 
through product-integrated feedback: The roles of goal-setting 
and social orientation. Journal of Economic Psychology, 23, 589–
603. 

2002 4 groups (N = 100) 
1. Feedback with no goal 
manipulation (N=25) 
2. Feedback with a self-set goal 
(N=25) 
3. Feedback with an experimentor 
assigned goal (N=25) 
4. No feedback no goal (N=25) 

100 4 single session lab study Electricit
y 

Baseline trials at beginning of 
study 

Washing 
machine 
control panel 

Mountain, D. (2006). The Impact of Real-Time Feedback on 
Residential Electricity Consumption: The Hydro One Pilot. March 
2006. 

2006 2 groups (N=552): 
1. Electronic Feedback (N=500) 
2. Control (N=52) 

552 2 18 mos baseline 
12 mos intervention 

Electricit
y 

18 months of baseline data  
prior to intervention 

 

Petersen, J. E, Shunturov, V., Janda, K., Platt, G., and 
Weinberger, K. (2005). Does providing dormitory residents with 
feedback on energy and water use lead to reduced 
consumption? Proceedings of Greening the Campus VI. 

Petersen, J.E., Shunturov, V., Janda, K., Platt, G., and 
Weinberger, K. (2007). Dormitory residents reduce electricity 
consumption when exposed to real-time visual feedback and 
incentives. International Journal of Sustainability in Higher 
Education, 8(1), 16-33. 

2007 3 groups: 
1. High resolution real-time data (2 
dormitories) 
2. Low resolution weekly data (16 
dormitories) 
3. 2 dorm floors received no 
feedback 

dormitories 3 ~5 weeks total: 
3 weeks baseline 
2 weeks intervention (a 
campuswide energy 
saving competition) 

Electricit
y and 
Water 

3 weeks of baseline prior to 
intervention 

Website 

Sexton, R. J., Johnson, N. B., and Konakayama, A. (1987). 
Consumer response to continuous-display electricity-use 
monitors in a time-of-use pricing experiment. Journal of 
Consumer Research 14(1), 55-62. 

1987 2 groups: (N = 218) 
1. experimental group randomly 
chosen from all customers (N =68) 
2. control group (N = 150) 

218 2 2 years: 
1 year baseline 
1 year intervention 

Electricit
y 

Previous year's consumption 
data 

Digital 
display 

Ueno, T., Inada, R., Osamu, S., Tsuji, K. Effectiveness of 
Displaying energy Consumption Data in Residential Houses: 
Analysis on how the Residents Respond. Proc. ECEEE 2005, 
1289-1299. 

Ueno T., Sano, F., Saeki, O., Tsuji, K.. (2006). Effectiveness of an 
energy-consumption information system on energy savings in 
residential houses based on monitored data. Applied Energy 83, 
166–183. 

2005 2 Groups (N=19): 
1. Control (N=9) 
2. Electronic Feedback (N=10) 

19 2 ~9 mos Electricit
y and 
Gas 

 “Information 
Terminal” 
(PC) 

Van Houwelingen, J.H. and Van Raaij, W. (1989). The Effect of 
Goal-Setting and Daily Electronic Feedback on In-Home Energy 
Use. Journal of Consumer Research, 16(1), 98-105. 

1989 6 groups (N=285 after attrition) 
1. The Indicator 
2. Monthly external feedback 
3. Self-monitoring 
4. Conservation info only 
5. Control group 1 
6. Control group 2 

285 6 3 years: 
1 year baseline 
1 year intervention 
1 year followup 

Natural 
gas 

Previous year's consumption 
data 

Digital 
display 

Wood, G., Newborough, M. (2003). Dynamic Energy-
Consumption Indicators for Domestic Appliances: Environment, 
Behavior and Design. Energy and Buildings 35,  821-841. 

1999 4 groups (N=41): 
1. Control (N=12) 
2. Information packet (N=12) 
3. Electronic feedback (N=10) 
4. Packet + feedback (N=9) 

41 4 ~2.5 mos baseline  
2 mos intervention 

Electricit
y (at 
electric 
stove) 

~2.5 months of baseline data 
prior to intervention 

Custom 5-
line LCD 
display 
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  Appendix B.

Survey Materials for Formative Water Study 

This appendix contains screenshots from the nine pages of the online survey presented in Chapter 6. 

The right-hand column in each screenshot specifies whether an answer was required for each 

question. 
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  Appendix C.

Pilot Testing of Water Usage Displays 

The displays used in Chapter 9 were developed using an iterative process of design critiques and 

three pilot studies. Each pilot study involved semi-structured interviews with 15-20 participants 

recruited on a college campus. Interviews lasted 10-30 minutes and sought positive and negative 

feedback on multiple design ideas presented in sketch form or on an electronic display. This 

appendix describes the fixture icon and comparison pilot testing process. 

Fixture Icons 
We pilot tested several sets of fixture icons with 19 participants. The icon sets are shown in Figure 

C.1, with the final set used in our designs found at the bottom of the figure. Subjective feedback 

results from participants are shown in Table C.1. 
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Figure C.1: The seven fixture icon sets used in pilot testing. The last row is the final, iterated icon set based on 

feedback from our pilot tests. 

 

This set was designed by an external designer who did not approve public release. 
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Table C.1: The results from pilot evaluation of the various fixture/appliance icons shown in Figure C.1 with 19 

participants. Participants were first asked to select their favorite icon from each column and then their favorite 

icon set (row). Participants could select more than one option for both questions. 

Comparison Strategies 

Pilot Testing and Iterating on Visual Depictions of Comparison Data 

Using the bar graph as our base design, we brainstormed approximately fifteen different ways of 

visualizing comparison data. In particular we focused on visualizing an average value in comparison 

to the current value for each bar (e.g., rendering daily average data juxtaposed to the “so far today” 

data).  The designs we ultimately pilot tested are shown in Figure C.2, along with a baseline that 

offers no comparison. These options can be differentiated along a number of different design 

decisions: 

 What should carry more visual weight: the current value or the average value? In our case, 
we decided that the current usage amount was the primary data point and that the 
comparison data was complementary. Our designs reflected this decision. Design 6 is the 
only design in which both the current value and the average value are rendered with similar 
visual weight. 

 Should overages be emphasized—in other words, should the design visually differentiate 
current usage data that has surpassed the average? Similarly, should the design indicate 
when a current value is getting close to the average? Four of our designs (1, 2, 5, and 7) 
visually indicated when a current value passed the average. The others made no visual 
distinction.  

 How to visualize the average value itself? Should it be as a tick mark, as a line, as an 
additional bar? Each of these visual techniques has tradeoffs in visual noise, 
comprehensibility, and familiarity.  

 Visualizing averages as gray backdrops (“back shadows”): Designs 1, 2, 3 and 5 dually 
encoded the average amount both with a tick, line or some other visual indication in 
addition to a subtle back shadow, which was the size and height of the value bar but faded 
to dark gray (and thus perceived to be in the background). Back shadows subtly allow the 
user to compare their current usage with typical (average) usage. 

 

Design Overall Dishwasher Laundry

Kitchen 

Sink

Bathroom 

Sink Shower Toilet Bath

# Winning 

Categories

1 8 10 4 4 0 1 2 1 1

2 4 1 0 5 2 7 0 3 1

3 5 2 8 4 12 9 7 4 4

4 3 0 0 2 0 0 1 1 0

5 4 4 4 1 4 1 3 2 0

6 5 3 2 2 0 3 6 7 1

7 3 1 3 1 4 1 0 3 0
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Figure C.2: The seven comparison designs used in pilot testing and the baseline (top-left) Each comparison design 

is numbered in bottom-left corner. The two-bar designs (4 and 6) received the most positive feedback. 

1 

2 3 

4 5 

6 7 
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Table C.2: A description of the seven different visual designs (Figure C.2) for rendering comparison data along 

with the results from pilot testing. Seventeen participants were shown the designs and asked to vote for their 

favorite and least favorite. 

We filtered the fifteen original comparison designs down to the seven shown in Figure C.2 based on 

an internal vote within the research group. The vote incorporated individual favorites as well as the 

objective to include a diverse range of approaches. We pilot tested these seven remaining designs 

with seventeen participants. Participants were approached randomly on the University of 

Washington campus while waiting for their food at a local taco bus. As a consequence, pilot 

participants were primarily students, faculty and staff. The designs were shown on a 1280x800 

touchscreen laptop. These pilot tests were designed to be informal and semi-structured. 

Participants were rewarded with a small candy bar (or two) of their choice for participating. 

We found that the two-bar designs (Designs 4 and 6), in general, were the most understandable and 

the most preferred. Unlike many of the other designs, the two-bar visualizations seemed familiar to 

our participants and, in this way, seemed more approachable and less confusing. One pilot 

participant remarked, “I like having two bars because it reminds me of what’s in the newspapers” 

and another said, “I’m used to seeing it [data] in that way.” Those who did not like the two-bar 

designs felt that it seemed like “too much information” and that it took away from reading and 

comparing the current value bars. A few participants mentioned not liking the sideways text in 

Design 4 and one observed that the “hanging line draws your attention more to what fixtures are 

not over the average rather than which fixtures are.”  

Participants who voted for the first design liked that the overages were immediately apparent by 

the darker blue and that each number was clearly labeled. The issue with this sort of design, 

however, is that a collision occurs when the average and current amount are close in value. We 

designed around this issue for pilot testing by specifically setting values apart so that these collisions 

did not occur but this issue would have to be solved for an actual deployment. 

Design

One Bar 

or Two Backshadow

Visualization for 

Average Location

Visual Change When 

Average Passed

Most

Favorite

Least 

Favorite

1 One Yes Text only Yes 3 0

2 One Yes Triangle tick mark (inside bar) Yes 0 1

3 One Yes Inverse hockey stick No 0 3

4 Two No Bar plus line No 9 6

5 One Yes Triangle tick mark (outside bar) Yes 2 2

6 Two No Bar No 3 2

7 One No Floating line Yes 0 2
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We found two main issues with the use of back shadows: (1) back shadows are reminiscent of 

progress bars in that the current value seems to fill along them—but progressing towards the 

average is not necessarily the intent of the design making it a somewhat malformed technique; and 

(2) if the current value passes the average, the back shadow is no longer visible. We found this to be 

confusing. 

After reviewing this feedback, we determined that the best approach would be to utilize a two-bar 

design. These designs were the most liked amongst our participants and seemed well-understood. 

The primary criticism was that the second bar (for the average) was distracting. We attempted to 

minimize this by drawing the average bar smaller than the current value bar and coloring it with a 

darker blue tone. The final comparison design is shown in Figure C.3. 

 
Figure C.3: The final comparison design after iteration based on feedback from pilot testing. 
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  Appendix D.

Evolution of Water Display Design Probes 

The final design probes described in Chapter 9 evolved through an iterative process including design 

critiques and pilot testing. This appendix provides samples of these evolving designs. 
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Figure D.1: The design evolution of the Rainflow visualization. The primary idea was to have water flow out of 

various fixtures upon use with a container filling according to the amount consumed. In this way, the containers 

themselves were really just stylized bar graphs. Later designs added tick marks to track historical averages and 

goals as well as a numerical label at the fill line showing the current amount used. One design variation had the 

containers overflow when the current volume used for any particular fixture exceeded the container size. 
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Figure D.2: The design evolution of Metaphorical Unit displays. Common objects used to convey water usage 

amounts include a 1-gallon jug, a 5-gallon jug, a 50 gallon bathtub, a 5,000 gallon above-ground pool, a 10,000 

gallon oil truck, and a 400,000 water tower.  
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Figure D.3: The design evolution of a spatial or room-based layout of water usage information. 
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Figure D.4: The design evolution of the per-occupant displays 
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Figure D.5: The design evolution of the time-series displays. 

 

  



336 

 
 

 

  Appendix E.

Survey Materials for Evaluation of Water 

Usage Displays 

This appendix contains screenshots from the 19 pages of the online survey presented in Chapter 9. 
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  Appendix F.

Water Display Interview Questions for 

Individual Members of Household 

Each adult household member who participated in the interviews discussed in Chapters 6 and 9 

completed the following short survey at the beginning of the interview session. 

Instructions to participant: This survey is for each adult member of your household. Your responses 

will be protected by an anonymous id. We will not look at your responses until we get back to our 

research lab. 

1. Age: _____________ 

2. Gender: 

 Male 

 Female 

3. Education Level: 

 12th grade or less 

 Graduated high school or equivalent 

 Some college, no degree 

 Associate’s degree 

 Bachelor’s degree 

 Post-graduate degree 

4. Profession: 

 Accounting / Finance / Banking  News / Information 
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 Administration / Clerical / Reception 

 Advertisement / PR 

 Architecture / Design 

 Arts/Leisure / Entertainment 

 Beauty / Fashion 

 Buying / Purchasing 

 Construction 

 Consulting 

 Customer Service 

 Distribution 

 Education 

 Health Care (Physical & Mental) 

 Human resources management 

 Management (Senior / Corporate) 

 Operations / Logistics 

 Planning (Meeting, Events, etc.) 

 Production 

 Real Estate 

 Research 

 Restaurant / Food service 

 Sales / Marketing 

 Science / Technology / Programming 

 Social service 

 Student 

 Other___________________________ 

 N/A - Unemployed / Retired / Homemaker 

5. I am interested in conserving water in my home. 

 Strongly Disagree  Disagree  Agree  Agree  Strongly Agree 

6. I am concerned about global climate change. 

 Strongly Disagree  Disagree  Agree  Agree  Strongly Agree 

7. I believe that global climate change will affect water supplies. 

 Strongly Disagree  Disagree  Agree  Agree  Strongly Agree 

8. I consider myself a “green” or “eco-friendly” person. 

 Strongly Disagree  Disagree  Agree  Agree  Strongly Agree 

9. Everyone has the right to use natural resources as much as they want. 

 Strongly Disagree  Disagree  Agree  Agree  Strongly Agree 

10. Most of my friends and family would be considered “green” or  “eco-friendly.” 

 Strongly Disagree  Disagree  Agree  Agree  Strongly Agree 

11. I am concerned with the availability of public supply water in my area. 

 Strongly Disagree  Disagree  Agree  Agree  Strongly Agree 

12. I am concerned with the quality of public supply water in my area. 

 Strongly Disagree  Disagree  Agree  Agree  Strongly Agree 
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  Appendix G.

Water Display Interview Questions for Entire 

Household 

In addition to the Individual Survey in Appendix D, each household that was interviewed for 

Chapters 6 and 9 completed the following household-level survey. 

Instructions to participants. This survey is for each household. Your responses will be protected by 

an anonymous id. We will not look at your responses until we get back to our research lab. 

1. What is the approximate square footage of your residence: _________________ 

2. How many bedrooms does your residence have? ____________________ 

3. How many bathrooms does your residence have?____________________ 

4. Number of adults (18 or older) in your residence:______________________ 

5. Number of children (less than 18) in your residence: ____________________ 

 5b. Please list the ages of your children: 

 ________ ________ ________ ________ ________ 

6. Do you live in a house or apartment/condo?      House      Apartment/Condo 

7. Do you own or rent your residence?      Own      Rent 

8. Does your household pay for water? 

 Yes 

 No, we do not receive a water bill because we live in an apartment/multi-family dwelling 

 No, we do not receive a water bill because we are on well water 

 Don’t know 

 No, other reason: ___________________________________________________ 
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  Appendix H.

Water Display Interview Protocol 

Household interviews conducted for Chapters 6 and 9 were based on the following interview 

questions and protocol. Green text denotes instructions to the interviewers. 

Introduction 
[Start timing! Should be at 65 minutes when ready to walk around house] We are going to interview 
each of you about your water usage activities and attitudes in the home as well as ask you about 
some water usage feedback designs that we’ve created. The interview is broken down into three 
parts: 

1. The first part of the interview asks background questions about how you use water in the home 
and how you think about water 

2. The second part of the interview asks about various water usage feedback mockup designs that 
we’ve created.  

3. Finally, in the third part of the interview, we will walk around your home a bit and talk about how 
the display might fit into various rooms. 

Part 1 – Background Questions about Water Attitudes/Knowledge 

Water Use Practices and Perceptions In The Home 
Main goals: (1) Get people comfortable answering questions and creating a rapport with you. (2) 
Household water usage practices and perceptions of water. (3) Differences in water use / perception 
across home occupants. 

4. Do you know where your water comes from? Do you ever think about where your water goes 
after you use it? Do you know where it goes? 

5. Which fixture or appliance do you think uses the most water in your home? Why? 
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6. How do different people in the family use water?  

7. Who do you think uses the most water in the home? Why is that? 

8. Do you ever think about how much water your family uses? If yes, what do you think when you 
think about it? 

[Interviewees need not provide answers that relate to conservation here—we are interested in all 
aspects of water use. Potentially probe this if interviewees only provide conservation related 
answers (e.g., how about issues outside of saving water?)] 

9. [Sense of ownership around space in the home] Do you have multiple bathrooms? Do some 
people tend to use one over the others? Can you explain how that works and why? 

10. Compared to other households with the same number of occupants as yours, do you think your 
house uses less, the same or more water than average? Why?  

Water Conservation Knowledge and Practices 
[Main goal: determine perspectives and know-how around water conservation in the home and 
tease out differences in water conservation practices and attitudes across home occupants] 

11. When you use water do you try to limit how much you’re using? How and why? [for each 
member of the household, including kids] 

12. Are there other opportunities to conserve water in your home? What would that entail? 

13. Have you ever heard of a low-flow fixtures such as low-flow showerhead or toilets? Do you know 
if you have any low flow fixtures in your home? Who installed them and why? 

Billing and Payment Practices 
[Main goal: determine relationship between cost and water in the household: if rate structures are 
understood, if price influences behavior; and who, in the household is in charge (just one person or 
more)] 

14. About how much is your water bill per month? About how much does one gallon of water cost 
you? 

15. Can you tell me a little bit about how the Seattle water rate structure works? 

16. Does the amount of money you spend on water influence your usage? Why or why not? 

17. Who looks at and pays the water bill?  

18. About how much time do you spend looking at the bill when it arrives? What do you look at? 
Why? 

Part 2 – Focus on the Eco-Feedback Display 
Now, we’re going to transition to the second part of this interview. Ordinarily, most people receive 
information on their water usage from a monthly or bi-monthly bill [show slide]. We are working on 
new technology that can immediately show people how much water they are using at each fixture in 
their home [hit enter to show next 3 displays]. 
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Today, we’re going to be focusing primarily on designs that could be shown on a laptop or on an in-
home touch screen display [hold up framed touchscreen and show slide]  

These displays can show water usage even for individual fixtures. 

Grouping the Data 
[The main point here is to introduce people to the eco-feedback displays.] 

The first set of displays are bar graphs of water consumption using three different data groupings: 
by fixture category, by individual fixture and by water usage activity. You can see the thumbnails 
here. Now, we’re going to show you each of these bar graphs enlarged to full screen and we’d like 
your initial reaction to each. 

[for each display] 

19. What do you think about the kind of information shown in this display? [potential prompts if 
necessary: Something you’d like to see for your own home? Do you think the information would be 
useful to you? If so, how?]  

[once all three displays have been shown, ask…] 

20. Which is your favorite and why? 

Introduction of Designs We’re Still Experimenting With 
We would like to get some feedback on these early ideas. For example:  

• What you like / don’t like about them.  

• What you think is attractive.  

• What might be confusing. 

• What you think might be useful about each one to conserve water.  

• Who in your family might like each one and why. 

[transcriber: make sure to note everyone’s initial reactions both verbal and non-verbal] 

[introduce each of the six quickly, then return to the first one and go through them slowly to 
discuss.] 

a. Time series: these displays show water usage broken down by time 

b. Comparison: these displays allow for comparison either within the household or to other 
households 

c. Rainflow: this display is similar to the bar graph displays you’ve seen in the past but utilize 
containers in place of bars that fill up based on water usage. It is also animated. 

d. Measurement: these displays allow for different uses of measurement units 

e. Aquatic Eco-system: the amount of water you use in your home and where you use it changes the 
eco-system in the aquarium. [try not to refer to this as a game, let game emerge from their 
description]  
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f. Per-occupant: breaks down water usage by person in the home. 

[for each of the six displays, ask the question below—remember this is supposed to be brief] 

21.What are your initial thoughts of this display? Does this kind of breakdown seem like something 
your family would like to have? Why or why not? 

[After each of the six designs (plus bar graph views) have been shown… 

Show all the displays again and ask them to choose 2-3 that they would most like to have on a 
display in their home and would be able to switch between. Tell them the adults that they don’t 
have to agree with each other. ] 

22. Why do you think the set you selected covers your family’s needs or interests? Why did you 
choose these particular designs? 

23. Beyond conservation, what do you think these displays might be useful for? [possible answers 
might include: I would be able to see if my kids are up in the morning; I could check to make sure 
that our lawn watering system is working properly; I could tell if we have leaks, etc.] 

24. What do you think might motivate different members of your family to look at displays like this? 
To conserve water? 

Per-occupant View 
[Come back to per-occupant display to specifically target some questions about competition and 
privacy.] 

25. What do you think this display would reveal about people in your home? [Possible probes: What 
about the scenario about telling when people are home? What about how long washed hands or 
didn’t wash hands?] 

26. [Privacy] Sometimes people find the idea of showing each household member’s use because 
they like the extra details, it provides accountability. Other people, on the other hand, feel like it’s 
too intrusive. How do you think the members of your family would feel about a display like this? 

27. [Competition] What do you think about using competition to motivate water conservation? 
Why? 

Part 3 - Placement in home 
Now, we’re going to transition to the third and final part of the interview. We would like you to 
think about two or three places where you might put this display in your home. We’d like to walk 
around with you and actually place the display in a location of your choosing. 

[Walk around with them and the framed touchscreen with a design loaded as they show you these 
places. Have the household members themselves choose one of the designs to have up on the 
frame as you walk around the house. Note taker should right down which display was selected! For 
each of the locations ask the following question] 

28. What do you think the pros/cons are of putting the display in this location? 

29. How does the display fit into this room? Why? [For either positive or negative, try to get them to 
elaborate on why.] 
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30. How often do you think you’d look at the display here? 

31. Who can/can’t see the display if you put it here? Do you think that’s good/bad? 

Favorite Location for Display 
32. Of the locations we’ve looked at for the display, which is your favorite? 

33. [If they decide everyone needs to access to it, ask why? If they decide some people don’t, ask 
why not?] 

34. What do the kids think? 

Quad Displays 
[bring back the quad display of the various ways of water usage feedback] 

35. Which display might be best for your home in helping you conserve water? 

Amount of Most Recent Water Bill 
36. Do you have a recent water bill? Can we see it? Would you mind if we wrote down the amount 
you used over the past year as well as how much you’ve spent? 

Interview Questions for Children 
a. How old are you? 

b. Do you ever think about where your water comes from and where it goes after it goes down the 
drain? 

c. What activity do you think you do that uses the most water? 

d. Do you ever try and limit how much water you are using? Why or why not? 

Wrap-up 
[Thank the family. Give them the payment and ask an adult to sign the receipt sheet.] 
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  Appendix I.

Water Displays Evaluated in Household 

Interviews 

The following set of slides were shown to participants during the household interviews described in 

Chapters 6 and 9. 



373 

 

  



374 

 
 

  



375 

 

  



376 

 
 

  



377 

 

  



378 

 
 

  



379 

 

  



380 

 
 

  



381 

 

 

 

  



382 

 
 

VITA 

Jon Froehlich grew up in the Midwest and wanted to be an engineer or scientist from as early as he 

can remember, thanks mostly to a love of Legos and an encouraging family. Jon received his 

Bachelor of Science degree in Computer Engineering with distinction from Iowa State University in 

2001 and his Master of Science in Information and Computer Science from the University of 

California, Irvine in 2004 where he worked with Paul Dourish on information visualization strategies 

to support distributed work teams. In 2008, Jon was honored with the Microsoft Research 

Fellowship and in 2010, he was selected as the UW College of Engineering Graduate Student 

Innovator of the Year.  

Jon’s research focuses on designing, building, and evaluating technology that addresses high-impact 

social problems such as environmental sustainability, personal health and well-being, and computer 

accessibility. His dissertation is on promoting environmentally sustainable behaviors through 

automated sensing and feedback technology, which has led to a number of top-tier publications 

including a UbiComp 2009 best paper nomination and a CHI 2010 best paper. His work on 

HydroSense, an advanced water sensing system, was recently licensed to Belkin International, Inc. In 

2011, Jon received his Doctor of Philosophy at the University of Washington in Computer Science 

and Engineering, where he was advised by Professors James A. Landay and Shwetak N. Patel.  

 


