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Figure 1: Nightlight leverages the ambient light sensors in smartphones to passively aggregate light level data for pedestrian
navigation. (A) We observe that people generally orient their phone upwards while using their phone when they walk. (B)
Combining the light readings from the light sensors with orientation context from the IMU and location from the GPS allows
us to map the light levels on city streets as people walk. (C) We used Nightlight to map the light level in various neighborhoods
to help identify dark and well-lit parts on a map which our user study indicated positively impacts pedestrian route choice.

Abstract
Nighttime sidewalk illumination has a significant and unequal influ-
ence on where and whether pedestrians walk at night. Despite the
importance of pedestrian lighting, there is currently no approach
for measuring and communicating how humans experience night-
time sidewalk light levels at scale. We introduce NightLight, a new
sensing approach that leverages the ubiquity of smartphones by re-
appropriating the built-in light sensor—traditionally used to adapt
screen brightness—to sense pedestrian nighttime lighting condi-
tions. We validated our technique through in-lab and street-based
evaluations characterizing performance across phone orientation,
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phone model, and varying light levels demonstrating the ability to
aggregate and map pedestrian-oriented light levels with unaltered
smartphones. Additionally, to examine the impact of light level data
on pedestrian route choice, we conducted a qualitative user study
with 13 participants using a standard map vs. one with pedestrian
lighting data from NightLight. Our findings demonstrate that peo-
ple changed their routes in preference of well-light routes during
nighttime walking. Our work has implications for improving per-
sonalized navigation, understanding pedestrian route choice, and
expanding passive urban sensing.
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1 Introduction
Life happens on foot. People were created to walk, and
all of life’s events large and small develop when we walk
among other people. – Jan Gehl

Active mobility such as walking and bicycling provide numerous
physical [25, 63], mental [38], social [3], and environmental benefits
[58]. Due to the reduced visibility of pedestrian pathways and
perceptions of safety, the presence or lack of urban lighting plays a
critical role in shaping nighttimemobility by influencingwhere, how,
and even whether people choose to travel at night [31, 51, 56, 80].
While modern mapping tools such as Google Maps and Apple
Maps provide walking directions, they do not incorporate nighttime
lighting conditions, leaving pedestrians in the dark. This is a missed
opportunity to address the need, emphasized in prior work in HCI,
for “identity-situated pedestrian navigation” [80] and move beyond
efficiency as the sole criteria in pedestrian navigation [3]. A key
limitation, however, is a lack of pedestrian-centeric lighting data.

One promising approach to sense and map urban lighting is
through remote sensing, which analyzes illumination in nighttime
satellite imagery [68, 83]. While useful for studying light pollution
and economic indicators [78], these techniques are not precise
enough to examine pedestrian-oriented lighting experiences at the
sidewalk scale and can be outdated due to satellite flight patterns.
Some cities provide open databases of street lighting locations
[17, 65]; however, these datasets are typically focused on roads
rather than sidewalks, do not capture other ambient light (e.g.,
from businesses, awnings), and can also be out-of-date (e.g., due to
streetlight outages or new developments). Municipalities often offer
civic engagement applications which allow residents to report such
outages, but these rely on user engagement which can be difficult
to scale and maintain [41, 70].

As a complementary approach, we introduce NightLight, a new
passive smartphone-based sensingmethod that leverages the always-
on ambient light sensor (ALS) built into smartphones—traditionally
used for automatic screen brightness adjustment—to capture and
map ambient lighting conditions as people walk while using their
smartphones outdoors. As sensing middleware [37], we envision
NightLight running in the background on phones, contributing
data on sidewalk lighting conditions as experienced by pedestrians
to open-source maps, including light from street lamps but also
ambient conditions from storefronts, bus stops, and awnings.

As initial work, our goals are to demonstrate the feasibility of
measuring nighttime lighting conditions with a smartphone, exam-
ine performance across sensing conditions, and understand how
maps imbued with lighting information may impact pedestrian
route choice. To pursue these goals, we conducted three studies:
first, an in-lab technical evaluation to characterize light measure-
ments across different phone models and orientations with respect
to varying light intensities. Second, a controlled outdoor study
walking on a 200 meter stretch of a city street with five streetlamps

investigating the impact of distance, orientation, and location on
NightLight with real-world lighting environments. Third and fi-
nally, we collected neighborhood-level data (covering 16.8 km total)
with NightLight and conducted a qualitative user study (N=13)
exploring how people plan and think about nighttime pedestrian
routes with and without lighting data.

Towards the technical evaluations, our findings show that while
ambient light sensors vary across smartphone models in respect to
sampling rate, field of view (FoV), and sensitivity, they are compa-
rable, in aggregate, to standard lux meters in measuring ambient
light. Additionally, we find that orientation signals captured from
the phone’s built-in IMU and GPS location data introduces valu-
able context for understanding and mapping light levels, such as
where the light is coming from relative to the user. For the user
study, we found that most participants think about lighting and
safety for nighttime walking and all participants actually changed
their routes once provided with the NightLight infused map. All
women indicated that this was particularly beneficial, especially
when walking alone.

In summary, our work contributes to the growing literature
in HCI and urban science exploring novel signals for improving
personalized navigation [24, 33, 45, 59, 64, 66]. We make three pri-
mary contributions: (1) A passive and scalable smartphone-based
technique called NightLight for sensing and mapping pedestrian-
oriented ambient light levels; (2) Two technical evaluations in the
lab and in real-world street environments validating our technique,
including performance results related to phone orientation, phone
model, and varying light levels; and, (3) Findings from a qualita-
tive user study with 13 participants demonstrating that participants
change their plannedwalking routes to favorwell-light paths. Night-
Light has the potential to expand access to the benefits of active mo-
bility by providing end-users with insight into pedestrian-oriented
lighting conditions, meeting the needs of pedestrians populations
that consider light levels, not just travel times.

2 Background and Related Work
We provide background on pedestrian lighting—covering lighting
standards and prior work on how nighttime lighting shapes human
mobility—before situating our work in street and pedestrian light
sensing, participatory urban sensing, and pedestrian routing.

2.1 Pedestrian Lighting
Pedestrian lighting influences both route and transportation mode
choice for nighttime mobility [3, 21, 34]. Because of street-level
lighting’s importance to vehicular and pedestrian safety, govern-
ment organizations such as the Illuminating Engineering Society
(IES), Federal Highway Administration (FHWA), and American As-
sociation of State Highway and Transportation Officials (AASHTO)
set and study design standards [12]. While each differ slightly, a
common recommendation is that the average illumination level
for residential sidewalks should be at least 10 lux1 and commer-
cial streets should be greater than 15 lux with higher levels (20-30)
at conflict points like crosswalks and intersections [1]. Two prior

1Lux is a unit of measurement for the intensity of light [36]; a higher lux value
means a brighter area. For example, an work office may have a lux value of 300 while
a brightly lit street may have a lux of 50 depending on the type of lighting, spacing,
height, and the reflectivity of surrounding surfaces
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studies examining perceptions of pedestrian safety and comfort
with lighting found 10-15 [72] and 25-35 [48] lux as satisfactory.
Additionally, a three-year long study of a 32-mile high-accident
corridor in the US found that most traffic-related injuries occurred
on segments with less than 10 lux [85]. Despite the influence of
sidewalk ambient light levels on safety, comfort, and thus physi-
cal activity, there is still no scalable and fine-grained approach for
measuring sidewalk light levels experienced by pedestrians across
urban environments—a gap we begin to address in our work.

2.2 Sensing Street-level Lighting
There are four emerging sensing techniques for street-level light-
ing: (1) "smart" streetlamps that include sensor suites that can
measure ambient light, assess light degradation, and serve as closed-
loop feedback to centralized controllers for optimization [2, 57, 87];
(2) using fixed infrastructural cameras (like traffic cameras) com-
bined with image processing techniques [79]; (3) mobile sensing ap-
proaches such as drones [6, 46] or sensor units (e.g., cameras, LiDAR)
attached to cars or bikes to inspect or identify light poles [5, 13, 73],
and (4) remote sensing techniques using nighttime satellite imagery
[68, 78, 83], as noted in the introduction. Each technique has trade-
offs in terms of sensing granularity, update frequency, cost, gov-
ernmental regulation, and human labor requirements. Most prior
work is aimed at street-level lighting for vehicular traffic rather
than pedestrian lighting or measuring light pollution [2, 73, 79].
Moreover, we are interested not just in infrastructural, government-
installed lighting but in the actual ambient lighting experience of
a pedestrian within the built environment including light from
streetlamps but also businesses, awnings, bus stops, and other in-
frastructure. Our goal is not to replace these existing methods but
to complement them.

2.3 Participatory Urban Sensing
NightLight is a type of participatory urban sensor [16], which lever-
ages the growing pervasiveness of smartphones to serve as vast
geo-located sensor networks. With an estimated 6.7 billion smart-
phone subscriptions worldwide [69], and some countries such as the
US reaching over 90% penetration [19], this ubiquity offers a plat-
form for easily scaling sensing systems. For example, smartphones
can scalably monitor seismic activity [40, 76], human mobility [26],
vehicular traffic flow [75], noise pollution [53], ambient air tem-
perature [55], air quality [86], and more. So-called participatory or
crowdsensing techniques [16] either work implicitly by leveraging
the smartphone’s built-in sensor suite to contribute data—such as
the inertial measurement unit (IMU) in the MyShake seismology
app [76]—or interactively by prompting the user to upload a geo-
located picture [61], video [62], or text [74], which is potentially
paired with the built-in sensor data.

While beneficial and increasingly common—e.g., every Google
Maps user implicitly contributes aggregate location data used to
track and predict vehicle traffic conditions [27, 30]—there are key
concerns with this approach including data coverage, smartphone
performance impacts (e.g., battery life), privacy, and incentivizing
use [18]. Moreover, for those participatory sensing techniques that
require explicit interaction, challenges include user annoyance,
attrition, and self-report accuracy [77]. We designed NightLight as

an implicit sensing solution, reappropriating the built-in ALS to
automatically sense outdoor light levels when the user is outside.

2.4 Pedestrian Routing
Whether for packets or people, routing has long been a fundamen-
tal concern in computer science, typically focused on efficiency:
what is the shortest or quickest path from A to B [8, 20]? More
recent work in human mobility considers route recommendation
as a multivariate problem, incorporating additional optimization
criteria such as air quality and smell [60], noise [4], crime rates
[52], traffic accident patterns [84], fuel efficiency [28], accessibil-
ity [32], point-of-interest popularity [47], and even perceptions of
beauty, safety, quiet, and happiness [59]. Lighting in particular, has
been demonstrated to impact perceived safety [31, 42], which can
have powerful and uneven consequences: women report feeling
unsafe walking at night more than men, and in turn, see as much
as a 20% reduction in their nighttime physical activity [11, 22]. Our
work contributes to this growing area but explores new methods
for passively crowdsensing pedestrian lighting conditions and how
such information may change route planning for pedestrians—to
our knowledge, we are the first to do so.

3 NightLight
NightLight is a participatory light sensing approach that leverages
the built-in light sensors on smartphones to passively sense and
map outdoor lighting conditions as pedestrians travel with their
phones out at night. NightLight is based on the intuition that as
pedestrians travel through the built environment, they periodically
check their phone to engage with messaging and navigation apps.
During active phone engagement, users typical hold their phone
angled up and towards their face, positioning the FoV of the phone’s
ambient light sensor (ALS) behind and above the user–providing
good conditions to measure ambient light provided by overhead
fixtures like streetlamps. Ambient light sensors use a light-sensitive
module (usually a photo-diode) under the front screenwhich change
resistance based on the surrounding light intensity within the FoV
defined by the component housing. We designed Nightlight to
leverage this sensor with the following considerations in mind:

• Pedestrian-Oriented Data: We aim to aggregate light levels
as experienced by measuring light from the perspective of
the pedestrian as they walk (i.e., lighting conditions of the
sidewalk as opposed to vehicle lanes).

• Passive Data Collection: When pedestrians travel at night,
they often use their phones for messaging, social media, and
navigation. NightLight can leverage these interactions as
opportunities to passively sense ambient light.

• Leverage Existing Hardware: We design NightLight to be
entirely software-defined using just the sensors built-in to
all smartphones to ensure scalability across the population.
All sensors involved: the ALS, GPS, and IMU, are already
activated in most navigation and mobile scenarios (i.e., using
Google Maps) to adjust screen brightness, track location,
and perform activity recognition, so the additional power
requirements are minimal.

• Data Coverage: By leveraging the ubiquity of smartphones,
we can scale data collection in regions with high pedestrian
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density. Though NightLight can only collect data where peo-
ple walk at night, it automatically prioritizes routes likely
to be traveled by pedestrians. We envision NightLight as a
complementary technique to the others enumerated in Sec-
tion 2.2 but with the key advantage of measuring the actual
lighting conditions for pedestrians.

3.1 Implementation
With these considerations in mind, we implemented an initial pro-
totype of NightLight to collect and examine ambient light data.
Though, we envision Nightlight running passively in middleware,
for this paper we built an app for Android to log the ALS, GPS,
and IMU data in the background using the Android sensor API. We
acknowledge the technical simplicity of our approach but argue
that this is a key strength for deployability as well as limits power
and computational requirements. For example, we ran our app for
12 hours and saw only a 18% decrease in battery percentage during
that time, indicating its feasability as middleware.

Figure 2: A visualization of our lab set-up including a
dimmable Dazzne D50 45-watt light panel (40 cm x 40 cm) in
a window-less dark room, a DJI Osmo Mobile 6 to control the
orientation of the smartphone, and aMT-192 lux meter for
measuring ground truth.

4 Study 1: Controlled Lab Evaluation
To examine the feasibility of using a smartphone for nighttime
pedestrian light sensing, we conducted two controlled studies: first,
an in-lab study to characterize light measurements across differ-
ent phone models and orientations with respect to variable light
intensities (described below); second, a controlled study examining
NightLight performance in real-world pedestrian environments
(Section 5).

For the controlled lab study, our goals were to examine and char-
acterize how a smartphone’s ambient light sensor functions com-
pared to a lux meter (baseline) and to investigate performance as a
function of device model and orientation. This study is motivated
by two areas of prior work. First, smartphone sensing hardware
and performance can vary across device models [15, 50, 67, 71], so
we compared light measurements across four Android phones from
three manufacturers: Google Pixel 7 (2022), Google Pixel 6a (2021),
Samsung S8 (2017), and an Essential PH-1 (2017). We intentionally
selected models across price and age ranges, spanning $100-$500
USD and two to seven years old. Second, previous work shows
that hand position and handedness can impact device orientation
[9, 35, 82]. Due to the physical mechanics of how light sensors
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Figure 3: The plot on top displays the average light measure-
ment across orientation angles for different smartphones
compared to an external lux meter. When averaged across
phones, the values match that of the commercial lux me-
ter. On the bottom, is the measured light level across four
smartphones—Google Pixel 6a, Pixel 7, Samsung S8, and Es-
sential PH1— across the intensity of the light source at a
perpendicular orientation. When averaged across phones,
the lux measured match that of the commercial lux meter at
aimed directly at the light source

operate, light rays hitting the sensor at a more perpendicular angle
lead to a greater measured intensity. We therefore characterize and
compare the light intensity across the entire FoV at different light
levels for each of these phones in a common environment.

4.1 Lab Study Method
We conducted the lab study in a window-less dark room with a
dimmableDazzne D50 45-watt light panel (40 cm x 40 cm) located 3.8
meters from the study device (smartphone) and a commercial MT-
192 lux meter (for ground truth)—see Figure 2. To programmatically
control the orientation of phone during each test, we used a a DJI
Osmo Mobile 6 gimbal mount. While logging ALS data, our custom
NightLight testbed software ran a controlled sweep from -10 – 30◦
across the pitch axis (X rotation)2 and -90 – 90◦ in the yaw axis (Y
rotation)—see the axes illustrations in Figure 1B. For each phone,

2The pitch axis was mechanically limited to -10 – 30◦ by the gimbal design.
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Figure 4: We generated heat maps for various smartphones under different lighting conditions: low (2.5 lux), medium-low (10
lux), medium-high (20 lux), and high (30 lux). The different spread of the heatmaps indicate that some phones have narrower
FoV for their ambient light sensor, like the Samsung S8 and Essential Ph1. The smoothness of heatmap reflects a higher refresh
rate, with the Samsung S8 demonstrating a much higher sampling rate compared to the other devices.

we collected three sweeps at four light levels, informed by related
work [48, 72], measured on the commercial lux meter: low (2.5 lux),
medium-low (10 lux), medium-high (20 lux), and high (30 lux).

4.2 Lab Study Results
Overall, we found that phones had different "offsets", sensitivity,
and refresh rates that impacted the light readings but on aggregate,
performed comparatively to the commercial light meter. Below,
we describe key findings related to performance differences across
phones and gimbal orientations.

Comparison Across Phones. Our tests indicate that although
different phone sensors have differing gain, offset, and consistency,
they all show a similarly linear trend, and that when averaged
across phones, the aggregate signal closely approximates the com-
mercial light meter reading. Figure 3 (top) shows the light readings
aggregated across trials from each phone during the sweep from
-90 – 90◦ in the yaw axis while the pitch axis remained centered
at 0◦ at a fixed light intensity of 10 lux. This demonstrates that
different phones have reproducibly different intensities at different
orientations relative to the measured light source, though share a
similar trend. Interestingly, we found that averaging all phones at
the center position (0◦ yaw) resulted in the same measurement as
the commercial lux meter. Similarly, Figure 3 (bottom) shows the
lux measured by each phone at 0◦ pitch and yaw across different
light intensities, averaged across all trials.

Comparison Across Orientations. The orientation of the
phone has a significant impact on the ALS readings, reinforcing
the importance of incorporating IMU data into NightLight. That

is, the measured lux is weaker as the light source moves closer to
the peripheral of the ALS FoV. This is shown in Figure 4, as a series
of heatmaps of the measured light levels for each phone at various
orientations. Our tests validate the importance of tracking and inte-
grating phone orientation when aggregating the data. Specifically,
our results show that the Google Pixel 6a and Pixel 7 smartphones
have a wider FoV (shown with a more gradual taper at the edges)
and the Samsung S8 and Essential phones have a narrower one.
The heatmap is also influenced by the sample rate of the phone’s
ALS, where slower sample rate leads to more noise in the data (i.e.,
a grainier heat map like that of the Pixel phones).

5 Study 2: Controlled Street-based Validation
Having characterized ALS performance and demonstrated initial
feasibility, our Study 2 goal is to examine performance more nat-
uralistically: walking down city streets. To accurately measure
geo-located light in this context, we need to account for device
orientation and light location (e.g., if you tilt the phone from the
light source, the ALS sensor reading will decrease as demonstrated
in Study 1). Thus, Study 2 investigates how to integrate and pro-
cess the phone’s IMU data and GPS over time to infer light source
locations, which is key to appropriately map light level data.

5.1 Study Method
To better understand the interplay between the orientation, loca-
tion, and magnitude of measured light in a street environment, we
conducted two experiments with the Google Pixel 6a (representing
a "mid-range" option from phones characterized in study 1). First,
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Figure 5: Density of high light measurements (above 2 lux in an outdoor environment) and low light measurements (below 2
lux) across the roll and pitch axes (centered at 0 degrees) when standing behind, under, and in front of the light source at fixed
distances for bright and dim light sources. The bright light sources have a higher density of high light measurements than the
dim light sources and the high light values are saturated off-center and in the direction of the light source when the user is at a
distance.

we varied the orientation continuously and arbitrarily at fixed lo-
cations: adjacent to and both one meter and three meters in-front
and behind a variety of streetlamps and analyzed the distributions
of high and low lux across these orientations at different positions
relative to the streetlamp. Second, we held the phone at a steady ori-
entation towards the user’s face while walking a 200 meter stretch
of street in both directions (East and West) three times each. We
then investigate the patterns in the ALS readings during the phone’s
trajectory with respect to the known streetlamp locations along
this street pulled from Seattle’s city open-data portal [65].

5.2 Study Findings
Overall, we found that the orientation and location timeseries added
valuable spatial context to the ALS readings, e.g., which direction
the light is coming from. This is important when the orientation
of the device is subject to natural variation due to motion during
use, resulting in the ALS FoV aiming at, and potentially capturing,
distant light sources not affecting the immediate local light level.

Orientation. Intuitively, we found the highest lux values to
correlate most with rotation vectors angled towards the light post
(i.e. if we were standing before the streetlamp, the high lux values
were saturated at a positive pitch angling the ALS away from the
holder and towards the streetlamp, while the opposite was true
when standing after from the streetlamp). The saturation of high
and low lux values at different rotation angles and positions relative
to the streetlamp are visualized in Figure 5. This demonstrates that

the ALS’s sensitivity to rotation can be leveraged to inform the rela-
tive location of nearby light sources as the orientation measured by
the IMU, corresponding to the highest lux measurement represents
when the ALS FoV is aimed at the light source.

Location. We find a similar pattern in measured lux at different
distances from light sources. The instantaneous heading of succes-
sive GPS coordinates 𝑖 an 𝑖 + 1 along our walks can be calculated
to determine the compass direction of travel at each location. We
then use the processing outlined in Figure 6 to extract the region of
time when the phone holder is before and after the nearest street-
lamp on their walk. Aggregating the lux measured across all walks
at different distances before and after each streetlamp reveals the
trend in Figure 6. The maximum lux recorded occurs some distance
after passing the overhead light source, when the streetlamp is
both above and somewhat behind the user and aligned within the
ALS’s FoV. This demonstrates the impact of relative distance of
light sources on NightLight data.

6 Study 3: Qualitative User Study
Having evaluated the technical feasibility of collecting NightLight
data, we shift our attention to study the utility and impact of Night-
Light to pedestrians walking at night. We used the NightLight app
to collect neighborhood-scale light level data across three neigh-
borhoods of Seattle. We then use the maps generated by this data,
shown in Figure 7, to conduct a qualitative study examining peo-
ple’s perceptions of nighttime walking, factors influencing route
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Figure 6: (left) A visual representation of the stages of processing to isolate the lux values corresponding to known streetlamp
locations. (right) The average normalized lux at different signed distances approaching and passing the streetlamps along
the street in both directions of travel (East and West). Negative distances represents the user West of the streetlamp and
higher distances represent the user East of the streetlamp. The normalized lux is maximized after crossing the position of the
streetlamp positioning it behind the user and in the ALS FoV.

choice, and how participants engage in a nighttime route planning
task with and without a NightLight-infused map.

6.1 Neighborhood Scale Data Collection
With NightLight installed on Google Pixel 6a devices (same as Study
2), two authors and a third member of the research lab separately
collected light data for three different neighborhoodswhichwe refer
to as: Waterfront, Gridded, and Residential, covering a total distance
of 16.8 km. We selected neighborhoods to capture variations in
layout, infrastructure, and zoning. The Waterfront neighborhood
is a commercial hub with irregularly angled streets and a multiuse
walking path along the water offering trade-offs between aesthetics,
brightness, and distance. The Gridded neighborhood features a
traditional urban layout with uniform distances between routes,
parks along some perimeter roads, and a historic landmark street
with pedestrian-oriented lighting. The Residential neighborhood
contrasts with darker streets and a major arterial road, emphasizing
a trade-off between the shortest route and better-lit alternatives.
The data was collected across multiple nights between the hours of
10pm and 1am while walking normally, holding the phone slightly
up and towards the user’s body.

6.2 Participants
We recruited 13 participants (6male, 6 female, 1 non-binary) through
convenience sampling at a university (Table 1). Our recruitment
materials advertised that our study focused on nighttime walking
behaviors. Most participants were adults in their early 20s to mid
30s who relied on public transit and walking as their primary mode

of transportation. Ten participants indicated that they walk daily,
primarily walking more during the day than at night. All but three
participants indicated discomfort with walking at night, with non-
male participants skewing more uncomfortable. Three participants
recognized at least one of the three neighborhoods in the study.
None of the participants recognized the Residential neighborhood.

6.3 Qualitative Study Method
Study sessions were divided into three parts. In Part 1, we collected
demographics and asked about day and nighttime walking behav-
iors. In Part 2, participants completed a comparative route planning
task with and without lighting condition data across three neigh-
borhoods using printed maps (Figure 8). For each neighborhood, we
asked participants to hand draw and "think-aloud" about their pre-
ferred route for two different origin-destination pairs (resulting in
six total routes). We counterbalanced neighborhood order and pre-
sented the map with no lighting data before the NightLight-infused
map. Participants could also indicate that they were not comfort-
able walking at a particular location at night and discuss how they
might seek alternative transport. Finally, in Part 3, we performed
a debrief interview soliciting feedback on the value of nighttime
lighting data and future navigation tools. All study sessions were
audio recorded and conducted in person. One researcher led the
session while the other took notes. For analysis, we qualitatively
coded session data using Thematic Analysis [14].
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Figure 7: The sidewalk light data collected across the three sample neighborhoods along with a log-scale kernelized density
estimate, showing the density of light levels across individual ALS readings captured in all three neighborhoods. The Residential
neighborhood has notably lower lux across all readings while the Gridded neighborhood has slightly more high lux locations
than the Waterfront neighborhood.

6.4 Qualitative Study Results
We describe our results organized by the three study parts: factors
influencing nighttime walking behaviors, the comparative route
planning task, and the debrief reflection. Quotes have been lightly
edited for clarity and concision.

6.4.1 NighttimeWalking. When asked about nighttime walking
and route choices, our participants emphasized the presence of
others, the design of the surrounding built environment, lighting,
route simplicity, and safety. For most, safety was a cross-cutting
concern, which was often inferred from other factors. We discuss
these factors below.

Time of Day. All participants reported walking less at night.
However, non-binary and female participants reported feeling sig-
nificantly less comfortable than male participants. Of the nine par-
ticipants who commute daily by walking, biking, or using public
transit, half of the female participants reported rarely or never
walking at night, whereas the male participants either maintained
or slightly reduced their night walking frequency. P4 stated they
purposely avoid walking at night as much as they can: "the amount
of times I’ve walked at night has decreased year by year...just in gen-
eral I’m not really out at night after dark.". The choice of route itself
was also influenced by time-of-day: “During the day I have no issue
taking the quieter streets but at night I like to stick to the larger streets
in case something happens.” (P5).

Presence of Others.Most commonly, participants mentioned
the expected level of pedestrian traffic and street activity (e.g., from
street dining and others commuting) along a route, often stemming
from safety concerns. As P2 said, “I see other people walking there...
[so] it must be fine to walk here” and P1: “I would rather walk along a
busy street than one of those residential streets, which has much fewer
people on it.” Similarly, P11 said, “I really don’t want to walk on a
route that’s dark and isolated. Is the street populated? Am I gonna get
mugged? Is anyone gonna hear me?”

The Built Environment. The surrounding built environment
also played a role, including the width and types of streets, the
proximity to points-of-interests (e.g., bus stops, restaurants), pres-
ence of green space, and zone type (e.g., commercial vs. residential).
As P10 stated, “Mainly, I want to walk where businesses are open...
Like in Apple Maps where it shows commercial zones, that matters
more to me than how long the route is.” and P9 said: “I’m not going
to take any back alley roads or weird shortcuts.” Participants also
noted tradeoffs between busier well-lit main roads and an increase
automobile traffic: “I prefer the main road, but heavy car traffic is bad
because at night I don’t want to get hit, but without other information,
I’ll still probably take it” (P11).

Lighting. The availability and quality of lighting across routes
was also important, and most female participants brought up light-
ing even before it was revealed as the study subject: P11 “If I was in a
situation where I had to walk at night, my primary concern is whether
there is enough light.” and P9 similarly said: “If I absolutely had to
walk, I would take the best lit route...[which likely corresponds] to the
one with more students and people.” After seeing the NightLight data
most participants, like P2, commented on how lighting indicates
presence of others: "Lighting is a useful proxy for the area being more
populated and developed." For P3, NightLight data made walking fea-
sible when she had previously opted for rideshare "With this data, I
now know this route is not completely dark, so I am now more likely
to walk this route than take an Uber". This directly demonstrates the
utility of NightLight for broadening access to active mobility.

Route Complexity. Finally, participants mentioned route com-
plexity as a factor, preferring simpler routes to reduce travel time
and ease navigation. For male participants like P2, simplicity was
about efficiency "I would avoid unnecessary turns just because I can
pay less attention", whereas for female participants, simplicity was
about safety. As P3 said, “the more straightforward the better. I avoid
zigzag routes because then I need to keep looking at Google Maps,
which consumes battery and is scary. I also want to be observant of
my surroundings at night” (P3).
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Participant Age Gender Occupation Primary Mode Walks Night Walks Comfort At Night
P1 25-34 Male Grad Student Bicycle Daily Daily Comfortable
P2 25-34 Male Grad Student Walk/Public Transport Daily Daily Comfortable
P3 25-34 Female Grad Student Walk/Public Transport Weekly Rarely Very Uncomfortable
P4 25-34 Non-Binary Grad Student Walk Daily Never Very Uncomfortable
P5 18-24 Female Grad Student Walk/Public Transport Daily Weekly Somewhat Uncomfortable
P6 18-24 Female Grad Student Car Weekly Weekly Very Uncomfortable
P7 25-34 Male Grad Student Public Transport Daily Weekly Somewhat Uncomfortable
P8 25-34 Male Grad Student Bicycle Daily Weekly Comfortable
P9 18-24 Female Grad Student Walk/Public Transport Daily Rarely Very Uncomfortable
P10 25-34 Female Finance Manager Public Transport Daily Weekly Somewhat Uncomfortable
P11 25-34 Female Grad Student Public Transport Daily Rarely Very Uncomfortable
P12 18-24 Male Grad Student Car Rarely Never Somewhat Uncomfortable
P13 18-24 Male Grad Student Car Rarely Rarely Somewhat Uncomfortable

Table 1: Background characteristics of our 13 interview participants.

6.4.2 Route Planning Task. For the route planning task, we
asked participants to hand draw a route while "thinking aloud"
across six origin-destination pairs on paper maps with and without
lighting data. Overall, participants used visual cues from the maps
to inform their route choice, including the width of streets and the
presence of businesses combined with efficiency, route simplicity,
and, for the NightLight-infused maps, the presence of lighting data.
We found that pedestrian light information on a map significantly
influenced route choice: participants changed 50/72 routes (69.4%)
to follow a more lit path. Without the light data, participants drew
routes that attempted to optimize for efficiency and safety using
visual map cues (e.g., size of road, type of buildings visible). With
the NightLight-infused versions, participants primarily followed
the brightest path, even at the cost of efficiency—see Figure 8. For
example, for the first origin-destination pair in the gridded neigh-
borhood, most participants drew a simple northbound to eastbound
route with one turn; however, with the lighting data, all participants
switched their routes, even at a cost of route simplicity.

When participants did not change their routes as a result of
lighting data, they often cited the tradeoff of travel time. This was
particularly common for the first origin-destination pair in the
residential neighborhood where most participants drew a straight
northbound route with and without lighting data because the lit
route was 1.4x longer (0.7 vs. 1.0km). Interestingly, despite this
additional effort and time cost, three participants still followed the
longer, better-lit route.

6.4.3 Debrief and Future Technology. Finally, we engaged par-
ticipants in a debrief interview soliciting feedback on the utility of
lighting data and the future design of navigation tools. In general,
participants felt that the lighting data was useful, particularly for
female, single travelers, and those in unfamiliar areas, and that
future mapping tools should factor in lighting with route recom-
mendations or include an optional light layers. As P2 said, “I’ve
definitely had experiences where maps route me down a dark, isolated
path and I’ve been like, ‘ugh... I don’t know about this.’ Particularly
on urban waterfronts which can either be very pleasant and well-lit
or totally lack night infrastructure” Participants desired algorithmic
transparency—what factors are navigation tools using to recom-
mend routes: “These apps tell you where to go but it doesn’t tell you
why... [it could say], ‘walk this safer route even though its longer‘”
(P10). Others suggested that this data could be useful to city gov-
ernments, helping “the city find out where to put more lights” (P9).
Some mentioned the data would even be useful as a driver "when I

drive at night, my primary concern is hitting a pedestrian. This could
help me protect others" (P11).

7 Discussion
In this paper, we introduced a novel sensing technique, called Night-
Light, to passively measure ambient light conditions experienced by
pedestrians as they walk at night. Using a multi-methods approach
across three studies, we demonstrate technical feasibility, highlight
performance characteristics, and show the utility of NightLight-
infused maps on route planning. Below, we discuss scalability, night-
time route choice, potential social implications, and technical im-
provements of our work.

Scalability. Our technical evaluations showed that a smart-
phone’s built-in ALS sensor functions similarly to a commercial lux
sensor and that we can robustly measure ambient pedestrian light-
ing. However, to comprehensively map lighting data, our approach
is dependent on where people walk at night, how often they pull out
their phones, and how many people walk along pedestrian path-
ways. Though NightLight’s sensing granularity and measurement
of actually experienced light levels are key strengths, our approach
will likely work best for densely populated regions. Gamification
[54] or organized efforts from activist communities—similar to the
efforts of War-Drivers in the early stages of location tracking [43]—
could bootstrap light-level datasets for unmapped areas. Though,
as we observed in our user study, pedestrians will begin favoring
well-lit paths once a NightLight-like technique is integrated and
visualized in routing applications. This could undermine data collec-
tion. Thus, we envision NightLight as a complementary approach to
other emerging methods, such as "smart" streetlamps [2, 57, 87] and
fixed infrastructural cameras [79]. Through a deployment study,
future work should explore how many users are necessary to reach
sufficient data coverage and aggregation while preserving individ-
ual user privacy. The deployed system could use methods to obtain
consent and anonymize aggregated user data from prior work in
opt-in crowdsourced systems [10, 81]. The deployment study could
also measure variation in light levels for the same locations over
time based on, for example, whether proximal business lighting is
on/off, the presence/absence of car headlights, or even lunar phases.
As NightLight produces a measure of light across both space and
time, future work can investigate the cadence with which light
levels change (i.e., businesses close or streetlight outages).

Nighttime route choice. In our user study, we found that pedes-
trian light information significantly informed route choice—nearly
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O/D Pair 1 O/D Pair 2
No Light Data With Light Data No Light Data With Light Data

Waterfront
Neighborhood

Gridded
Neighborhood

Residential
Neighborhood

Figure 8: Participants were asked to draw routes between origin-destination (O/D) pairs with and without NightLight data. For
each O/D pair, without and with light data in each neighborhood, the map provided to participants appears to the left and an
aggregation of all routes drawn by participants appears to the right in red. Darker lines indicates chosen routes shared by a
larger portion of the study population. Without light data, participants drew routes optimizing safety and efficiency based on
visual map cues (e.g., road width). With the light data, most routes (50 of 72) changed to follow the brightest path.

70% of planned walking routes (50/72) were different in the Night-
Light map condition. While no previous studies have examined how
pedestrian lighting specifically influences nighttime route planning,
prior survey and observational studies found that people prefer
well-illuminated streets for nighttime walking. Lighting increases
sidewalk visibility, but more importantly, provides feelings of in-
creased safety [51, 56]. Though lighting is clearly a critical factor,
our study findings also highlight the complexity of human behavior
and nighttime route choice, incorporating factors such as the ex-
pected presence of others, the amount of vehicular traffic, the width
and type of streets, the existence and type of business and transit
stops along a route, and the complexity of a route itself remain
important. In addition, prior work emphasizes the need for other
factors not mentioned by our participants, such as the accessibility
of a route to people with disabilities [23, 32]. Future work on night-
time navigation and mapping tools should incorporate and study
these additional factors.

Potential Externalities.NightLight aims to improve pedestrian
navigation through integrating knowledge of preferred lighting con-
ditions. However, this information has the potential to significantly
alter the ways users interface with the built environment by dis-
couraging engagement with poorly-lit neighborhoods. Lefebvre’s
theorized that space is a social construct and is actively produced
through social perceptions and the people who occupy it [44], there-
fore it is important to consider how navigation platforms have the
power to shape or bias the meaning of urban space. For example,
by navigating users away from poorly-lit neighborhoods which
may be historically under served [3, 39]. Additionally, access to
NightLight data could pressure municipalities to increase street-
lighting which has both economic and environmental costs through
contributing to "light pollution", which can impact local species
and natural ecosystems [49], and consume additional energy.

Technique improvements. There are several technical im-
provements to NightLight including cross-user calibration, activity
recognition, and additional sensor data. In Section 4 we uncovered a
difference in light measured across phones in the same environment.
These cross-device differences could be calibrated using real-world
data when NightLight users with different phone models cross
paths, providing a standardized environment to calibrate against.
Additionally, more complex models could be used to capture 3D
light maps as NightLight users traverse the same routes while hold-
ing their phones in different orientations (i.e., inverse ray-tracing),
revealing variation in light on different sides of the route. Future
work can leverage the front-facing and rear-facing camera to add
additional context about the device proximity to the user, occlu-
sion, and other environmental features to model the effects of light
reflected off the user. Future versions could further leverage IMU
and location data for activity inference, such as walking, biking,
and running [7, 29] to either filter or tag NightLight data with addi-
tional context—for example, to avoid collecting nighttime light data
while traveling inside a vehicle. The ALS hardware can measure
more than just lux, they can log light temperature, infrared light
level, and full spectrum light levels. However, that information is
restricted by the operating system. Access to this data could gain
richer insights about the amount and the kind of light experienced
by pedestrians.

Limitations and future work. Beyond technical improvements
to the sensing technique, there are several limitations opportunities
for future work. First, while our work demonstrated the feasibility
of passively mapping ambient light data with a smartphone and
the utility of such data to pedestrians, we did not conduct a deploy-
ment study to evaluate NightLight with end-users and examine
end-user contributed data. Such a study could reveal the effects
of pedestrian phone usage patterns and provide a dataset which
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could to perform cross-device calibration. Second, we provided our
participants with map of light data so they can make their own
route, but future systems could implement a routing algorithm that
automatically directs them to the most well-light path. Lastly, Our
participant pool was largely composed of college students drawn
from a single city. To address these limitations, future work should
perform a deployment study and recruit a more diverse user pool.
Our user study surfaced additional use cases for NightLight data
in infrastructure maintenance and for non-pedestrians that are
worth pursuing in future work. For example, NightLight could help
municipal governments and agencies identity and maintain public
utilities and lighting infrastructure without relying on manual re-
porting or auditing. Moreover, as P11 noted, there are other users
who may want to know light level data like drivers, runners, and
cyclists. Future work could adapt NightLight to capture light on
bike lanes and roads to suggest well-light routes for cyclists and
driving routes with better road lighting conditions to help drivers
feel more secure and avoid areas where they may have collisions
due to low visibility.

8 Conclusion
In this paper we presented NightLight, a sensing middleware par-
adigm envisioned to run passively on pedestrian’s smartphones
while on outdoor walks to passively crowdsense pedestrian lighting
conditions. We conducted two controlled technical validation stud-
ies: first of the ALS on four smartphones across varying light level
and phone orientation in a lab setting, and second, on data collected
from controlled walks on real-world streets. We then collected a
neighborhood scale NightLight maps which we used as prompts
during a 13 user interview study to access how NightLight data
impacts pedestrian route choice. These studies reveal the technical
feasibility of deploying NightLight across smartphones and indicate
that the data produced by NightLight deployments can improve the
quality of pedestrian routing by providing well-lit routes that match
some user’s preference. This work contributes to the growing field
of pedestrian-oriented navigation and shows that our technique can
collect meaningful urban lighting data that positively influences
pedestrians preferred navigation routes.
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