

# Implementing a Community-Based Virtual Tool to Characterize Sidewalk Accessibility in a Northern New Jersey (NJ) Town

Kie Fujii, MBA<sup>1, 2</sup>, Katrina Ma, BA<sup>3</sup>, Chu Li, MS<sup>3</sup>, Michael Saugstad, MS<sup>3</sup>, Lisa Stolarz, MA<sup>2</sup>, Michael I. Starr, MBA<sup>2</sup>, Florian P. Thomas, MD/PhD<sup>1, 2, 4</sup>, Jon Froehlich, PhD<sup>3</sup> <sup>1</sup>Hackensack Meridian School of Medicine, <sup>2</sup>National MS Society- NJM Community Council, <sup>3</sup>Allen School of Computer Science & Engineering, University of Washington, <sup>4</sup>Department of Neurology & Neuroscier Institute, Hackensack University Medical Center

RESULTS



## BACKGROUND/ OBJECTIVES

**Background:** Inaccessible sidewalks reflect municipal ordinances ("no sidewalk") and inadequate enforcement ("cracked sidewalks").

#### Objectives:

- Quantify sidewalk deficiencies in Oradell, NJ.
- Employ a virtual tool, engage with community (National MS Society Community Council, Girl Scout troop).
- Raise local leadership and community awareness.
- Contribute to remedying inaccessibility.
- Improve inclusivity and disability awareness.

# METHODS

- Design: Implementation of Community-based "Project Sidewalk", a Google Street View based assessment tool.
- Methods: 35.9 street miles examined 81 trained volunteers (medical
- student, Girl Scouts, NMSS Community Council), produced 11,135 labels of sidewalk characteristics, e.g. missing curb ramps, obstacles, no sidewalks
- Severity grades: (1-5 passableimpassable)
- 14,919 validations of other users' labels showed >90% accuracy







Figure 1: An example of labeling a surface problem. Figure 2: Common high severity surface problem in Oradell.

High-Severity (≥ 4) Label Counts/mile by Neighborhood Mesing Curb Ramps have high severity rating across all neighborhoods

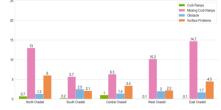



Figure 3: Geographic view of high severity labels being scattered across Oradell. Figure 4: Bar graph of high severity missing curb ramps across all regions.

|   | Curb Ramp Tags          | Count | % of Curb Ramp Tags | Avg. Severity (SD) |
|---|-------------------------|-------|---------------------|--------------------|
| 1 | Missing tactile warning | 225   | 15.0%               | 2.38 (0.59)        |
|   | Surface problem         | 107   | 7.0%                | 2.23 (0.58)        |
|   | Point into traffic      | 62    | 4.0%                | 2.37 (0.68)        |

Table 1 & 2: Breakdown of the specific tags for curb ramp and surface problem.

| urface Problem Tags | Count | % of Surface Tags | Avg. Severity (SD) |
|---------------------|-------|-------------------|--------------------|
| Height difference   | 1,455 | 29.0%             | 1.96 (0.99)        |
| Cracks              | 1,256 | 25.0%             | 1.71 (0.79)        |
| Uneven/ slanted     | 1,031 | 21.0%             | 2.34 (1.02)        |
| Grass               | 547   | 11.0%             | 1.46 (0.63)        |
| Very broken         | 235   | 5.0%              | 2.44 (1.04)        |

# CONCLUSIONS

- Problematic sidewalks stand to reduce community participation.
- Project Sidewalk is an efficient and effective tool that facilitates community action by producing actionable data and awareness.
- It promotes community inclusivity and educates town leaders and younger people.
- This local success may serve as a model for nationwide implementation.

### **NEXT STEPS**

- Communities should focus on high severity sidewalk barriers.
- Simple first steps may address vegetation obstructions, curb ramps, and additional crosswalks.
- Ultimately add more sidewalks.

## LIMITATIONS

- Some outdated Google Street views.
- Inconsistency in user participation.