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Abstract: Data on pedestrian infrastructure is essential for improving the mobility envi-
ronment and for planning efficiency. Although governmental agencies are responsible for
capturing data on pedestrian infrastructure mostly by field audits, most have not completed
such audits. In recent years, virtual auditing based on street view imagery (SVI), specifi-
cally through geo-crowdsourcing platforms, offers a more inclusive approach to pedestrian
movement planning, but concerns about the quality and reliability of opensource geospatial
data pose barriers to use by governments. Limited research has compared opensource data
in relation to traditional government approaches. In this study, we compare pedestrian
infrastructure data from an opensource virtual sidewalk audit platform (Project Sidewalk)
with government data. We focus on neighborhoods with diverse walkability and income
levels in the city of Seattle, Washington and in DuPage County, Illinois. Our analysis
shows that Project Sidewalk data can be a reliable alternative to government data for most
pedestrian infrastructure features. The agreement for different features ranges from 75%
for pedestrian signals to complete agreement (100%) for missing sidewalks. However,
variations in measuring the severity of barriers challenges dataset comparisons.

Keywords: pedestrian infrastructure; virtual auditing; street view imagery (SVI);
opensource geospatial data; data trust; Americans with Disabilities Act (ADA)

1. Introduction
Pedestrian infrastructure is the initial context of how people move around. Low-

quality infrastructure leads to higher pedestrian crash rates [1,2]. Especially for people
with disabilities (PwDs), pedestrian infrastructure provides critical access to employment
and education opportunities, public transportation, and community resources [3–7]. While
pedestrian infrastructure can support greater mobility and improved life quality for PwDs,
inadequate, low-quality infrastructure can make getting around difficult, dangerous, or
even impossible [8–11]. PwDs face significant barriers to mobility due to inadequate
pedestrian infrastructure such as broken sidewalks, missing curb cuts (or curb ramps),
and crossing signals with no sound. These barriers are a persistent challenge that limits
PwDs’ access to transportation [8,10], and they may expose people to unsafe situations
(e.g., having to wheel their wheelchair in the street) [9,11]. Built environment barriers not
only limit PwDs’ mobility but also impede their daily activities [6,7,12] and community
participation and can lead to social and economic exclusion and isolation [3,5,13,14].
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In the United States, requirements for removing barriers under the Americans with
Disabilities Act (ADA) have prompted cities to improve pedestrian infrastructure acces-
sibility. Still, these efforts are hindered by the lack of data on the location and condition
of pedestrian infrastructure [6]. This lack of data hinders planning, prioritization, and
transparency. Despite the ADA’s mandate for inclusive and universal accessibility for all,
cities continue to struggle with pedestrian infrastructure barriers over 33 years later, often
initiating significant sidewalk renovations only in response to civil rights litigation [15].
Indeed, a recent study by Eisenberg et al. [3] found that only 13 percent of 401 government
entities had published ADA transition plans, with just 7 meeting minimum ADA criteria.
That study also found that, on average, 65% of curb ramps and 50% of sidewalks were
inaccessible. Jackson [16] pointed out that the inaccessible modern built environment
results from inadequate planning practices. Existing methods for documenting access fall
short for disabled individuals due to the lack of data on the accessibility and quality of
pedestrian infrastructure [6,17].

There are limited available data on accessibility in most U.S. cities [18], and this data
gap prevents disabled travelers’ needs from being considered as a part of U.S. transportation
planning [6]. The responsibility for gathering data on urban accessibility is often placed on
governments. However, a recent study by Deitz et al. [18] examining 178 U.S. cities found
only about 60% of these cities had open data portals, and information about sidewalks was
included in only 34% of these datasets. Accessibility information, such as crosswalks (19%),
sidewalk condition (18%), curb ramps (17%), or audible cross controls (7%), was even less
common. Insufficient data about pedestrian infrastructure not only hinders an individual’s
safe navigation but also carries implications for legislative enforcement and the political
power of the ADA [18]. Lack of publicly available data on infrastructure for pedestrians
has also limited the depth and breadth of pedestrian environment equity research [19]. The
limited data available in the majority of cities prompts questions about how these data can
be collected quickly, who should collect these data, what expertise and perspectives are
necessary, how PwDs can be involved in these processes, and how sustainable different
collection approaches are [4].

Municipal governments employ a number of approaches to collect pedestrian in-
frastructure accessibility data, the most common approach being on-the-ground auditing.
However, this traditional data collection approach can be time- and resource-intensive,
meaning that many municipalities choose not to conduct such audits at all, or they fail
to do so on a regular enough basis to have an updated dataset [18]. Recently, crowd-
sourcing through virtual auditing based on street view imagery (SVI) [20], satellite/aerial
imagery [21], or LiDAR (Light Detection and Ranging) [19] has been presented as a possible
alternative that addresses the time and resources constraints of traditional data collection
methods. Proponents of such approaches also highlight how crowdsourcing provides an
avenue for PwDs to be involved in how the data are collected and in the interpretation of
the data for planning and prioritization [22].

Significant challenges to the greater use and adoption of crowdsourced data include
a lack of standards and low-quality or missing data [23–26]. Data validation and quality
control are crucial to addressing legitimacy concerns yet may involve complex and de-
manding procedures. The diversity in contributors’ expertise, dedication, and equipment
quality, and the potential for anonymous false reporting, all contribute to data quality con-
cerns [24,27]. The dynamic nature of crowdsourced data, compounded by the emergence of
new information types not found in authoritative databases, makes it challenging to define
clear, application-specific quality criteria [24]. The lack of standardized quality criteria and
methodologies for crowdsourcing further adds to the complexity, necessitating tailored
quality assessment frameworks for new kinds of crowdsourced data, such as street-level
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imagery [24]. A limited body of research has examined “data trusts” [28] or the validity of
opensource geospatial data (i.e., the degree to which data align with authoritative geospa-
tial datasets) and has primarily focused on the accessibility of non-sidewalk transportation
features (transit stations, parking spaces) [29] or on comparing OpenStreetMap (OSM)
against authoritative dataset data for land use/cover [30,31] and roads [32,33].

We are unaware of any published literature that has compared data from geo-
crowdsourced applications and government data, which can help to better understand the
utility of crowdsourced geospatial data and further legitimize its use for planning purposes
(official and unofficial) in the United States and across the globe.

In this paper, we address this research gap by comparing sidewalk accessibility data col-
lected through the Project Sidewalk crowdsourcing tool (https://projectsidewalk.org, accessed
on 13 April 2025) with an official survey dataset collected by two local government agencies
representing diverse urban environments. We were interested in better understanding (1) how
virtually audited pedestrian infrastructure data align with government data (reference data)
across a diverse sample of neighborhoods and (2) how the agreement between the two sources
of data varies across different feature types (e.g., sidewalk quality, curb ramps, crosswalks, etc.).
We outline the relevant literature on sidewalk accessibility data, describe the current gaps in
the related literature that our study investigates, explain the data and methodology employed,
share our results, and discuss our findings and implications for practice and policy.

2. Background
In this section, we present related work and describe it in three subsections to highlight

the research gap. First, we discuss auditing pedestrian infrastructure, emphasizing the
limitations of traditional in-field audits and how virtual audits, particularly those utilizing
SVI, offer a more efficient alternative for collecting data on pedestrian infrastructure.
Second, we explore crowdsourcing and citizen-based data collection, focusing on the rise
of citizen-generated geographic information (VGI) and how it reshapes traditional data
collection methods by involving the public in urban data gathering, with an emphasis on
pedestrian infrastructure data. Finally, we review the Project Sidewalk tool, an opensource
crowdsourcing platform used to audit pedestrian infrastructure, and discuss its features
and the need for validation through comparison with official government data. Each section
aims to highlight the existing research gaps, particularly in comparing crowdsourced data
with government-collected data, which is essential for legitimizing crowdsourcing as a
reliable tool for improving pedestrian accessibility.

2.1. Auditing Pedestrian Infrastructure

Cities employ various methods for collecting information related to pedestrian infras-
tructure accessibility, including in-field data collection, outsourcing to external firms, and con-
ducting virtual audits. Conducting in-the-field data collection demands substantial resources,
primarily attributed to on-site observers whose time represents a significant cost [6,18,19].
Expenses encompass survey equipment, travel, transportation between audit locations, and
lodging. Additionally, adverse local conditions like traffic safety issues, high crime, air pollution,
and inclement weather can impede in-field data collection [34,35]. Due to its resource-intensive
nature, an on-the-ground audit is seldom repeated, resulting in infrequently updated data.
These limitations have sparked a growing interest in “virtual audits” based on SVI. With
SVI covering half the world’s population [36] and Google Street View (GSV) capturing over
10 million miles of streetscape [37], SVI provides an extensive data source for urban analyt-
ics [38]. Notably, the utilization of SVI as a reliable and less-expensive method for conducting
pedestrian infrastructure audits has been studied in research across a variety of disciplines (e.g.,
public health, transportation, etc.) [39]. Conducting virtual audits based on GSV proved to

https://projectsidewalk.org
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be quicker compared with in-person audits [40]. Aghaabbasi et al. [34], in a comprehensive
review of eight studies, found that virtual audits reduced the total staff auditing time by 14% in
63% of the cases. Lastly, the time machine feature of GSV helps with tracking improvements in
sidewalk infrastructure (e.g., [41]) and allows for easily repeating audits, which offers long-term
advantages to cities in terms of cost reduction compared with in-person audits.

Several studies have focused on validating GSV-based virtual audits of sidewalk
features in comparison with in-person audits conducted by research assistants and using
the same audit tool [42–44]. These comparison studies have repeatedly demonstrated
that virtual audits are a reliable and efficient method with strong inter-rater reliability [43].
Several studies have focused on validating a public health walkability tool called Microscale
Audit of Pedestrian Streetscapes (MAPS-mini) [45], which is used to audit street micro-
level features, with trained observers and generally found high reliability of online audits
compared with field audits [35,46–48] with the objective of studying the impact of the
walking environment on physical activity. Yet, they also demonstrated that the degree of
agreement depends on the type of features [35,44,46,48–51]. Some studies also mentioned
that the raters’ familiarity with the area could influence agreement level [47,52].

Recent advancements in artificial intelligence (AI), computer vision, machine learn-
ing, deep learning methods, and remote sensing technologies such as mobile LiDAR
and satellite imagery data, have facilitated the development of automatic auditing for
sidewalks [53–57], crosswalks [54,58,59], curb ramps [60,61], sidewalk materials [62], and
surface deficiencies [9]. However, few studies have compared virtual, audited data with
official government data. Recently, Deitz [60] used machine learning models to predict the
location of curb ramps and compared the results of these models with government (official)
data across nine cities in the United States. The random forest model was 88% accurate
in classifying ramp locations. While advances in generating data using such models hold
promise, there is a gap in the literature not only for comparing data sources in terms of
location but also in terms of quality (hereafter, severity).

2.2. Crowdsourcing and Citizen-Based Data Collection

One approach to increase the feasibility of virtual auditing of the pedestrian infras-
tructure conditions at a city scale is geo-crowdsourcing projects that rely on user-generated
data. Crowdsourcing and citizen-based spatial data collection are reshaping traditional
data collection [63]. Traditionally dominated by experts, this field now sees a surge of
citizen involvement owing to accessible online mapping tools, high-resolution imagery,
and GPS-enabled devices. This shift has led to a wealth of citizen-generated data and a
blurring of the lines between data producers and consumers, with citizens now actively
involved in both roles [64]. One of the most successful and widely cited examples of this
is OSM, referred to in the geographic literature as “Volunteered Geographic Information”
(VGI), a term originally coined by Goodchild [65], which includes geospatial data such
as geotags or coordinates [66]. Numerous other terms, such as “Public Participation in
Geographic Information Systems” (PPGIS) [67,68], have been proposed to describe similar
phenomena [69]. This movement extends beyond mapping to include various forms of
citizen participation in scientific research [70], often under the umbrella of “citizen science”
and crowdsourcing [64]. These developments reflect a broader democratization of data
collection and analysis, where public involvement enriches the field.

VGI, as a form of user-generated data, represents the growing phenomenon of ordinary
citizens actively contributing to the creation of geographic information. It involves the use
of various tools to generate, compile, and share geospatial data that individuals voluntarily
provide [24]. In this context, the term “geographical citizen science” is introduced as a
scientific activity wherein the public (e.g., not just people with credentials) voluntarily
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participate in creating, collecting, assembling, monitoring, analyzing, and disseminating
location-based data for a scientific project [71]. Crowdsourcing geospatial data involves a
data acquisition process through the contributions of large, varied groups of individuals,
many of whom may not have professional training [24,72]. Crowdsourcing offers the
potential to enhance the time, cost efficiency, and community involvement in assessing
pedestrian infrastructure accessibility. By harnessing the collective experiences of individ-
uals, crowdsourcing can provide a dynamic and real-time understanding of accessibility
challenges. Despite the diversity in focus and characteristics, all VGI approaches emphasize
the value of “non-authoritative” data sources [24] that involve the public in some way.

Previous studies have used crowdsourcing or VGI for urban data collection, in-
cluding OSM [73], mobile Pervasive Accessibility Social Sensing (mPASS) [74], Madrid
Systematic Pedestrian and Cycling Environment Scan (M-SPACES) [75], Wheelmap
(Wheelmap.org) [76], and Mapillary (www.mapillary.com) [77–79]. The 311 systems [80]
and SeeClickFix.com [81] are platforms that enable citizen participation in reporting non-
emergency issues, including problems related to sidewalk accessibility. However, these
platforms do not enable remote, virtual inquiries and have not demonstrated the ability to
collect data on accessible pedestrian infrastructure on a scalable basis [82].

Researchers have pointed out the limitations and challenges of using VGI-based
crowdsourced data, such as data quality, accuracy, precision, bias [24,83], privacy, legal
and ethical issues [84], data interpretation, training and education, non-participation of
certain groups [24], arbitrary format of data [85], challenges in sustaining data collection
efforts [24], a lack of mechanisms for providing feedback to open data producers [86], and
the inadequacy of tools for effectively utilizing open data [86].

Concerns about the reliability of data collected through VGI and the existing power
dynamics and inequalities across different levels of jurisdiction can lead to resistance within
governmental organizations [25]. Stakeholders worry that the collected data might not
withstand scrutiny regarding its quality and accuracy, raising concerns about its reliability
in official contexts [87]. It is, therefore, critical to examine how well VGI data compare with
official government data.

2.3. Project Sidewalk Tool

Project Sidewalk (www.projectsidewalk.org) is an opensource crowdsourcing tool
that allows users to remotely label and assess sidewalk accessibility by virtually moving
GSV imagery of city streets [20], serving the dual purposes of assessing ADA compliance
and ensuring safe routing [18]. Project Sidewalk operates as a citizen-science-based toolkit
that is open to both public users and trained volunteers. Users are asked to identify, label,
and rate sidewalk accessibility features and problems on a scale, selecting the appropriate
descriptive tags or writing in additional comments (Figures 1–3). Users also validate other
users’ labels based on the accuracy of the label type used (Figure 4). This process helps
with quality control, identifying incorrectly used labels to avoid incorporating these data
points in auditing results [88].

Project Sidewalk’s labeling ontology is based on standards [89] for accessible pedes-
trian infrastructure. Labeling involves a three-step process that starts with categorizing
an element based on its type or nature. It encompasses 5 main types of labels along with
35 specific tags to provide detailed information about sidewalk accessibility. The primary
label categories include curb ramps, missing curb ramps, obstacles on the sidewalk, surface
issues, and completely missing sidewalks (see Figure 2).

www.mapillary.com
www.projectsidewalk.org
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The next step involves rating the element’s severity, which assesses its impact on
overall accessibility (see Figure 3). The final step requires selecting descriptive tags that
apply to the element, providing further detail about the specific issues or characteristics
observed. Labels may also feature an optional descriptive text and one or more tags
relevant to the specific issue identified, such as “bumpy”, “cracks”, and “narrow” for
surface problems. Additionally, all labels carry extra metadata, which includes the date of
the image capture, the time the label was added, validation details, and the geographical
coordinates (latitude and longitude) of the labeled spot.

Quality control in crowdsourcing projects can be split into two types: preventive
techniques [90] and post hoc detections [91]. Project Sidewalk employs both approaches: an
interactive tutorial to train crowdworkers as their “first mission” and post hoc validation
where crowdworkers “vote” on the correctness of other users’ labels [92]. Previous evalua-
tions of Project Sidewalk showed strong accuracy of ratings through validations as well as
high inter-rater reliability between research staff members of 0.56–0.86 for Fleiss’ Kappa
score [82]. Recent accuracy statistics for Project Sidewalk, including these validation efforts,
can be found on the Project Sidewalk live stats page [93]. However, Project Sidewalk has not
been validated in comparison with official government data. This need for validation was
discussed as a key need by a multi-stakeholder group of participants who participated in
exploratory workshops to build trust in the data from city officials as well as PwDs [87,94].

3. Methods and Data
3.1. Study Context

In this comparison study, we focused on two regions—Seattle, Washington and Du-
Page County, Illinois. We selected these regions because they enable an investigation into
different urban contexts and forms that exist between the Seattle and Chicago areas and
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because of existing partnerships between the research team and regional planning agencies
in these areas. In the case of Seattle, we accessed the data from the open government data
(OGD) portal [95] and for DuPage, we received the data through a data-sharing agreement.
Also, we utilized data shared from Cook County, Illinois, during the initial round of audit-
ing to establish inter-rater reliability (IRR). However, because that dataset included only
curb ramps, we used DuPage County data for the second and third rounds of IRR auditing
and for the comparison between Project Sidewalk data and government data.

3.2. Sampling—Comparison Area Selection

We used a purposeful sampling approach to select sub-areas within Seattle and Du-
Page County that reflected a diversity of socio-economic status and urban form. Median
Household Income (MHI) data were accessed through Esri, which develops geospatial
resources using the most recently published American Community Survey (ACS) data. The
MHI dataset used in this study contained data from the 2018 ACS 5-Year Estimates. The
Environmental Protection Agency (EPA) Walkability Index data were accessed through the
EPA’s Smart Location Database [96]. We selected 18 Census Block Groups within Seattle and
DuPage (9 samples in each case) that reflected low, medium, and high MHI and walkability,
and which had at least 30 data points from the local government datasets. We selected the
study areas based on income tiers from a 2018 Pew Research Center study [97] and the EPA
Walkability Index Score scale [96]. The income tiers categorized regions as Low Income
(below USD 40,100), Middle Income (USD 40,100–USD 120,400), and High Income (above
USD 120,400). Within DuPage County, there were no areas in the low-income category.

The EPA Walkability Index Score scale contains four tiers. Given that the study
examined urban regions, the first tier (“Least Walkable”) was not included in the selection
criteria, as it primarily is attributed to rural areas. The walkability scale ranged from Below
Average Walkable (5.76–10.5) to Above Average Walkable (10.51–15.25) to Most Walkable
(15.26–20) (Table 1). For each category, we randomly selected block groups. Moreover, we
considered geographic distribution when identifying study regions. Using data on recent
sidewalk updates in Seattle, we selected areas that were not upgraded to attempt to avoid
temporal mismatches with the GSV data.

Table 1. Distribution of study sample areas by Median Household Income and Walkability Score.

Walkability Score 1

Median Household Income 2

Low
USD 40,100 or Less

Medium
USD 40,100–USD

120,400

High
USD 120,400 or

More

Low (5.76–10.5) 1 3 2
Medium
(10.51–15.25) 1 3 2

High (15.26–20) 1 3 2
1 The data source for the walkability score was the EPA Walkability Index; 2 the data on the Median Household
Income came from the 2018 American Community Survey, 5-Year Estimates.

3.3. Rater Auditing Process

To establish inter-rater reliability, two research associates collected data on the same
set of routes via Project Sidewalk. One rater was the lead engineer for Project Sidewalk and
has been auditing for six years. The other rater has a master’s degree in urban planning
and was extensively trained on using the tool. To develop a consistent approach to rating,
these two raters reviewed a sample of roadways and audited the pedestrian infrastructure
in Project Sidewalk. The raters used an existing labeling guide as a starting point for
consistent guidance on rating. The raters went through three rounds of auditing routes.
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We calculated inter-rater reliability statistics using Krippendorff’s Alpha [98]. Specifi-
cally, we first divided streets into segments of 10 m (approx. 30 feet), corresponding to the
visibility range within each GSV panorama. To prevent instances where two labels were
counting the same issue in two street segments, we clustered the raters’ labels based on
the label type and distance. The clustering algorithm and distance threshold were adopted
from a previous Project Sidewalk study [20]. We then assigned the cluster centroids to the
nearest street segment, ensuring that all labels within a cluster were analyzed as part of the
same street segment. Finally, we constructed agreement tables for each label type, where
rows represent street segments and columns represent each rater’s labels.

Table 2 shows the results of the inter-rater reliability between the two raters in each
round. Krippendorff’s Alpha (α) quantifies data reliability by measuring the ratio of
observed disagreement among raters to the disagreement expected by chance, highlighting
how much of the data variance is attributable to the actual phenomena under study rather
than inconsistencies among the evaluators. Krippendorff [98] proposed an ideal reliability
level of α = 1.000, and it is recommended to rely only on variables with α reliabilities of
0.800 or higher, considering variables with reliabilities between α = 0.667 and α = 0.800 for
drawing tentative conclusions.

Table 2. Inter-rater reliability (Krippendorff’s alpha value).

Label Type
Round One Round Two Round Three

Seattle Cook/DuPage Total Seattle DuPage Total Seattle DuPage Total

Curb Ramps 0.827 0.927 0.888 0.939 0.934 0.937 N/A N/A N/A
Missing Curb Ramps 0.875 N/A N/A 0.741 0.666 0.749 N/A N/A N/A
Surface
Problems/Obstacles 0.440 0.565 0.523 0.528 0.598 0.582 0.661 0.701 0.694

No Sidewalk 0.683 0.663 0.690 0.878 0.734 0.785 N/A N/A N/A
Crosswalk 0.853 0.946 0.910 0.941 0.922 0.931 N/A N/A N/A
Pedestrian Signal 0.454 0.818 0.697 0.541 0.990 0.835 N/A N/A N/A

Looking at the total statistics, curb ramps, crosswalks, and pedestrian signals achieved
high levels of agreement (α ≥ 0.8), and missing curb ramps and no sidewalks achieved ac-
ceptable levels of agreement (α≥ 0.67). Sidewalk problems that combined surface problems
(e.g., broken concrete, height difference, uneven, brick/cobblestone) and obstacles (e.g., fire
hydrant, pole, parked scooter, vegetation) were the most difficult to reach agreement on
but reached an acceptable level of agreement after the third round of auditing.

After each round, the two raters discussed disagreements in order to identify where
additional guidance on rating was needed that could improve inter-rater reliability.
Reasons for disagreement included one rater missing or not seeing; the difference in
opinion of what labels to use for certain features (i.e., whether vegetation overgrowth is
a surface problem or an obstacle); GSV imagery updating between audits; and inconsis-
tency in their approaches to labeling features that continued along multiple segments
of the mission route (i.e., missing sidewalks, narrow sidewalks, surface problems, con-
struction). Agreement was achieved by developing a consensus on auditing technique
and minimum requirements for labeling a feature. Consensus was determined by
considering best practices for data collection, reviewing Access Board standards, and
conferring with the research team. Notes were integrated into an updated labeling
guide to help ensure higher reliability in future auditing.
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4. Analysis and Results
4.1. Data Comparison Preprocessing

The Project Sidewalk data for all features were recorded as a point layer, but the official
data from the two local governments were not in a consistent format for each label; some
were in the form of geospatial data and others as non-geocoded files, such as those of
street intersections. In some areas, modifications to the pedestrian infrastructure had been
made after the audit by the government (date mentioned in the data record), such as the
removal of a highway or the addition of pedestrian infrastructure. We flagged these changes
(temporal consistency) during our comparison process using the time machine feature of
GSV. To address these issues, we developed a process for data preparation/recoding. A
detailed description of the process for each feature is provided below.

4.1.1. Curb Ramp

For the city of Seattle, curb ramps had point feature topology. To compare the Project
Sidewalk data with the official data, we performed a spatial join, connecting each curb
ramp point label from Project Sidewalk (N = 206) with the closest point in the government’s
dataset and vice versa (Figure 5). After that, we addressed Project Sidewalk points without
a matching point in the government data or vice versa. Due to temporal mismatches and
updates not reflected in the government’s geospatial data (Figure 6), we excluded eight
points from the comparison analysis.

To compare the quality (severity) of curb ramps we needed to align the severity scales
of the two data sources. The Project Sidewalk dataset categorizes severity into a 5-point
scale, ranging from 1 (good condition or passable) to 5 (poor condition or impassable). The
Seattle dataset classifies curb ramp conditions into three categories: good, somewhat bad,
and bad. To align these datasets, we recorded Project Sidewalk labels with severity 1 as
good, severities 2 and 3 as fair, and severities 4 and 5 as poor.

In DuPage, there were 287 curb ramp features labeled in the Project Sidewalk data.
However, the government data included only data on main intersections. Consequently,
we excluded 194 points from the analysis, leaving 93 pairs of point data for comparison. We
followed the same data preparation process for DuPage as we did for Seattle. We similarly
had to recode Project Sidewalk severity scale to fit the DuPage severity scale by recoding
severity 1 as good, severity 2 asas fair, and severities 3, 4, and 5 as poor.
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4.1.2. Sidewalk Condition

In order to compare data on sidewalk conditions, we compared 431 surface problem
and obstacle labels from Project Sidewalk (point geometry) with segment level data
for Seattle (line geometry). We calculated the count of each Project Sidewalk label
at each severity level for each sidewalk segment (N = 87). In the Seattle data, the
sidewalk condition of a segment was initially classified into five categories, ranging
from excellent to very poor. However, for a more effective comparison, we reclassified
them into three categories: no barriers, some barriers, and many barriers. Similarly, we
converted the data from Project Sidewalk into three categories, using the criterion that
if there was at least one label with a severity of 4 or 5, or if the number of labels with
severity 3 exceeded 5, the sidewalk segment was classified as a sidewalk with “many
barriers”. We considered segments as “no barriers” that had no problem labels. The
rest of the severities were designated as “some barriers”.

In the DuPage area, there were 298 Project Sidewalk labels, of which 25 fell outside
the regions of the government’s previous audit, and, therefore, we excluded them from our
comparison. Since the government’s audit was conducted at the segment level (distance be-
tween two main intersections), we aggregated the audit frequency from Project Sidewalk at
this same segment level before comparing. The DuPage government audited the condition
of sidewalks in 2017 and 2018, categorizing them from poor to good across five classes. We
reclassified these into three classes: “Poor” and “Poor to Fair” were combined into “many
barriers”; “Fair” and “Fair to Good” were grouped as “some barriers”; and “Good” was
defined as “no barrier”. For Project Sidewalk labels, we followed the same procedure that
was applied in Seattle.

4.1.3. No Sidewalk

Similar to sidewalk condition, the absence of a sidewalk was represented as a line
layer for the government data for Seattle, but in the Project Sidewalk data, there are point
features for the No Sidewalk label. Therefore, we conducted a comparison such that if the
entire segment specified by the government as the absence of a sidewalk was covered by
the points in the Project Sidewalk data, we considered it a complete agreement for lacking
a sidewalk for that segment.

In DuPage, the data about whether each street has a sidewalk or not were recorded
in such a way that they were limited to the segment of the street (the distance between
two intersections of the main street), and it was labeled as “PARTIAL”, indicating that a part
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of the street does not have a sidewalk. By matching the two based on their positions, we
considered it an agreement if the “PARTIAL” label of a sidewalk segment in the government
data aligned with at least some Project Sidewalk no sidewalk labels.

4.1.4. Crosswalk

For Seattle, both the government data and Project Sidewalk data geographically
represented crosswalks as a point layer. Therefore, we spatially joined the data of the
Sidewalk project to the government data. For the comparison of crosswalk severity, the
analysis involved aligning the classification systems of the two datasets. In the Seattle
data, crosswalk conditions are categorized into three classes: good, fair, and poor. We
reclassified the Project Sidewalk data into the government’s 3-point scale, where a severity
of 1 was defined as “Good”, severities of 2 and 3 were combined and labeled as “Fair”,
and severities of 4 and 5 were grouped together and classified as “Poor”. No data were
available from the DuPage government for crosswalks.

4.1.5. Pedestrian Signal

In the official data of Seattle, the presence of a pedestrian signal was available as a
point layer, where each point represented an intersection with a pedestrian signal. In the
Project Sidewalk data, there was one point in the layer for every corner of intersections with
a pedestrian signal. Out of the total 27 surveyed points in Project Sidewalk, we excluded
7 points from the analysis due to extensive changes in the pedestrian infrastructure in
recent years. Ultimately, there were five intersections remaining for analysis. No severity
score was available for analysis in the Project Sidewalk or government data.

4.2. Analysis Comparing Project Sidewalk and Government Data

In Table 3, we present the level of agreement between Project Sidewalk data and
government data. As discussed earlier, we assessed this agreement in two ways: one
regarding the spatial alignment of Project Sidewalk labels with government data and the
other concerning the severity of each label in both datasets.

Table 3. Agreement rates between Project Sidewalk and government data.

Label Type

Seattle DuPage

N * % Agreement
Presence

% Agreement
Severity N % Agreement

Presence
% Agreement

Severity

Curb Ramp 193 89.9 63.8 93 93.5 20.8
Obstacles and Surface

Problems 431 i 90.8 81.6 273 100 ii 46.1

No Sidewalk 238 98.7 n/a 178 100 n/a
Crosswalk 44 81.8 81.1 n/a n/a n/a

Pedestrian Signal 20 75 n/a n/a n/a n/a

* Note: * (number of paired clusters); i number of sidewalk segments: 87; ii Note: * (number of paired clusters).

The percentage of agreement for the presence of features varied. The highest agreement
was observed for the no sidewalk label (100%), while the lowest agreement was associated
with the label pedestrian signal (75%). The extent of agreement may depend on the topology
differences between data sources. For instance, in the case of obstacles and surface problems,
the disagreement might come from how the data are reported differently (like points versus
lines). In contrast, comparing the No Sidewalk label is relatively straightforward.

Another factor contributing to the discrepancy between the datasets is the classifica-
tion of some curb ramps in the government data as “shared”, indicating their usability
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for pedestrian movement in any direction (Figure 7). Conversely, the Project Sidewalk
data, with a focus on accessibility for all pedestrians, particularly those with disabilities,
recognized curb ramps for only one direction, treating the opposite direction as lacking a
curb ramp. This divergence in data interpretation arises from the differing audit procedures
of the two sources.
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The agreement percentage for severity scores varied substantially and was generally
lower than that for the presence of features. For example, there was a high agreement on
the presence of obstacles and surface problems in Seattle (90.8%), but the agreement on
their severity was slightly lower (81.6%). In DuPage, there was a perfect agreement on the
presence of obstacles and surface problems (100%), but the agreement on severity dropped
significantly, to 46.1%. This indicates that while identifying pedestrian infrastructure
features might be straightforward, assessing their severity varies significantly between the
datasets. The Project Sidewalk raters were more conservative with their ratings and rated
infrastructure features as more problematic than auditors in the government data. The
average severity in PS data was 1.47, compared with 1.34 in the city data.

5. Discussion and Future Work
In this study, we compared data from a crowdsourcing platform with data collected

from official government audits of pedestrian infrastructure accessibility, consistent with
previous research showing the high reliability of online audits compared with traditional
field audits. Similar to prior efforts that compared field audits—mostly conducted by
research assistant teams—with virtual audits [35,42–48], our results revealed a high level of
agreement for the presence of pedestrian infrastructure features. Our findings also showed
that the degree of agreement varies depending on the type of features being audited, as
found in previous research [35,44,46,48–51]. In contrast to previous research showing
that positional accuracy of features is a challenge in geo-crowdsourced databases [99,100],
our results demonstrated a high level of positional accuracy between virtually audited
and in-person government data. The percentage of agreement was 75% or higher for
detecting the locations of features. Yet, the results for positional accuracy seem consistent
with previous studies using virtual audits to compare derived versus government data by
trained individuals [42] or through automated processes [60].

While we might assume that official government data are a “gold-standard” of
quality, our study identified several issues with treating it as such. Notably, we found
some parts of the government data to be outdated, not to cover all features of the



Urban Sci. 2025, 9, 130 14 of 20

pedestrian infrastructure, or not to be collected throughout the study area. These
issues compounded the complexity and time required for comparison. For instance, we
identified an issue in the government data that when a part of the sidewalk segment
was missing, it was still classified as a full sidewalk, whereas Project Sidewalk data
would note the gap in that sidewalk as a missing sidewalk.

Yet, evaluating the quality of the features becomes more challenging, as perceptions of
quality differ between individual viewpoints. Our results showed that the percentage of
agreement varied for the severity of pedestrian infrastructure issues. This also aligns with
previous studies comparing virtual audits with on-site audits, which have found much
lower agreement percentages for qualitative subjects, such as graffiti and upkeep [47], ver-
sus more objectively measurable features like the presence of curb ramps. This discrepancy
highlights the subjective nature of severity assessments for both government and street-
view audits and suggests a need for clearer guidelines or criteria to improve evaluation
consistency. It also suggests the need for more granular reporting of the characteristics
of features so that instead of a severity score (as is provided by local governments and
Project Sidewalk), specific feature attributes can be compared, such as having a tactile
strip on curb ramps. Interestingly, the severity rating from Project Sidewalk raters was,
on average, higher (i.e., more problematic) than for government data. This is important
because it suggests that crowdsourced data would not have an issue with missing prob-
lematic features or downplaying severity. In other words, cities using Project Sidewalk
could have confidence that they would know about all the severe problems. While it could
lead to possible misclassification of problems as being more severe, the ADA requires
all infrastructure to be accessible and meet minimum guidelines. Therefore, even small
problems are important to identify, and in the overall identification process, false negatives
are more important to minimize vs. false positives. Cities also vary substantially in how
they prioritize improvements [3], so severity is one factor among many that is used in
making such decisions, reducing the impact of slight misclassifications.

One reason for the lower percentage of agreement on severity can be attributed to
the temporal mismatch between Project Sidewalk data and government data. In the case
of Seattle, the government’s data are not as up to date regarding the quality as the GSV
data, which show more recent conditions of features. The quality of these pedestrian
infrastructure features may have declined compared with the time of the government’s
audit, or conversely, in some locations in DuPage, where the government improved the
pedestrian infrastructure after the last available GSV, there was also a discrepancy.

The lack of standardized criteria among local governments for auditing pedes-
trian infrastructure brings into question, what is the gold standard? Even among the
two government agencies in this study, there were substantial differences. The lack
of integration of standardized measurement, particularly concerning the data type
for each feature, not only imposes significant constraints on long-term planning for
improving pedestrian infrastructure but also hinders the implementation of general
policies based on best practices from other cities [101]. Standardized open data can
establish a consistent data structure [102] and be used for both traditional and SVI-
based audit efforts [103]. While the data used in this study were collected from trained
raters, the data structure and inputs would be the same if they were crowdsourced.
Our process and findings on inter-rater reliability suggest the need for training as part
of crowdsourcing onboarding. Geo-crowdsourced data democratizes the data collec-
tion process and can significantly enhance the comprehensiveness and granularity of
datasets relevant to pedestrian infrastructure projects. Moreover, the inclusive nature
of crowdsourced open data can bridge the gap between official records and the actual
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needs and experiences of the community, thereby enabling more community-centered
urban planning initiatives [22].

The use of AI with crowdsourcing projects may change the workflow of pedestrian
accessibility data collection. Our team is working on developing machine learning
methods [92,104] to enhance the accuracy and scalability of these audits. However, the
“citizen science” toolkit remains an important consideration, especially in capturing
qualitative aspects that AI-based methods may struggle to address. AI approaches,
while promising, have limitations in interpreting subjective features, such as the severity
of infrastructure barriers, which require human judgment and contextual understanding.
Thus, integrating human and AI citizen science tools continues to be essential [105],
ensuring that the qualitative nuances of pedestrian accessibility are not overlooked.

6. Conclusions
The lack of comprehensive data on pedestrian infrastructure accessibility presents a critical

challenge for cities in addressing pedestrian infrastructure barriers. Crowdsourcing tools such
as Project Sidewalk can be a scalable solution, but the validation of such data is needed. Our
results show high agreement between the virtual audit data from Project Sidewalk and official
government data collected in person for the presence of various feature types, but varying
agreement for the severity of pedestrian infrastructure issues.

We identified several important challenges to making “apples-to-apples” compar-
isons between Project Sidewalk and government data, including location mismatches,
differences in geospatial topology, differing criteria used in evaluating pedestrian in-
frastructure conditions, and inaccuracies in the reference data. This study demonstrates
that Project Sidewalk data can be a reliable alternative to traditional data collection
processes, but it also reveals challenges related to a lack of standardized formats for
auditing the severity of pedestrian infrastructure issues. Future work is needed to stan-
dardize data collection for sidewalk accessibility so that geo-crowdsourcing can be a
viable alternative or addition to traditional in-person audits. Such efforts could acceler-
ate infrastructure improvements and enhance environmentally and socially sustainable
mobility among PwDs.
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Abbreviations
The following abbreviations are used in this manuscript:

ACS American Community Survey
ADA Americans with Disabilities Act
AI Artificial intelligence
EPA Environmental Protection Agency
GPS Global Positioning System
GSV Google Street View
IRR Inter-rater reliability
LiDAR Light Detection and Ranging
MHI Median Household Income
OGD Open government data
OSM OpenStreetMap
PPGIS Public Participation in Geographic Information Systems
PwDs People with disabilities
SVI Street view imagery
VGI Volunteered Geographic Information
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